US3444820A - Machine usable as a rotary pump or a heat engine - Google Patents
Machine usable as a rotary pump or a heat engine Download PDFInfo
- Publication number
- US3444820A US3444820A US639126A US3444820DA US3444820A US 3444820 A US3444820 A US 3444820A US 639126 A US639126 A US 639126A US 3444820D A US3444820D A US 3444820DA US 3444820 A US3444820 A US 3444820A
- Authority
- US
- United States
- Prior art keywords
- casing
- rotor
- rotary pump
- contact member
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002093 peripheral effect Effects 0.000 description 17
- 239000012530 fluid Substances 0.000 description 10
- 238000007789 sealing Methods 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/40—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
- F01C1/46—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2730/00—Internal-combustion engines with pistons rotating or oscillating with relation to the housing
- F02B2730/01—Internal-combustion engines with pistons rotating or oscillating with relation to the housing with one or more pistons in the form of a disk or rotor rotating with relation to the housing; with annular working chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a machine usable as a rotary pump or a heat engine.
- each contact member is held in sliding contact with either the peripheral surface of the rotor or the inner surface of the casing by means of a spring. After a long working time the contact member will be subjected to abrasion and will result in deterioration in its sealing performance. Further it is complicated to mount the contact member either in the casing or on the rotor.
- FIG. 1 is a longitudinal sectional view of a rotary pump embodying the invention
- FIG. 2 is a sectional view taken on line II-II of FIG. 1;
- FIG. 3 is a fragmentary sectional view on an enlarged scale showing a contact member of the rotary pump in FIG. 2;
- FIG. 4 is a perspective view of the contact member
- FIG. 5 is a sectional view of a second embodiment of the invention.
- FIG. 6 is a sectional view of another contact member.
- FIG. 7 is a sectional view of another rotary pump.
- FIGS. 1 to 4 in a casing 1 having the circular inner surface 2 there is rotatably mounted a discshaped rotor 3 which is secured eccentrically on a shaft 4 extending through an end wall 5 of the casing 1.
- the rotor 3 rotates in continuous contact with the inner surface 2 of the casing 1 at a portion of its peripheral surface 6.
- an arcuate recess 7 At the inner surface 2 of the casing 1 there is formed an arcuate recess 7 in which a segmental contact member 8 is slidably fitted.
- Mass distribution of the contact member 8 is made nonuniform, for example, by boring holes 9 that the actual center W of gravity thereof takes a position other than the center P of the arc of the recess 7 and furthermore lies inwards with respect to the centroid of plane peripheral contour of the contact member 8 at any possible situations thereof.
- a spring 10 secure in the casing exerts a moment on the contact member 8 so that the contact.
- member 8 may slide along the recess 7 in the direction shown by an arrow y coming into continuous contact with the peripheral surface 6 of the rotor 3.
- the inner surface 2 of the casing 1 and the peripheral surface 6 of the rotor 3 rotating in the direction shown by an arrow x conjointly define an inlet chamber 11 and an outlet chamber 12 in opposite angular directions from the contact member 8.
- An inlet port 13 of the casing 1 communicates with the inlet chamber 11 while an outlet port 14 of the casing 1 communicates with the outlet chamber 12.
- the rotor 3 has an oval contour symmetrical with respect to the shaft and rotates in sliding contact with the inner surface 2 of the casing 1 at two peripheral portions thereof.
- the contact member consists of two sectors 15, 15' the outer peripheries of which are guided by the recess 7 of the casing 1 while their inner peripheries are guided by a free roller member 16.
- a compression spring 17 which holds the sectors 15, 15' against the peripheral surface 6 of the rotor 3 as shown by arrows y, y.
- the fluid pressure prevailing in the space 18 causes additionally the sectors 15, 15 to hold against the peripheral surface 6 of the rotor 3 in accordance with delivery pressure of the pump.
- the inner surface 2 of a pump casing 1 protrudes slightly inwardly at its one portion 21, and a rotor 3 rotates in continuous contact with the portion 21 of the casing 1.
- An inlet port 13 and an outlet port 14 communicate respectively with an inlet chamber 11 and an outlet chamber 12 in opposite angular directions from the protruding portion 21 of the casing 1.
- the rotor 3 is formed at its peripheral surface 6 with two arcuate recesses 22 in which contact members having structure similar to that in FIG. 6 are guided.
- Each contact member consists of two sectors 24 and 24' the outer peripheries of which are guided by the recess 22 of the rotor 3 while their inner peripheries are guided by a free roller member 25.
- a compression spring 26 holds the sectors 24 and 24 against the inner surface 2 of the casing 1.
- a centrifugal force acting on the contact members due to rotation of the rotor 3 also serves to hold them against the inner surface 2 of the casing 1.
- the present invention is not limited to a rotary pump. It may be applied advantageously to heat engines such as a high temperature gas motor.
- a machine usable as a rotary pump and as a heat engine comprising a casing, a rotor disk rotatably mounted within said casing, a portion of the peripheral edge surface of said rotor disk and the opposed inner surface of said casing arranged in continuous contacting relationship during rotation of said rotor disk, a pair of recesses formed in diametrically opposed positions in the peripheral surface of said disk, a contact member slidably positioned within each of said recesses in the peripheral surface of said rotor disk and in continuous sealing contact with the oppositely arranged surface of said casing, each said contact member comprises a pair of slidable elethe elements into contacting relationship with said rotor disk, a portion of the peripheral edge surface of said disk and the opposed inner surface of said casing spaced apart and forming therebetween a fluid space, said contact members dividing said fluid space into an inlet chamber and an outlet chamber, and a passageway being provided in said casing and communicating between said outlet chamber and the space formed between the second surfaces of said elements forming
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Rotary Pumps (AREA)
- Hydraulic Motors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41031488A JPS4811523B1 (enrdf_load_stackoverflow) | 1966-05-19 | 1966-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3444820A true US3444820A (en) | 1969-05-20 |
Family
ID=12332641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US639126A Expired - Lifetime US3444820A (en) | 1966-05-19 | 1967-05-17 | Machine usable as a rotary pump or a heat engine |
Country Status (2)
Country | Link |
---|---|
US (1) | US3444820A (enrdf_load_stackoverflow) |
JP (1) | JPS4811523B1 (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981637A (en) * | 1971-12-21 | 1976-09-21 | Arno Fischer | Variable displacement rotary machine with oscillating piston slides |
US4050145A (en) * | 1975-08-04 | 1977-09-27 | Whirlpool Corporation | Method of making refrigeration apparatus enclosure structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5195912U (enrdf_load_stackoverflow) * | 1975-01-30 | 1976-07-31 | ||
JPS60124556A (ja) * | 1983-12-08 | 1985-07-03 | Hiroji Takahashi | 自動車輛の車輪による以外の制動及び起動方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1424977A (en) * | 1920-05-01 | 1922-08-08 | Price Quesenberry | Packing means for rotary engines |
US1787708A (en) * | 1928-09-07 | 1931-01-06 | John B Teesdale | Rotary pump |
US2198382A (en) * | 1937-03-30 | 1940-04-23 | Donald A Fulton | Rotary pump |
US2212717A (en) * | 1936-03-31 | 1940-08-27 | Gen Motors Corp | Rotary compressor for refrigerating apparatus |
US2588342A (en) * | 1943-01-02 | 1952-03-11 | Walter P Innes Jr | Fluid engine |
US2832199A (en) * | 1953-04-30 | 1958-04-29 | American Brake Shoe Co | Vane pump |
-
1966
- 1966-05-19 JP JP41031488A patent/JPS4811523B1/ja active Pending
-
1967
- 1967-05-17 US US639126A patent/US3444820A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1424977A (en) * | 1920-05-01 | 1922-08-08 | Price Quesenberry | Packing means for rotary engines |
US1787708A (en) * | 1928-09-07 | 1931-01-06 | John B Teesdale | Rotary pump |
US2212717A (en) * | 1936-03-31 | 1940-08-27 | Gen Motors Corp | Rotary compressor for refrigerating apparatus |
US2198382A (en) * | 1937-03-30 | 1940-04-23 | Donald A Fulton | Rotary pump |
US2588342A (en) * | 1943-01-02 | 1952-03-11 | Walter P Innes Jr | Fluid engine |
US2832199A (en) * | 1953-04-30 | 1958-04-29 | American Brake Shoe Co | Vane pump |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981637A (en) * | 1971-12-21 | 1976-09-21 | Arno Fischer | Variable displacement rotary machine with oscillating piston slides |
US4050145A (en) * | 1975-08-04 | 1977-09-27 | Whirlpool Corporation | Method of making refrigeration apparatus enclosure structure |
Also Published As
Publication number | Publication date |
---|---|
JPS4811523B1 (enrdf_load_stackoverflow) | 1973-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0621094A2 (pt) | máquna de palhetas com partes de cilindro estacionárias e rotativas | |
US3860365A (en) | Seals and methods and means of sealing for rotary engines and the like | |
US3444820A (en) | Machine usable as a rotary pump or a heat engine | |
JPS5870086A (ja) | ベ−ン型圧縮機 | |
US3544245A (en) | Fluid pumps | |
US2880677A (en) | Variable volume vane pump | |
US3787153A (en) | Positive displacement machine such as a pump | |
US3794450A (en) | Rotary machine apex seal | |
US3000324A (en) | Vane for rotary pumps | |
US3193189A (en) | Seal means for rotary mechanisms | |
US3036560A (en) | Rotary piston internal combustion engines | |
US3640651A (en) | Inner vane for rotary devices | |
US4163635A (en) | Vane type rotary fluid pumps or compressors | |
US3376825A (en) | Vane spring | |
US2463118A (en) | Movable vane rotary pump or fluid motor | |
US2278740A (en) | Rotary pump | |
US3480203A (en) | Sealing apparatus for rotary mechanism | |
US1366138A (en) | Rotary pump and similar apparatus | |
US3194163A (en) | Fluid pump | |
US1252841A (en) | Governor-blade pump. | |
US2690716A (en) | Rotary pump | |
JPH02169882A (ja) | 摺動受座式ベーンポンプ・ベーンモータ | |
USRE19783E (en) | Compressor | |
KR101692773B1 (ko) | 베인펌프 | |
US3914076A (en) | Sealing device for vane-type rotating machine |