US3743443A - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
US3743443A
US3743443A US00145462A US3743443DA US3743443A US 3743443 A US3743443 A US 3743443A US 00145462 A US00145462 A US 00145462A US 3743443D A US3743443D A US 3743443DA US 3743443 A US3743443 A US 3743443A
Authority
US
United States
Prior art keywords
casing
rotor
drive shaft
pump
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00145462A
Inventor
I Jennings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nash Engineering Co
Original Assignee
Nash Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nash Engineering Co filed Critical Nash Engineering Co
Application granted granted Critical
Publication of US3743443A publication Critical patent/US3743443A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/004Details concerning the operating liquid, e.g. nature, separation, cooling, cleaning, control of the supply

Definitions

  • This invention relates to a sealing construction for a multi-stage rotary vacuum pump of the liquid ring type in which cold sealing water is introduced directly to grooves formed in the cone or partition wall between successive stages of the impeller means.
  • the cold sealing liquid is introduced to the cone adjacent to the interior circumference of the impeller means directly from an external supply source.
  • This construction has advantages over the prior art construction in that when cold liquid is introduced along the sides of the surfaces of the cone adjacent to the interior circumference of the impeller means to form a seal it spreads out over the interior surface of the revolving liquid. Accordingly, a higher vacuum can be achieved because the liquid is less likely to flash at the inlet and thereby permits a higher vacuum in the pump which counteracts the reduction of pump air capacity due to vapor flashing.
  • the sealing water or liquid introduced at the particular location between successive stages of the impeller means results in effective sealing of the successive stages of the impeller means in a multi-stage rotary vacuum pump.
  • An object of the present invention is to provide a multi-stage vacuum pump of the liquid ring type with a cold water seal in a central groove between successive stages and adjacent to the inner edges of the impell'er means.
  • Another object of the present invention is to provide a novel air discharge system from successive stages incorporating a check valve for cutting out the first stage and cutting in the second stage upon the attainment of a certain vacuum level.
  • a further object of the present invention is to provide a novel deflector blade for cooling the packing gland about the rotatable shaft.
  • FIG. I is a partly sectional and a partly elevational view of the sealing construction for a multi-stage liquid ring rotary vacuum pump embodying the present invention
  • FIG. 2 is a cross-sectional view taken along the 2-2 of FIG. 1; i a
  • FIG. 3 is a partial sectional view of the rotary pump illustrating details of construction thereof
  • FIG. 4 is an enlarged partial sectional-view of the check valve indicated in FIG. 3 taken along the lines 4-4 of FIG. 3;
  • FIG. 5 is a partial sectional view of a detail of conline struction of thedeflector blade shown in FIG. 1.
  • FIG. 1 shows a two stage liquid ring rotary vacuum pump of the type described, for example, in U.S. Pat. No. 3,351,272 dated Nov. 7,
  • the pump comprises a casing referred to generally by the numeral 10.
  • a rotable shaft 12 is operatively connected to a drive motor (not shown). At least part of the shaft 12 projects into the casing 10 through a packing gland 14.
  • the rotor 16 is secured to the rotatable shaft 12.
  • the first stage impeller means 18 is positioned within the casing 10 along with crescent-shaped lobe 20.
  • the second stage impeller means 22 together with the crescent-shaped lobe 24 is separated from the first stage by means of a partition wall 26. As seen in FIG.
  • a pumping action is secured by means of a liquid seal 28 revolving in a circular or elliptical path within the lobe 20 by the actions of the vanes 18a of the first stage impeller 18, and a similar pumping action is secured by a liquid seal 30 revolving in a circular or elliptical path within the lobe 24 by the action of the vanes 22a of the second stage impeller 22.
  • a cold seal water pipe 32 is clearly seen in FIG. 1 connected to the groove 34 in the rotor partition wall 26.
  • the direct sealing at this point in the structure effectively seals the first and second stages from each other.
  • An efficient seal between the stages is of great importance inasmuch as the vacuum in the first stage is in the order of 3 inches absolute while in the second stage, in the area of the discharge to the atmosphere, there is a pressure in the order of 30 inches absolute.
  • the seal water for both stages preferably flows completely around the rotor 16 as clearly seen in FIG. 2. Therefore, the coldest water is introduced along the sides into the interior of the pump and spreads out over the interior surface of the other water revolving therein. This permits a higher vacuum since the water is less liable to flash at the inlet. It should be apparent that the use of cold water around the inner ring of the water seal results in a much higher vacuum than would be possible if the water was injected in the pump elsewhere.
  • FIGS. 3 and 4 show a section of the pump in which air is discharged from the first stage of the rotary pump through the check valve casing 38 and the check valve 40 to the outlet pipe 42 through passage 44.
  • the check valve 40 closes and air from the first stage is discharged through the second stage directly into the passage 44 and the outlet pipe 42.
  • the second stage of the pump operates at all times by taking air from the discharge of the first stage and becomes effective when the first stage reaches a high vacuum and its discharge is reduced to a capacity equal to or less than the capacity of the second stage. At that time the second stage begins to pull a vacuum on the first stage.
  • FIGS. 1 and 5 show a device to cool the packing gland or mechanical seal 14.
  • the device takes the form of a stationary deflector blade 46 mounted on the casing 10 adjacent to the packing gland14.
  • the rotor and associated structure revolves a ring of water.
  • a portion of this water is picked up by the blade 46 and due to its configuration directs this water portion against the packing gland 18 to shaft, a rotor on said drive shaft a port member disposed in a central opening of said rotor, a fluid entry means'in said casing, communicating with an external cold seal liquid source, a fluid outlet means in said casing, a plurality of impeller means in successive stages mounted on said rotor, a separating member on the rotor between two successive stages of said impeller means, said separating member having an inner peripheral edge defining a running clearance with an adjacent port member surface, a substantially annular groove in said separating member edge, said groove being connected to said fluid entry means whereby cold seal liquid is introduced from said external source to the interior surfaces of said impeller means under relatively small pressure, to flow over the surface of-the liquid of the liquid ring in the first stage of the pump in order to effectively seal the high and low vacuum areas of successive stages of said impeller
  • a rotor on said drive shaft and a packing for said drive shaft the improvement comprising: a curved stationary deflector blade mounted on said casing and positioned outside of said lobes whereby at least some of the fluid agitated by said rotor is directed to the curved portion of said deflection blade which deflects said fluid inwardly against said packing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A multi-stage vacuum pump of the liquid ring type having a cold water seal around the inner ring of the water seal and introduced into a groove between successive stages and adjacent to the inner edges of the impeller. The pump is additionally provided with a novel air discharge system for successive stages incorporating a check valve and a deflection blade for the cooling the packing gland about the rotor shaft.

Description

v United States Patent 1191 Jennings .July 3, 1973 VACUUM PUMP 1,657,349 1/1928 Eisenhauer 308/127 3,028,181 4/1962 Thom n 277/12 [761 t Nash 3,043,497 7/1962 0661515216.... 417/67 Ensmeermg South Norwalk, 3,232,521 1/1966 Dearorff.... 417/68 Conn. 3,351,272 11/1967 Jennings 417/68 2,195,174 3/1940 Jennings 417/68 [22] May 1971 2,815,003 12/1957 Rumm 417/68 Appl. No.: 145,462
Related 1.1.8. Application Data Continuation of Ser. No. 853,618, Aug. 22, 1969, abandoned, which is a continuation of Ser. No. 711,370, March 7, 1968, abandoned.
US. Cl. 417/68 Int. Cl. E04c 19/00 Field of Search 230/29, 45; 277/67,
References Cited UNITED STATES PATENTS Barske 277/13 Primary Examiner-William L. Freeh Attorney-Nolte and Nolte [5 7 ABSTRACT A multi-stage vacuum pump of the liquid ring type having a cold water seal around the inner ring of the water seal and introduced into a groove between successive stages and adjacent to the inner edges of the impeller. The pump is additionally provided with a novel air discharge system for successive stages incorporating a check valve and a deflection blade for the cooling the packing gland about the rotor shaft.
4 Claims, 5 Drawing Figures SW ////V A 5 m M M TM a, M m 4 VACUUM PUMP This is a continuation of application Ser. No. 853,618 filed Aug. 22, 1969, now abandoned, which in turn is a continuation of application Ser. No. 7ll,370 filed Mar. 7, I968, also now abandoned.
This invention relates to a sealing construction for a multi-stage rotary vacuum pump of the liquid ring type in which cold sealing water is introduced directly to grooves formed in the cone or partition wall between successive stages of the impeller means.
I-Ieretofore, as set forth in U.S. Pat. No. 3,351,272 dated Nov. 7, 1967, the sealing liquid was taken from the lobe of a rotary pump to seal successive stages of the impeller means. This liquid is relatively warm and is likely to flash into vapor thereby seriously cutting down the vacuum in the pump.
In accordance with the teachings of the present invention the cold sealing liquid is introduced to the cone adjacent to the interior circumference of the impeller means directly from an external supply source. This construction has advantages over the prior art construction in that when cold liquid is introduced along the sides of the surfaces of the cone adjacent to the interior circumference of the impeller means to form a seal it spreads out over the interior surface of the revolving liquid. Accordingly, a higher vacuum can be achieved because the liquid is less likely to flash at the inlet and thereby permits a higher vacuum in the pump which counteracts the reduction of pump air capacity due to vapor flashing. Thus, by having cold water or other cold liquid around the inner ring of the seal a much higher vacuum is possible than in the prior art structures. In addition, the sealing water or liquid introduced at the particular location between successive stages of the impeller means results in effective sealing of the successive stages of the impeller means in a multi-stage rotary vacuum pump.
An object of the present invention is to provide a multi-stage vacuum pump of the liquid ring type with a cold water seal in a central groove between successive stages and adjacent to the inner edges of the impell'er means.
Another object of the present invention is to provide a novel air discharge system from successive stages incorporating a check valve for cutting out the first stage and cutting in the second stage upon the attainment of a certain vacuum level.
A further object of the present invention is to provide a novel deflector blade for cooling the packing gland about the rotatable shaft.
In the drawings:
FIG. I is a partly sectional and a partly elevational view of the sealing construction for a multi-stage liquid ring rotary vacuum pump embodying the present invention;
FIG. 2 is a cross-sectional view taken along the 2-2 of FIG. 1; i a
FIG. 3 is a partial sectional view of the rotary pump illustrating details of construction thereof;
FIG. 4 is an enlarged partial sectional-view of the check valve indicated in FIG. 3 taken along the lines 4-4 of FIG. 3; and
FIG. 5 is a partial sectional view of a detail of conline struction of thedeflector blade shown in FIG. 1.
Referring to the drawings, FIG. 1 shows a two stage liquid ring rotary vacuum pump of the type described, for example, in U.S. Pat. No. 3,351,272 dated Nov. 7,
I967. The pump comprises a casing referred to generally by the numeral 10. A rotable shaft 12 is operatively connected to a drive motor (not shown). At least part of the shaft 12 projects into the casing 10 through a packing gland 14. The rotor 16 is secured to the rotatable shaft 12. The first stage impeller means 18 is positioned within the casing 10 along with crescent-shaped lobe 20. The second stage impeller means 22 together with the crescent-shaped lobe 24 is separated from the first stage by means of a partition wall 26. As seen in FIG. 2 a pumping action is secured by means of a liquid seal 28 revolving in a circular or elliptical path within the lobe 20 by the actions of the vanes 18a of the first stage impeller 18, and a similar pumping action is secured by a liquid seal 30 revolving in a circular or elliptical path within the lobe 24 by the action of the vanes 22a of the second stage impeller 22.
A cold seal water pipe 32 is clearly seen in FIG. 1 connected to the groove 34 in the rotor partition wall 26. Thus, the direct sealing at this point in the structure effectively seals the first and second stages from each other. An efficient seal between the stages is of great importance inasmuch as the vacuum in the first stage is in the order of 3 inches absolute while in the second stage, in the area of the discharge to the atmosphere, there is a pressure in the order of 30 inches absolute.
The seal water for both stages preferably flows completely around the rotor 16 as clearly seen in FIG. 2. Therefore, the coldest water is introduced along the sides into the interior of the pump and spreads out over the interior surface of the other water revolving therein. This permits a higher vacuum since the water is less liable to flash at the inlet. It should be apparent that the use of cold water around the inner ring of the water seal results in a much higher vacuum than would be possible if the water was injected in the pump elsewhere.
FIGS. 3 and 4 show a section of the pump in which air is discharged from the first stage of the rotary pump through the check valve casing 38 and the check valve 40 to the outlet pipe 42 through passage 44. When the vacuum in the first stage of the pump reaches a certain predetermined level where the second stages can become operative the check valve 40 closes and air from the first stage is discharged through the second stage directly into the passage 44 and the outlet pipe 42. It should be noted that the second stage of the pump operates at all times by taking air from the discharge of the first stage and becomes effective when the first stage reaches a high vacuum and its discharge is reduced to a capacity equal to or less than the capacity of the second stage. At that time the second stage begins to pull a vacuum on the first stage.
FIGS. 1 and 5 show a device to cool the packing gland or mechanical seal 14. The device takes the form of a stationary deflector blade 46 mounted on the casing 10 adjacent to the packing gland14. In operation,
the rotor and associated structure revolves a ring of water. As seen in FIG. 5, a portion of this water is picked up by the blade 46 and due to its configuration directs this water portion against the packing gland 18 to shaft, a rotor on said drive shaft a port member disposed in a central opening of said rotor, a fluid entry means'in said casing, communicating with an external cold seal liquid source, a fluid outlet means in said casing, a plurality of impeller means in successive stages mounted on said rotor, a separating member on the rotor between two successive stages of said impeller means, said separating member having an inner peripheral edge defining a running clearance with an adjacent port member surface, a substantially annular groove in said separating member edge, said groove being connected to said fluid entry means whereby cold seal liquid is introduced from said external source to the interior surfaces of said impeller means under relatively small pressure, to flow over the surface of-the liquid of the liquid ring in the first stage of the pump in order to effectively seal the high and low vacuum areas of successive stages of said impeller means and to create a higher vacuum in the pump and reduce flashing between said fluid entry means and said fluid outlet the direction of the longitudinal axis of said drive shaft,
a rotor on said drive shaft and a packing for said drive shaft, the improvement comprising: a curved stationary deflector blade mounted on said casing and positioned outside of said lobes whereby at least some of the fluid agitated by said rotor is directed to the curved portion of said deflection blade which deflects said fluid inwardly against said packing.
* I! I l l

Claims (4)

1. A multi-stage liquid ring pump comprising a casing, a rotatable drive shaft at least partly in said casing, a plurality of lobes in said casing and mounted in stages in the direction of the longitudinal axis of said drive shaft, a rotor on said drive shAft a port member disposed in a central opening of said rotor, a fluid entry means in said casing, communicating with an external cold seal liquid source, a fluid outlet means in said casing, a plurality of impeller means in successive stages mounted on said rotor, a separating member on the rotor between two successive stages of said impeller means, said separating member having an inner peripheral edge defining a running clearance with an adjacent port member surface, a substantially annular groove in said separating member edge, said groove being connected to said fluid entry means whereby cold seal liquid is introduced from said external source to the interior surfaces of said impeller means under relatively small pressure, to flow over the surface of the liquid of the liquid ring in the first stage of the pump in order to effectively seal the high and low vacuum areas of successive stages of said impeller means and to create a higher vacuum in the pump and reduce flashing between said fluid entry means and said fluid outlet means.
2. A multi-stage rotary vacuum pump as claimed in claim 1, wherein the cold seal liquid introduced to the interior surfaces of said impeller means is under pressure greater than atmosphere.
3. A multi-stage rotary vacuum pump as claimed in claim 1, wherein said cold seal liquid is water.
4. In a multi-stage rotary vacuum having a casing, a rotatable drive shaft at least partly in said casing, a plurality of lobes in said casing and mounted in stages in the direction of the longitudinal axis of said drive shaft, a rotor on said drive shaft and a packing for said drive shaft, the improvement comprising: a curved stationary deflector blade mounted on said casing and positioned outside of said lobes whereby at least some of the fluid agitated by said rotor is directed to the curved portion of said deflection blade which deflects said fluid inwardly against said packing.
US00145462A 1971-05-28 1971-05-28 Vacuum pump Expired - Lifetime US3743443A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14546271A 1971-05-28 1971-05-28

Publications (1)

Publication Number Publication Date
US3743443A true US3743443A (en) 1973-07-03

Family

ID=22513237

Family Applications (1)

Application Number Title Priority Date Filing Date
US00145462A Expired - Lifetime US3743443A (en) 1971-05-28 1971-05-28 Vacuum pump

Country Status (1)

Country Link
US (1) US3743443A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334830A (en) * 1980-03-24 1982-06-15 The Nash Engineering Company Two-stage liquid ring pump with improved intrastage and interstage sealing means
US4521161A (en) * 1983-12-23 1985-06-04 The Nash Engineering Company Noise control for conically ported liquid ring pumps
US4551070A (en) * 1983-12-23 1985-11-05 The Nash Engineering Company Noise control for conically ported liquid ring pumps
US5100308A (en) * 1989-03-25 1992-03-31 Gebr. Becker Gmbh & Co. Vane pump with adjustable housing and method of assembly
US5222869A (en) * 1992-05-14 1993-06-29 Vooner Vacuum Pumps, Inc. Liquid ring vacuum pump-compressor with rotor cone clearance concentrated in the seal segment
US5290152A (en) * 1992-05-14 1994-03-01 Vooner Vacuum Pumps, Inc. Manifold for a liquid ring vacuum pump-compressor
WO2004080507A2 (en) * 2003-03-10 2004-09-23 Pathway Medical Technologies, Inc. Interventional catheters assemblies and control systems
US20040220519A1 (en) * 2003-03-10 2004-11-04 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US20040243162A1 (en) * 2000-04-05 2004-12-02 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US8192151B2 (en) 2009-04-29 2012-06-05 General Electric Company Turbine engine having cooling gland
US20150093260A1 (en) * 2013-10-01 2015-04-02 Gardner Denver Nash Llc Liquid ring pump with modular construction, an inter-stage bypass and overload protection
US20150292494A1 (en) * 2012-11-30 2015-10-15 Edwards Limited Improvements in and relating to vacuum conduits

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1657349A (en) * 1925-12-04 1928-01-24 Duro Co Bearing
US2195174A (en) * 1935-12-30 1940-03-26 Irving C Jennings Pump
US2646999A (en) * 1948-01-23 1953-07-28 Filton Ltd Fluid seal
US2815003A (en) * 1956-11-05 1957-12-03 Propulsion Res Corp Turbine method and system
US3028181A (en) * 1958-12-26 1962-04-03 Thompson Lee Lavere Seals for rotating shafts
US3043497A (en) * 1959-12-29 1962-07-10 Gabbioneta Roberto Means for the support of the rotor in liquid ring rotary pumps
US3232521A (en) * 1963-08-23 1966-02-01 Atkinson Guy F Co Long rotor hydroturbine pump with single end port plug
US3351272A (en) * 1966-01-03 1967-11-07 Nash Engineering Co Vacuum pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1657349A (en) * 1925-12-04 1928-01-24 Duro Co Bearing
US2195174A (en) * 1935-12-30 1940-03-26 Irving C Jennings Pump
US2646999A (en) * 1948-01-23 1953-07-28 Filton Ltd Fluid seal
US2815003A (en) * 1956-11-05 1957-12-03 Propulsion Res Corp Turbine method and system
US3028181A (en) * 1958-12-26 1962-04-03 Thompson Lee Lavere Seals for rotating shafts
US3043497A (en) * 1959-12-29 1962-07-10 Gabbioneta Roberto Means for the support of the rotor in liquid ring rotary pumps
US3232521A (en) * 1963-08-23 1966-02-01 Atkinson Guy F Co Long rotor hydroturbine pump with single end port plug
US3351272A (en) * 1966-01-03 1967-11-07 Nash Engineering Co Vacuum pump

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334830A (en) * 1980-03-24 1982-06-15 The Nash Engineering Company Two-stage liquid ring pump with improved intrastage and interstage sealing means
US4521161A (en) * 1983-12-23 1985-06-04 The Nash Engineering Company Noise control for conically ported liquid ring pumps
US4551070A (en) * 1983-12-23 1985-11-05 The Nash Engineering Company Noise control for conically ported liquid ring pumps
US5100308A (en) * 1989-03-25 1992-03-31 Gebr. Becker Gmbh & Co. Vane pump with adjustable housing and method of assembly
US5222869A (en) * 1992-05-14 1993-06-29 Vooner Vacuum Pumps, Inc. Liquid ring vacuum pump-compressor with rotor cone clearance concentrated in the seal segment
US5290152A (en) * 1992-05-14 1994-03-01 Vooner Vacuum Pumps, Inc. Manifold for a liquid ring vacuum pump-compressor
ES2066729A2 (en) * 1992-06-26 1995-03-01 Vooner Vacuum Pumps Inc Liquid ring vacuum pump-compressor with rotor cone clearance concentrated in the seal segment
US20040243162A1 (en) * 2000-04-05 2004-12-02 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
WO2004080507A3 (en) * 2003-03-10 2005-08-04 Pathway Medical Technologies I Interventional catheters assemblies and control systems
US8951224B2 (en) 2003-03-10 2015-02-10 Boston Scientific Limited Interventional catheter assemblies, control systems and operating methods
WO2004080507A2 (en) * 2003-03-10 2004-09-23 Pathway Medical Technologies, Inc. Interventional catheters assemblies and control systems
US7713231B2 (en) 2003-03-10 2010-05-11 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US20110112562A1 (en) * 2003-03-10 2011-05-12 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US10149698B2 (en) 2003-03-10 2018-12-11 Boston Scientific Limited Interventional catheter assemblies, control systems and operating methods
US8323240B2 (en) 2003-03-10 2012-12-04 Medrad, Inc. Interventional catheter assemblies and control systems
US20040220519A1 (en) * 2003-03-10 2004-11-04 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US8192151B2 (en) 2009-04-29 2012-06-05 General Electric Company Turbine engine having cooling gland
US20150292494A1 (en) * 2012-11-30 2015-10-15 Edwards Limited Improvements in and relating to vacuum conduits
US10539123B2 (en) * 2012-11-30 2020-01-21 Edwards Limited Pressure regulating apparatus including conduit
US20150093260A1 (en) * 2013-10-01 2015-04-02 Gardner Denver Nash Llc Liquid ring pump with modular construction, an inter-stage bypass and overload protection
US9541086B2 (en) * 2013-10-01 2017-01-10 Gardner Denver Nash Llc Liquid ring pump with modular construction, an inter-stage bypass and overload protection
EP3052809B1 (en) * 2013-10-01 2020-04-15 Gardner Denver Nash LLC Liquid ring pump with an inter-stage bypass

Similar Documents

Publication Publication Date Title
US3213794A (en) Centrifugal pump with gas separation means
US4668160A (en) Vacuum pump
US4747752A (en) Sealing and dynamic operation of a liquid ring pump
US1988875A (en) Wet vacuum pump and rotor therefor
US3743443A (en) Vacuum pump
KR910002706B1 (en) Sliencer-carrying rotary vane pump
US3108738A (en) Liquid-ring gas pumps
GB1400761A (en) Axial or semi-axial flow impeller pump
US3289918A (en) Pump device
US3253816A (en) De-aeration of sealing fluid in aerated rotary fluid machines
US4392783A (en) Liquid ring pump employing discharged pumping liquid for discharge port control
US3575532A (en) Gas pump of a liquid-ring type
US2195375A (en) Pump
US3154240A (en) Pumping device
US3209987A (en) Liquid ring pump
US4815930A (en) Cavitating centrifugal pump
US5464329A (en) Water ring type pump with sidewall water reflux passage
GB1282803A (en) Centrifugal liquid vane type compressor
US5527150A (en) Regenerative pumps
US3252421A (en) Pumps
US3416456A (en) Centrifugal pump
USRE33129E (en) Vacuum pump
US3374744A (en) Turbine pump
US2764945A (en) Pump and liquid shaft seal therefor
GB1186129A (en) Multi-Stage Rotary Vacuum Pump of the Liquid Ring Type.