US3445299A - Cast ferrous material of high magnetic permeability - Google Patents

Cast ferrous material of high magnetic permeability Download PDF

Info

Publication number
US3445299A
US3445299A US756699*A US3445299DA US3445299A US 3445299 A US3445299 A US 3445299A US 3445299D A US3445299D A US 3445299DA US 3445299 A US3445299 A US 3445299A
Authority
US
United States
Prior art keywords
carbon
magnetic permeability
high magnetic
ferrous material
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US756699*A
Inventor
Harry B Laudenslager Jr
Everett W Hale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Engine Cooling Inc
Original Assignee
Blackstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blackstone Corp filed Critical Blackstone Corp
Application granted granted Critical
Publication of US3445299A publication Critical patent/US3445299A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Description

May 20, 1969 Kilo -Lines/ sq. in.
H. B. LAUDENSLAGER, JR., E AL 3,445,299
CAST FERROUS MATERIAL OF HIGH MAGNETIC PERMEABILITY Filed July 22, 1968 Fig.l.
IIO
Sheet drz AMP Turns/ inch lNvEN'roRs Harry B. Luudensluqer,Jr. 8 Everett \MHole y 20, 1969- H. a. LAUDENSLAGER, JR., ET AL 3,445,299
CAST FERROUS MATERIAL OF HIGH MAGNETIC PERMEABILITY Filed July 22, 1968 Sheet 2 of 2 Fig.2.
INVE NTORS Harry B. Loudensloger,Jr. 8:
Everett W. Hole g W United States Patent 3,445,299 CAST FERROUS MATERIAL OF HIGH MAGNETIC PERMEABILITY Harry B. Laudenslager, Jr., Jamestown, and Everett W.
Hale, Falconer, N.Y., assignors to Blackstone Corporation, a corporation of New York Continuation-impart of application Ser. No. 402,570, Oct. 8, 1964. This application July 22, 1968, Ser. No. 756,699
Int. Cl. C22c 39/24 US. Cl. 148-3155 4 Claims ABSTRACT OF THE DISCLOSURE A cast ferrous material of high magnetic permeability comprising about 0.5% to 0.95% carbon, about 2.5% to 4.5% silicon, up to about 0.05% chromium, up to about 0.03% sulfur, up to about 0.05% phosphorus, up to about 0.6% manganese, up to about 0.05% magnesium and the balance iron with usual impurities in ordinary amounts, said carbon being in the form of temper carbon and ferrite substantially free of pearlite and the material being characterized by a permeability of at least 100 kilo lines/in. at 200 ampere turns per inch.
This application is a continuation-in-part of our copending application Ser. No. 402,570, filed Oct. 8, i964 and now abandoned.
This invention relates to a cast ferrous material of high magnetic permeability and particularly to a composition.
of iron and a method of making such iron.
We have discovered a composition and a method of making a workable cast ferrous material which has improved magnetic permeability properties approaching, if not equaling, those of worked silicon steel. We have discovered that a cast ferrous material falling within the following composition limits and treated as hereafter described will have high magnetic permeability. The composition of such a ferrous material should fall within the following broad limits:
Percent Carbon 0.50.95 Silicon 2.54.5 Chromium (max.) Up to 0.05 Sulfur (max.) Up to 0.03 Phosphorus (max.) Up to 0.05 Manganese (max.) Up to 0.6 Magnesium Up to 0.05
The balance iron with usual impurities in ordinary amounts.
A preferred narrower range of composition is:
Percent Carbon 0.65-0.85 Silicon 2.5-3.5 Chromium (max.) Up to about 0.05 Sulfur Up to 0.008 Phosphorus Up to 0.05 Manganese Up to 0.3 Magnesium 0.0200.05
The balance iron with usual impurities in ordinary amounts.
The iron must be annealed as in a malleable iron annealing cycle or treated in some modified heat treatment that will accomplish an anneal or its equivalent so that the carbon is tempered and substantially completely free of combined carbon and flaked graphite after annealing. The melt is preferably agitated so as to react any oxygen in the system with silicon and/or magnesium and separate it as a part of the slag prior to casting. It is important that the iron be substantially free from oxygen and oxides and that the sulfur and phosphorus be reduced to within the ranges above stated. The desired purging action may be accomplished by adding the deoxidizer (silicon or magnesium) into the molten metal with nitrogen or suitable inert gas so that the gas agitates the bath as the deoxidizer enters it and promotes reaction with the oxygen of the bath. As this practice is carried out, it is important that where magnesium is used there be added a sufficient amount of magnesium to provide not more than the residual magnesium set out in the foregoing compositions. We have found that magnesium is desirable, but not always required, as a stabilizer of carbon within the range here set out.
The ordinary impurities referred to in the composition are those which normally appear in the foundry as a result of the addition of remelt scrap. They may include small amounts of nickel, chromium, copper, tin, aluminum, boron, calcium and the like in the small amounts generally recognized as acceptable in malleable practice. In no case, however, can the chromium exceed 0.05% and the nickel or copper exceed 0.5 if maximum performance is desired.
This invention may perhaps best be understood by reference to the following examples. In each case a white cast iron composition was prepared with an appropriate base chemistry. This metal was tapped from the furnace at a temperature between 2880 F. and 2890" F. into a thousand pound ladle. An amount of calcium hearing ferrosilicon x 12 mesh was added to the metal in the ladle suflicient to provide the desired silicon level. Nitrogen or a suitable inert gas was then injected into the ladle through a carbon tube (any other refractory tube such as ceramic might be substituted for the carbon tube) to agitate the metal and pure magnesium spheres were added to the nitrogen or inert gas in the total amount sufficient to achieve the desired magnesium level through the injection tube. The metal was then poured into castings without further treatment. The castings were annealed by a normal annealing cycle for malleable iron. The first stage graphitization was accomplished in about 3 hours at a temperature of 1600 F. The castings were then air quenched to 1300 F. and held for 5 hours and then air cooled to room temperature. As soon as the castings were cool enough to be handled, a ring was machined from the casting, wound and tested on a flux meter according to ASTM specification #341-49-4B for flux testing of ferrous metal. Tests on these castings were compared with like tests on Grade A malleable made to ASTM 35018 specifications and with SAE 1006 steel.
Castings made from metal within the composition range here disclosed and annealed by any good first-class heat treatment for malleable iron, or by a short cycle malleabilization treatment such as that disclosed in the example, will produce high permeability equal or superior to that for SAE 1006 steel. The test data comparing conventional Grade A malleable, SAE 1006 steel and the irons made according to this invention is plotted in FIG- URE 1 which accompanies this application. It will be seen from a comparison of this test data that the iron of this invention has permeability properties far superior to that of ordinary malleable irons and comparable or superior to magnetic types of worked silicon steel.
In FIGURE 1, the several materials represented have the following compositions:
ferrd practices and embodiments in the foregoing specification, it will be understood that this invention can be otherwise practiced within the scope of the following claims.
We claim:
1. A cast ferrous material of high magnetic permeability consisting essentially of about 0.5% to 0.95 carbon, about 2.5% to 4.5% silicon, up to about 0.05% chromium, up to about 0.03% sulfur, up to about 0.05% phosphorus, up to about 0.6% manganese, up to about 0.05% magnesium and the balance iron with usual impurities in ordinary amounts, said carbon being in the form of temper carbon and ferrite substantially free of pearlite and the material being characterized by a permeability of at least 100 kilo lines/in. at 200 ampere turns per inch.
2. A cast ferrous material of high magnetic permeability consisting essentially of about 0.65% to 0.85% carbon, about 2.5% to 3.5% silicon, up to about 0.05% chromium, up to about 0.008% sulfur, up to about 0.05
phosphorus, up to about 0.3% manganese, up to about TABLE I Kilo lines/in.
At 40 At 200 Curve Material 0 Si Mn S Mg Cr amp turns amp turns A Alloy of invention 0. 78 3. 92 0. 45 0.026 0. 040 0. 027 92. 8 108. 2 B do 0. 66 3. 27 0. 50 0. 026 0. 021 0.035 95. 0 113. 8 C do. 0. 68 3. 26 0. 46 0. 024 0. 040 0. 042 93. 0 113. 5 D -do 0. 50 3. 06 0. 50 0. 024 0. 021 0. 041 94. 0 111. 5 F SAE 1006 steel 0. 08 0. 0. 04 86. 5 106. 0 G Conventional grade A malleab 2.18 1. 52 0. 30 0. 063 No 0. 03 80. 5 99. 5 H Conventional grade B malleable" 2. 60 1. 72 0. 28 0. 048 No 0. 03 72. 5 91. 5
While we normally prefer to add magnesium as described above, it is not necessary to the full utilization of our invention when the carbon equivalent is below 2.25 (carbon equivalent=carbon+ x [silicon+phosphorus]) as the following examples will show.
A white iron composition was prepared with an appropriate base chemistry. The metal was tapped from the furnace at a temperature between 2880 F. and 2890 F. into a thousand pound ladle. An amount of 85% calcium bearing ferrosilicon x 12 mesh was added to the metal in the ladle to provide the desired silicon level. The metal was poured into castings without further treatment. The castings were annealed as in the case of the preceding examples.
The permeability was determined as in the case of the alloys shown in Table I and are as follows:
The material of this invention has proved satisfactory for use as a substitute for worked silicon steel in the formation of alternators for passenger cars, trucks and the like, a service for which no cast iron was acceptable prior to the present invention.
It is important that there be no cold working of the cast material after the annealing cycle. If there is any cold working of the casting, it must be re-annealed so that all of the grain structure which has been altered by working is restored.
In FIGURE 2 we show a photomicrograph at 100x of the alloy identified as C hereinabove after the malleable heat treatment. It will be noted that the carbon appears in the temper of blackheart form typical of a malleable lIOI'l.
While we have illustrated and described certain preability of at least 100 kilo lines/in. at 200 ampere turns per inch.
3. A cast ferrous material of high magnetic permeability consisting essentially of about 0.5% to 0.95% carbon, about 2.5% to 4.5% silicon, up to about 0.05% chromium, up to about 0.03% sulfur, up to about 0.05% phoshorus, up to about 0.6% manganese, about 0.02% to about 0.05% magnesium when the carbon equivalent exceeds 2.25, and the balance iron with usual impurities in ordinary amounts, said carbon being in the form of temper carbon and ferrite substantially free of pearlite and the material being characterized by a permeability of at least 100 kilo lines/in. at 200 ampere turns per inch.
4. A cast ferrous material of high magnetic permeability consisting of about 0.65 to 0.85% carbon, about 2.5 to 3.5% siilcon, up to about 0.05% chromium, up to about 0.008% sulfur, up to about 0.05% Phosphorus, up to about 0.3% manganese, about 0.02% to about 0.05% magnesium when the carbon equivalent exceeds 2.25, and the balance iron with usual impurities in ordinary amounts, said'carbon being in the form of temper carbon and ferrite substantially free of pearlite and the material being characterized by a permeability of at least 100 kilo lines/in. at 200 ampere turns per inch.
References Cited UNITED STATES PATENTS 2,069,423 2/ 1937 Schwartz l23 2,578,794 12/1951 Gagnebin et al. 75l23 2,610,912 9/1962 Millis et a1. 75l23 2,873,188 2/1959 Bieniosek 75130 3,080,228 3/1963 Hale et a1. 75130 3,189,492 6/1965 Laudenslager et a1. 148138 3,189,443 6/1965 Laudenslager et al. l48l39 L. DEWAYNE RUTLEDGE, Primary Examiner.
P. WEIN STEIN, Assistant Examiner.
US. Cl. X.R.
US756699*A 1968-07-22 1968-07-22 Cast ferrous material of high magnetic permeability Expired - Lifetime US3445299A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75669968A 1968-07-22 1968-07-22

Publications (1)

Publication Number Publication Date
US3445299A true US3445299A (en) 1969-05-20

Family

ID=25044676

Family Applications (1)

Application Number Title Priority Date Filing Date
US756699*A Expired - Lifetime US3445299A (en) 1968-07-22 1968-07-22 Cast ferrous material of high magnetic permeability

Country Status (1)

Country Link
US (1) US3445299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527399A (en) * 1993-08-30 1996-06-18 The Arnold Engineering Company Magnetic strips and methods for making the same
US5611872A (en) * 1993-08-30 1997-03-18 The Arnold Engineering Company Magnetic strips and methods for making the same
US20170198381A1 (en) * 2014-06-20 2017-07-13 Arvinmeritor Technology, Llc Ferrous Alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2069423A (en) * 1932-03-05 1937-02-02 Nat Malleable & Steel Castings Ferrous alloy
US2578794A (en) * 1949-09-02 1951-12-18 Int Nickel Co Magnesium-treated malleable iron
US2610912A (en) * 1947-03-22 1952-09-16 Int Nickel Co Steel-like alloy containing spheroidal graphite
US2873188A (en) * 1956-02-10 1959-02-10 Union Carbide Corp Process and agent for treating ferrous materials
US3080228A (en) * 1960-08-03 1963-03-05 Blackstone Corp Process for the production of cast iron
US3189443A (en) * 1963-02-06 1965-06-15 Blackstone Corp Iron founding
US3189492A (en) * 1963-01-29 1965-06-15 Blackstone Corp Cast iron of high magnetic permeability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2069423A (en) * 1932-03-05 1937-02-02 Nat Malleable & Steel Castings Ferrous alloy
US2610912A (en) * 1947-03-22 1952-09-16 Int Nickel Co Steel-like alloy containing spheroidal graphite
US2578794A (en) * 1949-09-02 1951-12-18 Int Nickel Co Magnesium-treated malleable iron
US2873188A (en) * 1956-02-10 1959-02-10 Union Carbide Corp Process and agent for treating ferrous materials
US3080228A (en) * 1960-08-03 1963-03-05 Blackstone Corp Process for the production of cast iron
US3189492A (en) * 1963-01-29 1965-06-15 Blackstone Corp Cast iron of high magnetic permeability
US3189443A (en) * 1963-02-06 1965-06-15 Blackstone Corp Iron founding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527399A (en) * 1993-08-30 1996-06-18 The Arnold Engineering Company Magnetic strips and methods for making the same
US5611872A (en) * 1993-08-30 1997-03-18 The Arnold Engineering Company Magnetic strips and methods for making the same
US20170198381A1 (en) * 2014-06-20 2017-07-13 Arvinmeritor Technology, Llc Ferrous Alloy
US10351944B2 (en) * 2014-06-20 2019-07-16 Arvinmeritor Technology, Llc Ferrous alloy

Similar Documents

Publication Publication Date Title
US9222154B2 (en) Wear resistant cast iron
JPS6349723B2 (en)
US2488511A (en) Nodular cast iron and the manufacture thereof
US3492118A (en) Process for production of as-cast nodular iron
US2823992A (en) Alloy steels
US3445299A (en) Cast ferrous material of high magnetic permeability
US2542220A (en) Ferritic alloy
US3375105A (en) Method for the production of fine grained steel
US3702269A (en) Ultra high strength ductile iron
US3189492A (en) Cast iron of high magnetic permeability
JP3296509B2 (en) Tough high carbon cementite alloy cast iron
CN110241363B (en) Cast steel material and casting method thereof
US2949355A (en) High temperature alloy
JPH10195587A (en) Spheroidal graphite cast iron and exhaust manifold excellent in intermediate temperature ductility, and production thereof
JPH0791579B2 (en) Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment
NO157867B (en) Rotary snow plow.
CN114635077A (en) Super austenitic stainless steel and preparation method thereof
CN110468329A (en) ZG-SY09MnCrNiMo RE steel and casting preparation method
CN110306113A (en) A kind of piston shoes cast steel material and casting method
US2943932A (en) Boron-containing ferrous metal having as-cast compacted graphite
JP2015227485A (en) Ferritic spheroidal graphite cast iron
JPS609848A (en) Heat resistant co alloy
US3189443A (en) Iron founding
US1890548A (en) Prealloys
Pearce Fourth Report of the Research Committee on High-Duty Cast Irons for General Engineering Purposes: Acicular Cast Irons