US3189492A - Cast iron of high magnetic permeability - Google Patents

Cast iron of high magnetic permeability Download PDF

Info

Publication number
US3189492A
US3189492A US254730A US25473063A US3189492A US 3189492 A US3189492 A US 3189492A US 254730 A US254730 A US 254730A US 25473063 A US25473063 A US 25473063A US 3189492 A US3189492 A US 3189492A
Authority
US
United States
Prior art keywords
iron
carbon
cast
magnesium
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US254730A
Inventor
Jr Harry B Laudenslager
Everett W Hale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Engine Cooling Inc
Original Assignee
Blackstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blackstone Corp filed Critical Blackstone Corp
Priority to US254730A priority Critical patent/US3189492A/en
Priority to GB3762/64A priority patent/GB1034511A/en
Priority to SE1088/64A priority patent/SE302373B/xx
Priority to JP39004058A priority patent/JPS5231297B1/ja
Priority to DEB75212A priority patent/DE1291513B/en
Application granted granted Critical
Publication of US3189492A publication Critical patent/US3189492A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Definitions

  • compositions and a method of making a workable cast iron which has improved magnetic permeability properties approaching, if not equaling, those of steel.
  • a cast iron falling within the following composition limits and treated as hereafter described will have high magnetic permeability.
  • the composition of such an iron should fall within the following broad limits:
  • the iron must be annealed so that the carbon is tempered and substantially completely free of combined carbon and flaked graphite after annealing.
  • the melt is preferably agitated so as to react any oxygen in the system with silicon and magnesium and remove it as a part of the lag prior to castin It is important that the iron be substantially free from oxygen and oxides and that the sulfur and phosphorus be reduced to within the ranges above stated.
  • This purging action may be accomplished by adding the magnesium into the molten metal with nitrogen gas so that the nitrogen agitates the bath as the magnesium enters it and promotes reaction with the oxygen of the bath. As this practice is carried out, it is important that there be added a sufficient amount of magnesium to provide the residual magnesium set out in the foregoing compositions.
  • a white cast iron composition was prepared with a base chemistry of 21% carbon, 1.5% silicon, 0.26% manganese, 0.045% sulfur and 0.045% phosphorus. This metal was tapped from the furnace at a temperature between 2880" F. and 2890 F. into a thousand pound ladle. Ten pounds of 85% calcium bearing ferrosilicon x 12 mesh was added to the metal in the ladle. Nitrogen was then injected into the ladle through a carbon tube (any other refractory tube such as ceramic might be substituted for the carbon tube) to agitate the metal and pure magnesium spheres were added to the nitrogen in the total amount of five pounds through the injection tube. The metal was then poured into castings without further treatment.
  • the castings were annealed by a normal annealing cycle for malleable iron.
  • the first stage graphitization was accomplished in about 8 hours at a temperature of 1690 F.
  • the castings were then cooled to 1420 F. in about 2 hours and were then slow cooled from 1420" F. to 1260 F. at a rate at 10 per hour.
  • a ring was machined from the casting, wound and tested on a flux meter according to ASTM specification #341494B for flux testing of ferrous metal. Tests on these castings showed eight to ten kilolines higher than like castings made from Grade B malleable ASTM 32510, and from four to eight kilo-lines higher than Grade A malleable made to ASTM 35018 specifications.
  • Castings made from metal within the composition range ere disclosed and annealed by any good first-class heat treatment for malleable iron, such as that disclosed in the example, will produce high permeability approaching that for SAE 1006 steel. Comparative tests of conventional malleable iron, malleable iron of the present composition and treatment, and of SAE 1006 steel have been made. The test data is plotted in the figure which accompanies this application. It will be seen from a comparison of this test data that the cast iron of this invention has permeability properties far superior to that of ordinary malleable irons and comparable to magnetic types of steel.
  • the material of this invention has proved satisfactory for use as a substitute for steel in the formation of a1- ternators for passenger cars, trucks and the like, a service for which no cast iron was acceptable prior to the present invention.
  • a cast iron of high magnetic permeability comprising about 1.75% to 2.3% carbon, about 2% to 4% silicon, up to about 0.02% sulfur, up to about 0.05% phosphorus, up to about 0.4% manganese, about 0.025% to 0.05% magnesium and the balance iron with usual impurities in ordinary amounts, said iron having been cast white and having been annealed by a malleable iron heat treatment cycle to convert the carbon to temper carbon, said iron having a permeability of at least about kilolines/in. at 40 ampere turns per inch.
  • a cast iron of high magnetic permeability compris ing about 1.9% to 2.15% carbon, about 2.5% to 3.5% silicon, up to about 0.008% sulfur, up to about 0.05% phosphorus, up to about 0.3% manganese, about 0.025 to 0.05 magnesium and'the balance iron with usual impurities in ordinalyamounts, said' iron'having been cast White and having been annealed by. a'rnalleable iro'n heat treatment cycle to convert the carbon to temper carbon, said iron having a permeability of at least about 80 kilolines/in. at 40 ampere turns per inch.
  • A' cast iron of high magnetic permeability comprisirrg about 1.9% to 2.15% carbon, about 2.5% to 3.5% silicon, up to about 0.008% sulfur, up to about 0.05% phosphorus, up to about 0.3% manganese, about 0.025% to 0.05% magnesium,saidiron'beingsubstantially free of oxygen and thebalance'iron with usual impurities in ordinary amounts, said iron having been cast white and amounts, adding to said mixture a suflicient amount of magnesium to provide a residual of about. 0.025% to 0.05 with an inert gas at a rate sufiicient to cause agitation of the molten metal mixture and to react silicon and magnesium with any oxygen present in the molten 'metal to remove substantially all theoxygen in the bath,
  • ten metal mixture comprising about 1.9% to 2.15% 'car-' bon, 2.5% ,to' 3.5% silicon, up to about 0.008% sulfur, up to about 0.04% phosphorus, up to about 0.3% manganese and the balance iron with usual impurities in ordinary amounts,adding to said mixture a sufiicient amount of magnesium-to provide a residual of about 0.025% to 0.05 with an inert gas at a rate suflicient toc'ause agihaving beenannealed by a malleable iron heat treatment cycle to convert the carbon to' temper carbon; said iron having a permeability of'at least about 80 kilo-lines/in.

Description

5 2.5515 00- omom on ow on H. B. LAUDENSLAGER, JR., ETAL CAST IRON OF HIGH MAGNETIC PERMEABILITY Filed Jan. 29, 1963 June 15, 1965 9 8 mm N d. vww mL.. n r y w/y "E o .H H. u a s 2 United States Patent 3,139, 32 CAST RGN {11F HICH MAGNETEC PERlt ErsBiLiTY Harry B. Laudenslager, 3n, Jamestown, and Everett W.
Hale, Falconer, N.Y., assignors to Blackstone Corporation, a corporation of New York Filed .ian. 29, 1963, Ser. No. 254,730 6 Claims. (Cl. MES-35) 'lfis invention relates to cast iron having a high magnetic permeability and particularly to a composition of iron and a method of making such cast iron.
It is well known that cast irons have always been subject to severe limitations in the field where permeability is a desired or required factor. In general, the cast irons have been unsatisfactory for any use in which permeability was important and in such instances, one desiring permeability had to go to the steels in order to obtain this desired quality.
We have discovered a composition and a method of making a workable cast iron which has improved magnetic permeability properties approaching, if not equaling, those of steel. We have discovered that a cast iron falling within the following composition limits and treated as hereafter described will have high magnetic permeability. The composition of such an iron should fall within the following broad limits:
The balance iron with usual impurities in ordinary amounts. A preferred narrower range of composition is:
Percent Carbon 1.9 to Silicon 2.5 to Sulfur up to 0.008 Phosphorus up to Manganese up to Magnesium 0.025 to The balance iron with usual impurities in ordinary amounts.
The iron must be annealed so that the carbon is tempered and substantially completely free of combined carbon and flaked graphite after annealing. The melt is preferably agitated so as to react any oxygen in the system with silicon and magnesium and remove it as a part of the lag prior to castin It is important that the iron be substantially free from oxygen and oxides and that the sulfur and phosphorus be reduced to within the ranges above stated. This purging action may be accomplished by adding the magnesium into the molten metal with nitrogen gas so that the nitrogen agitates the bath as the magnesium enters it and promotes reaction with the oxygen of the bath. As this practice is carried out, it is important that there be added a sufficient amount of magnesium to provide the residual magnesium set out in the foregoing compositions.
This invention may perhaps best be understood by reference to the following example. A white cast iron composition was prepared with a base chemistry of 21% carbon, 1.5% silicon, 0.26% manganese, 0.045% sulfur and 0.045% phosphorus. This metal was tapped from the furnace at a temperature between 2880" F. and 2890 F. into a thousand pound ladle. Ten pounds of 85% calcium bearing ferrosilicon x 12 mesh was added to the metal in the ladle. Nitrogen was then injected into the ladle through a carbon tube (any other refractory tube such as ceramic might be substituted for the carbon tube) to agitate the metal and pure magnesium spheres were added to the nitrogen in the total amount of five pounds through the injection tube. The metal was then poured into castings without further treatment. The castings were annealed by a normal annealing cycle for malleable iron. The first stage graphitization was accomplished in about 8 hours at a temperature of 1690 F. The castings were then cooled to 1420 F. in about 2 hours and were then slow cooled from 1420" F. to 1260 F. at a rate at 10 per hour. As soon as the castings were cool enough to be handled, a ring was machined from the casting, wound and tested on a flux meter according to ASTM specification #341494B for flux testing of ferrous metal. Tests on these castings showed eight to ten kilolines higher than like castings made from Grade B malleable ASTM 32510, and from four to eight kilo-lines higher than Grade A malleable made to ASTM 35018 specifications.
Castings made from metal within the composition range ere disclosed and annealed by any good first-class heat treatment for malleable iron, such as that disclosed in the example, will produce high permeability approaching that for SAE 1006 steel. Comparative tests of conventional malleable iron, malleable iron of the present composition and treatment, and of SAE 1006 steel have been made. The test data is plotted in the figure which accompanies this application. It will be seen from a comparison of this test data that the cast iron of this invention has permeability properties far superior to that of ordinary malleable irons and comparable to magnetic types of steel.
In the figure, the several materials represented have the following compositions:
Curve Material 0 Si Mn S Mg Alloy of Invention 2. 14 2. 62 0. 28 0.008 0. 048
Conventional Grade B 2. 4-3 1 10 0. 40 0. 115 N o Malleable.
do 2. 50 1 20 0. 42 0.135 No SAE 1006 Steel Conventional Grade A 2.18 1. 52 0. 30 0. 063 N0 Malleable.
The material of this invention has proved satisfactory for use as a substitute for steel in the formation of a1- ternators for passenger cars, trucks and the like, a service for which no cast iron was acceptable prior to the present invention.
It is important that there be no cold working of the cast iron after the annealing cycle. If there is any cold working of the casting, it must be re-annealed so that all of the grain structure which has been altered by working is restored and carbon is converted to temper carbon during the heating treatment after casting.
While we have illustrated and described certain preferred practices and embodiments in the foregoing specification, it will be understood that this invention can be otherwise practiced within the scope of the following claims.
We claim:
1. A cast iron of high magnetic permeability comprising about 1.75% to 2.3% carbon, about 2% to 4% silicon, up to about 0.02% sulfur, up to about 0.05% phosphorus, up to about 0.4% manganese, about 0.025% to 0.05% magnesium and the balance iron with usual impurities in ordinary amounts, said iron having been cast white and having been annealed by a malleable iron heat treatment cycle to convert the carbon to temper carbon, said iron having a permeability of at least about kilolines/in. at 40 ampere turns per inch.
aaaaaoa 2. A cast iron of high magnetic permeabilitycompris ing about 1.9% to 2.15% carbon, about 2.5% to 3.5% silicon, up to about 0.008% sulfur, up to about 0.05% phosphorus, up to about 0.3% manganese, about 0.025 to 0.05 magnesium and'the balance iron with usual impurities in ordinalyamounts, said' iron'having been cast White and having been annealed by. a'rnalleable iro'n heat treatment cycle to convert the carbon to temper carbon, said iron having a permeability of at least about 80 kilolines/in. at 40 ampere turns per inch.
3. A cast iron of high magnetic permeability comprising about 1.75% to 2.3% carbon, about 2% to 4% silicon, up to .about'0.02% sulfur, up-to about 0.05% phosphorus,-up to about 0.4% manganese,'abouti0.025% magnesium, said iron being substantially fieeof oxygen and the balance iron with usual impurities in ordinary amounts,- said iron having been cast'white and having been annealed by a'malleable iron;heat-treatment cycle to convert the carbon to temper carbon, said'iron hav= ing apermeability of at'least about 80 kilo-lines/inPat 40 ampere turns per inch. 4; A' cast iron of high magnetic permeability comprisirrg about 1.9% to 2.15% carbon, about 2.5% to 3.5% silicon, up to about 0.008% sulfur, up to about 0.05% phosphorus, up to about 0.3% manganese, about 0.025% to 0.05% magnesium,saidiron'beingsubstantially free of oxygen and thebalance'iron with usual impurities in ordinary amounts, said iron having been cast white and amounts, adding to said mixture a suflicient amount of magnesium to provide a residual of about. 0.025% to 0.05 with an inert gas at a rate sufiicient to cause agitation of the molten metal mixture and to react silicon and magnesium with any oxygen present in the molten 'metal to remove substantially all theoxygen in the bath,
ten metal mixture comprising about 1.9% to 2.15% 'car-' bon, 2.5% ,to' 3.5% silicon, up to about 0.008% sulfur, up to about 0.04% phosphorus, up to about 0.3% manganese and the balance iron with usual impurities in ordinary amounts,adding to said mixture a sufiicient amount of magnesium-to provide a residual of about 0.025% to 0.05 with an inert gas at a rate suflicient toc'ause agihaving beenannealed by a malleable iron heat treatment cycle to convert the carbon to' temper carbon; said iron having a permeability of'at least about 80 kilo-lines/in.
tation of the molten metal mixture and to react silicon and magnesium with any oxygen, sulfur and phosphorus in the mixture to remove substantially all of the oxygen from the bath and reduce the level of phosphorus and sulfur below the maximum herein claimed, cooling said mixture and annealing to convert the carbon to temper carbon, said iron having a permeability of at leastiabout 80 kilo-lines/in'. at 40 ampere turns per, inch.
References Cited by the Examiner UNITED STATES PATENTS 2,578,794 12/51 Gagnebin et a1. +123 FOREIGN PATENTS 9/52 Great'Britain'.

Claims (1)

1. A CAST IRON OF HIGH MAGNETIC PERMEABILITY COMPRISING ABOUT 1.75% TO 2.3% CARBON, ABOUT 2% TO 4% SILICON, UP TO ABOUT 0.02% SULFUR, UP TO ABOUT 0.05% PHOSPHORUS, UP TO ABOUT 0.4% MANGANESE, ABOUT 0.025% TO 0.05% MAGNESIUM AND THE BALANCE IRON WITH USUAL IMPURITIES IN ORDINARY AMOUNTS, SAID IRON HAVING BEEN CAST WHITE AND HAVING BEEN ANNEALED BY A MALLEABLE IRON HEAT TREATMENT CYCLE TO CONVER THE CARBON TO TEMPER CARBON, SAID IRON HAVING A PERMEABILITY OF AT LEAST ABOUT 80 KILOLINES/IN.2 AT 40 AMPERE TURNS PER INCH.
US254730A 1963-01-29 1963-01-29 Cast iron of high magnetic permeability Expired - Lifetime US3189492A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US254730A US3189492A (en) 1963-01-29 1963-01-29 Cast iron of high magnetic permeability
GB3762/64A GB1034511A (en) 1963-01-29 1964-01-29 Cast iron of high magnetic permability and process of preparing same
SE1088/64A SE302373B (en) 1963-01-29 1964-01-29
JP39004058A JPS5231297B1 (en) 1963-01-29 1964-01-29
DEB75212A DE1291513B (en) 1963-01-29 1964-01-29 Use of black malleable cast iron as a material for the manufacture of objects that have to have a high magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US254730A US3189492A (en) 1963-01-29 1963-01-29 Cast iron of high magnetic permeability

Publications (1)

Publication Number Publication Date
US3189492A true US3189492A (en) 1965-06-15

Family

ID=22965366

Family Applications (1)

Application Number Title Priority Date Filing Date
US254730A Expired - Lifetime US3189492A (en) 1963-01-29 1963-01-29 Cast iron of high magnetic permeability

Country Status (5)

Country Link
US (1) US3189492A (en)
JP (1) JPS5231297B1 (en)
DE (1) DE1291513B (en)
GB (1) GB1034511A (en)
SE (1) SE302373B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433685A (en) * 1966-05-20 1969-03-18 Gen Motors Corp High magnetic permeability cast alloy
US3445299A (en) * 1968-07-22 1969-05-20 Blackstone Corp Cast ferrous material of high magnetic permeability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8205272D0 (en) * 1982-09-15 1982-09-15 Jan Ingemar Neslund DEVICE FOR CELL SAMPLING FROM THE MILK TAPE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2578794A (en) * 1949-09-02 1951-12-18 Int Nickel Co Magnesium-treated malleable iron
GB678487A (en) * 1949-09-02 1952-09-03 Mond Nickel Co Ltd Improvements relating to cast iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE973051C (en) * 1949-09-02 1959-11-19 Mond Nickel Co Ltd The use of a malleable cast iron for the production of black core malleable cast iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2578794A (en) * 1949-09-02 1951-12-18 Int Nickel Co Magnesium-treated malleable iron
GB678487A (en) * 1949-09-02 1952-09-03 Mond Nickel Co Ltd Improvements relating to cast iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433685A (en) * 1966-05-20 1969-03-18 Gen Motors Corp High magnetic permeability cast alloy
US3445299A (en) * 1968-07-22 1969-05-20 Blackstone Corp Cast ferrous material of high magnetic permeability

Also Published As

Publication number Publication date
DE1291513B (en) 1969-03-27
JPS5231297B1 (en) 1977-08-13
GB1034511A (en) 1966-06-29
SE302373B (en) 1968-07-15

Similar Documents

Publication Publication Date Title
US4086086A (en) Cast iron
US4414027A (en) Method for obtaining iron-based alloys allowing in particular their mechanical properties to be improved by the use of lanthanum, and iron-based alloys obtained by the said method
JPS6349723B2 (en)
US3492118A (en) Process for production of as-cast nodular iron
EP0874916B1 (en) Composition for inoculating low sulphur grey iron
US3459541A (en) Process for making nodular iron
US3189492A (en) Cast iron of high magnetic permeability
US4224064A (en) Method for reducing iron carbide formation in cast nodular iron
US2855336A (en) Nodular iron process of manufacture
US3375105A (en) Method for the production of fine grained steel
US2867555A (en) Nodular cast iron and process of manufacture thereof
US4579164A (en) Process for making cast iron
CA1042237A (en) Grey cast iron
US3272623A (en) Inoculating alloys consisting of si-al-ca-ba-mn-zr-fe
US2963364A (en) Manufacture of cast iron
US3445299A (en) Cast ferrous material of high magnetic permeability
US4292075A (en) Slow fade inocculant and a process for the inocculation of melted cast iron
US2809888A (en) Cast iron with high creep resistance and method for making same
US4398946A (en) Method of homogenizing cast iron melts and compacts for the carrying out thereof
US3899320A (en) Process for making iron sponge pellets containing silicon carbide
US4131456A (en) Chill-free foundry iron
US3726670A (en) Nodular graphite cast iron containing calcium,rare earth metals and magnesium and a method for its production
US2943932A (en) Boron-containing ferrous metal having as-cast compacted graphite
US4684403A (en) Dephosphorization process for manganese-containing alloys
CN115627412B (en) Synthetic cast iron produced by low alloy scrap steel and method