US3194163A - Fluid pump - Google Patents

Fluid pump Download PDF

Info

Publication number
US3194163A
US3194163A US242693A US24269362A US3194163A US 3194163 A US3194163 A US 3194163A US 242693 A US242693 A US 242693A US 24269362 A US24269362 A US 24269362A US 3194163 A US3194163 A US 3194163A
Authority
US
United States
Prior art keywords
fluid
casing
casing means
pump
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US242693A
Inventor
John G Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Aircraft Corp filed Critical United Aircraft Corp
Priority to US242693A priority Critical patent/US3194163A/en
Application granted granted Critical
Publication of US3194163A publication Critical patent/US3194163A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/02Liquid sealing for high-vacuum pumps or for compressors

Definitions

  • This invention relate-s to energy conversion devices and more particularly to. pumping devices having very low friction, especially when used to pump slurries, gritty substances, and other non-lubricating fluids.
  • the casing 50 includes inlet ports C C and C and outlet ports B B and B Auxiliary passages A A and A conduct the fluid for forming the fluid vanes or fluid walls 52.
  • the fluid walls intercept a substantially solid rotor 54 Whose center is mounted necessary between the rotor and the pump casing wall since
  • FIG. 1 is a cross section of one form of pump utilizing this invention and having a lobed rotor.
  • FIG. 2 is a cross section of another type of pump utilizing the same principle but having an eccentrically mounted circular rotor.
  • FIG. 3 is a cross section of another type of pump utilizing the same principle but incorporating a circular slotted rotor.
  • FIG. 4 is a partial sectional View illustrating a cantiug passage for the auxiliary injection for pumps of the type shown in FIGS. 1 and 2.
  • a pump casing 16 forms a main working chamber 12 in which is mounted a concentric rotor 14 having several lobes 16 and 18.
  • the rot-or 14 is mounted on a shaft 20 by means of a key 22.
  • the shaft 20 includes a plurality of openings or slots 24 which communicate with corresponding passages 26 and 28 in the lobes 16 and 13, respectively. Fluid is fed into the shaft 20 for discharge, for example, through the passage 26 and out through the peripheral opening 3d at the outer end of the lobe 16.
  • the fluid flow from the opening 31) is intended to form a fluid seal between adjacent compartments formed by the lobes on the rotor.
  • the pump casing includes inlet passages Y Y and Y and likewise output passages X X and X are intended to conduct the compressed or pressurized fluid from the pump.
  • the auxiliary passages Z Z and Z provide a wall of fluid schematically illustrated as, for example, at 4%) which divides the inner lobe cavity into a low pressure region 42 and a high pressure region 44.
  • FIG. 2 shows a modified pump arrangement utilizing it is in substantially continuous engagement therewith.
  • the pumped fluid is trapped in a series of chambers, 93, 94', 95, etc., each separated from the next by a fluid wall, and that the pressure delivered by the pump is several times greater than the pressure across any single fluid wall.
  • ends of the rotors may be sealed by a fluid discharge from the rotor axially against the casing, or conversely, by a discharge from the casing axially against the end of the rotor.
  • a fluid pump comprising a stationary casing means, a member being rotatable relative to said casing means and having an outer surface, said casing means and said member forming at least one working chamber, inlet and outlet passages in said casing means for admitting and exhausting the fluid to be pumped, and fluid injection means for forming a fluid wall and dividing said chamber into sections having different pressure levels during operation including auxiliary passage means in the wall of said casing for injecting relatively high energy fluid which flows between said casing means and intercepts the outer surface of said member.
  • a fluid pump comprising a stationary casing means having an inner surface, a member being rotatable rela- Patented July 13, 19 5.
  • a fluid pump according to claim 4 including a second auxiliary source of fluid flowing between said casing and said member to form a fluid seal there-between.
  • a fluid pump according to claim 4 wherein said 7 member comprises a roller engaging the internal periphery of said casing and being of smaller dimension than said working chamber and eccentric with respect thereto.
  • a fluid pump comprising a stationary casing means having an inner surface, a member being rotatable relative to said casing means, the inner surface of said casing means and said member forming at least one working chamber, inlet and outlet passages in said casing means for admitting and exhausting the fluid to be pumped, and fluid injection means for forming a fluid wall for dividing said chamber into adjacent sections having different pressure levels during operation, and passage means in said member for injecting relatively high energy fluid which flows from said member to intercept said casing means and said inlet and outlet passages.
  • a fluid pump according to claim 4 wherein said member is eccentric with respect to said casing means and has a rolling contact therewith.
  • a fluid pump according to claim 8 including additional injecting means in said casing and located between said inlet and outlet passages .for issuing a stream of fluid intercepting said member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Description

J. G. LEE
FLUID PUMP July 13, 1965 Filed Dec. 6, 1962 xiii,
United- States Patent 3,194,163 FLUID PUMP John G. Lee, Farmington, Conn., assignor to United Aircraft Corporation, East Hartford, Conn, a corporation of Delaware Filed Dec. 6, 1962, Ser. No. 242,693
11. Claims. (Cl. 103-11) This invention relate-s to energy conversion devices and more particularly to. pumping devices having very low friction, especially when used to pump slurries, gritty substances, and other non-lubricating fluids.
It is an object of this invention to provide a pumping device which operates on a principle similar to vane pumps but in which the normal mechanical vanes are replaced by fluid vanes.
It is a further object of this invention to provide fluidtype Vane-s which divide the Work chamber of the pump into two or more compartments with the fluid vanes forming a barrier between adjacent compartments which contain the pumped fluid at different pressure levels.
. substantially the same principle as that employed in FIG.
1. Thus, it will be seen that the casing 50 includes inlet ports C C and C and outlet ports B B and B Auxiliary passages A A and A conduct the fluid for forming the fluid vanes or fluid walls 52. The fluid walls intercept a substantially solid rotor 54 Whose center is mounted necessary between the rotor and the pump casing wall since These and other objects of this invention will become readily apparent from the following detailed description of the drawing in which:
FIG. 1 is a cross section of one form of pump utilizing this invention and having a lobed rotor.
FIG. 2 is a cross section of another type of pump utilizing the same principle but having an eccentrically mounted circular rotor.
FIG. 3 is a cross section of another type of pump utilizing the same principle but incorporating a circular slotted rotor.
FIG. 4 is a partial sectional View illustrating a cantiug passage for the auxiliary injection for pumps of the type shown in FIGS. 1 and 2.
Referring to FIG. 1, a pump casing 16 forms a main working chamber 12 in which is mounted a concentric rotor 14 having several lobes 16 and 18. The rot-or 14 is mounted on a shaft 20 by means of a key 22. The shaft 20 includes a plurality of openings or slots 24 which communicate with corresponding passages 26 and 28 in the lobes 16 and 13, respectively. Fluid is fed into the shaft 20 for discharge, for example, through the passage 26 and out through the peripheral opening 3d at the outer end of the lobe 16. The fluid flow from the opening 31) is intended to form a fluid seal between adjacent compartments formed by the lobes on the rotor.
The pump casing includes inlet passages Y Y and Y and likewise output passages X X and X are intended to conduct the compressed or pressurized fluid from the pump. The auxiliary passages Z Z and Z provide a wall of fluid schematically illustrated as, for example, at 4%) which divides the inner lobe cavity into a low pressure region 42 and a high pressure region 44.
It will be apparent that as the rotor 14 turns in a clockwise direction and with the fluid wall 40 substantially fixed relative to the casing, the chamber 44 will diminish in size while the chamber or compartment 42 will increase in size so that the fluid in chamber 44 will be compressed and expelled from the passage X while the enlarging volume of compartment 42 will draw in fluid through the inlet passage Y The fluid wall 40 will assume a curved or bend configuration with the bend moving away from the high pressure region.
There may be some fluid leakage as each of the lobes pass a group of ports but overall fairly high pumping efliciencies can be achieved. As a result of the arrangement just described and the principle of operation utilized, extremely low friction is obtained and substantially no wear is encountered since there is no rubbing of any mechanical parts, except at the end of the rotor.
FIG. 2 shows a modified pump arrangement utilizing it is in substantially continuous engagement therewith.
The rotor may, in fact, be made of some flexible material such as rubber, and be held against the wall tightly by slight mechanical distortion. in operation the pump otherwise operates in a substantially identical manner to'the FIG. 1 arrangement. i t j FIG. 3 illustrates another form of pump arrangement having a main casing 7 0 and inlet and outlet ports 72 and 74, respectively. In this arrangement the drive shaft 78 is hollow and the rotor 80 is provided with slots so that the auxiliary fluid for forming the fluid vanes can be emittedthrough, the passages 82 of therotor. In this instance the auxiliary fluid flows from the rotor and intercepts the casing wall. No other special sealing means is required with this arrangement. It will be noted, however, that the pumped fluid is trapped in a series of chambers, 93, 94', 95, etc., each separated from the next by a fluid wall, and that the pressure delivered by the pump is several times greater than the pressure across any single fluid wall.
Some of the compressed flow from outlet 74 may be bled off and conducted into shaft 78 to provide the auxiliary flow for ports 82.
inasmuch as the fluid wall tends to curve or bend away from the high pressure region, the auxiliary flow may be injected into the working chamber by a canted discharge passage as shown in FIG. 4. In this way, the stream of auxiliary flow is directed again-st the force of the high pressure region so that even though the fluid wall 92 will bend toward the low pressure region it will not be so easily deflected toward the latter region.
It will be obvious to one skilled in the art that the ends of the rotors may be sealed by a fluid discharge from the rotor axially against the casing, or conversely, by a discharge from the casing axially against the end of the rotor.
Although several embodiments of this invention have been described, it will be apparent that other variations and changes may be made in arrangement. and construction of the various elements without departing from the scope of this novel concept.
I claim:
1. A fluid pump comprising a stationary casing means, a member being rotatable relative to said casing means and having an outer surface, said casing means and said member forming at least one working chamber, inlet and outlet passages in said casing means for admitting and exhausting the fluid to be pumped, and fluid injection means for forming a fluid wall and dividing said chamber into sections having different pressure levels during operation including auxiliary passage means in the wall of said casing for injecting relatively high energy fluid which flows between said casing means and intercepts the outer surface of said member.
2. A fluid pump according to claim ll wherein said member includes an element in close operable proximity to said casing means and substantially in sealing relation therewith.
3. A fluid pump according to claim 2 wherein said auxiliary passage means directs fluid at an angle toward the section having the higher pressure.
4. A fluid pump comprising a stationary casing means having an inner surface, a member being rotatable rela- Patented July 13, 19 5.
tive to said casing means, said inner surface of said casing means and said member forming at least one working chamber, inlet and outlet passages in said casing means [for admitting and exhausting the fluid to be pumped, and injection means for forming a fluid wall for dividing said working chamber int-o sections having different pressure levels during operation including auxiliary passage means in said casing means for injecting relatively high energy fluid which flows from said casing means and intercepts said member.
5. A fluid pump according to claim 4 including a second auxiliary source of fluid flowing between said casing and said member to form a fluid seal there-between.
6. A fluid pump according to claim 5 wherein said member includes a plurality of lobes defining working chambers therebetween.
7. A fluid pump according to claim 4 wherein said 7 member comprises a roller engaging the internal periphery of said casing and being of smaller dimension than said working chamber and eccentric with respect thereto.
8. A fluid pump comprising a stationary casing means having an inner surface, a member being rotatable relative to said casing means, the inner surface of said casing means and said member forming at least one working chamber, inlet and outlet passages in said casing means for admitting and exhausting the fluid to be pumped, and fluid injection means for forming a fluid wall for dividing said chamber into adjacent sections having different pressure levels during operation, and passage means in said member for injecting relatively high energy fluid which flows from said member to intercept said casing means and said inlet and outlet passages.
9. A fluid pump according to claim 4 wherein said member is eccentric with respect to said casing means and has a rolling contact therewith.
10. A fluid pump according to claim 8 including additional injecting means in said casing and located between said inlet and outlet passages .for issuing a stream of fluid intercepting said member.
11. A fluid pump according to claim 10 wherein said member is concentric with respect to said casing.
References lited by the Examiner UNITED STATES PATENTS 1,178,651 4/16 Leblanc 23()108 1,233,275 7/17 Kerr 230108 3,001,691 9/61 Salmon et al. 230-108 3,046,732 7/62 Foa 230-108 FOREIGN PATENTS 220,894 4/10 Germany.
LAURENCE V. EFNER, Primary Examiner.

Claims (1)

1. A FLUID PUMP COMPRISING A STATIONARY CASING MEANS, A MEMBER BEING ROTATABLE RELATIVE TO SAID CASING MEANS AND HAVING AN OUTER SURFACE, SAID CASING MEANS AND SAID MEMBER FORMING AT LEAST ONE WORKING CHAMBER, INLET AND OUTLET PASSAGES IN SAID CASING MEANS FOR ADMITTING AND EXHAUSTING THE FLUID TO BE PUMPED, AND FLUID INJECTION MEANS FOR FORMING A FLUID WALL AND DIVIDING SAID CHAMBER INGO SECTIONS HAVING DIFFERENT PRESSURE LEVELS DURING OPERATION INCLUDING AUXILIARY PASSAGE LEVELS DURING OPERSAID CASING FOR INJECTING RELATIVELY HIGH ENERGY FLUID WHICH FLOWS BETWEEN SAID CASING MEANS INTERCEPTS THE OUTER SURFACE OF SAID MEMBER.
US242693A 1962-12-06 1962-12-06 Fluid pump Expired - Lifetime US3194163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US242693A US3194163A (en) 1962-12-06 1962-12-06 Fluid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US242693A US3194163A (en) 1962-12-06 1962-12-06 Fluid pump

Publications (1)

Publication Number Publication Date
US3194163A true US3194163A (en) 1965-07-13

Family

ID=22915825

Family Applications (1)

Application Number Title Priority Date Filing Date
US242693A Expired - Lifetime US3194163A (en) 1962-12-06 1962-12-06 Fluid pump

Country Status (1)

Country Link
US (1) US3194163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470820A (en) * 1968-05-02 1969-10-07 Gen Motors Corp Method and apparatus for mechanicalfluid power conversion
US3485174A (en) * 1967-11-09 1969-12-23 Edward T Saylor Jr Apparatus for transferring energy from a gas to a liquid
US3525505A (en) * 1968-09-13 1970-08-25 Theodore W Roberg Air filtering and pumping water fan construction
WO2022034291A1 (en) * 2020-08-11 2022-02-17 Edwards Limited Liquid blade pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE220894C (en) *
US1178651A (en) * 1909-09-20 1916-04-11 Expl Des Procedes Westinghouse Leblanc Sa Pump.
US1233275A (en) * 1914-01-10 1917-07-10 American Well Works Air-compressor.
US3001691A (en) * 1958-01-09 1961-09-26 Bertin & Cie Jet operated device for circulating or compressing a fluid
US3046732A (en) * 1956-06-20 1962-07-31 Research Corp Method of energy exchange and apparatus for carrying out the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE220894C (en) *
US1178651A (en) * 1909-09-20 1916-04-11 Expl Des Procedes Westinghouse Leblanc Sa Pump.
US1233275A (en) * 1914-01-10 1917-07-10 American Well Works Air-compressor.
US3046732A (en) * 1956-06-20 1962-07-31 Research Corp Method of energy exchange and apparatus for carrying out the same
US3001691A (en) * 1958-01-09 1961-09-26 Bertin & Cie Jet operated device for circulating or compressing a fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485174A (en) * 1967-11-09 1969-12-23 Edward T Saylor Jr Apparatus for transferring energy from a gas to a liquid
US3470820A (en) * 1968-05-02 1969-10-07 Gen Motors Corp Method and apparatus for mechanicalfluid power conversion
US3525505A (en) * 1968-09-13 1970-08-25 Theodore W Roberg Air filtering and pumping water fan construction
WO2022034291A1 (en) * 2020-08-11 2022-02-17 Edwards Limited Liquid blade pump

Similar Documents

Publication Publication Date Title
US11506056B2 (en) Rotary machine
US3311064A (en) Vane-type rotary pumps
US2463080A (en) Interengaging impeller fluid pump
GB1177733A (en) Improvements in and relating to Hydraulic Rotary Motors or Pumps
US3216362A (en) Flexible ring pump drive device
US2725013A (en) Rotary engine
US2956506A (en) Hydraulic pump or motor
US3941521A (en) Rotary compressor
US3584984A (en) Rotary device
US3547565A (en) Rotary device
US2880677A (en) Variable volume vane pump
US2693762A (en) Nonpositive screw pump and motor
US3194163A (en) Fluid pump
US3743443A (en) Vacuum pump
US953222A (en) Displacement structure.
US1749058A (en) Rotary pump
US3473437A (en) Rotary slide valve for fluid motors and pumps
GB1450716A (en) Rotary positive displacement pumps and motors
US2428181A (en) Rotary gear pump
US3574491A (en) Gear-type rotary machine
GB1136129A (en) Improvements in or relating to rotary pumps and motors
US2852183A (en) Rotary multi-vane positive displacement pump
US2491365A (en) Balanced gear pump
US3917438A (en) Rotary compressor of the sliding vane type
US2833465A (en) Multi-vane positive displacement pump