US3425175A - Hydrostatically pressurized building foundation - Google Patents

Hydrostatically pressurized building foundation Download PDF

Info

Publication number
US3425175A
US3425175A US627216A US3425175DA US3425175A US 3425175 A US3425175 A US 3425175A US 627216 A US627216 A US 627216A US 3425175D A US3425175D A US 3425175DA US 3425175 A US3425175 A US 3425175A
Authority
US
United States
Prior art keywords
water
foundation
building
liquid
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US627216A
Inventor
Bernt Hjalmar Gerde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3425175A publication Critical patent/US3425175A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D35/00Straightening, lifting, or lowering of foundation structures or of constructions erected on foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/10Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/10Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
    • E02D31/12Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure against upward hydraulic pressure

Definitions

  • the present invention relates to a foundation in pairticular for great buildings and by means of the invention there is obtained a possibility of maintaining the subsoil water level constant around the building such that its foundation will be exposed toa constant pressure.
  • This invention relates to a foundation for buildings wherein liquid means are utilized for providing an upward pressure against the bottom slab of the foundation.
  • the foundation of buildings depends upon lground Iconditions generally in conventional methods using ground plinths, extended slabs, piling or special methods such as sink wells, caissons etc.
  • subsoil water With subsoil water, the level of this water is lowered permanently, e.g. by means of drainage or pumping or the lowermost building parts have been constructed watertight when such pumping was impossible.
  • the subsoil water level is very seldom constant but its height varies generally within wide limits depending upon atmospheric precipitation, the lwater penetrability of the ground etc. Further, the position of the subsoil water level is easily disturbed by excavating works, drainage measures, etc.
  • the foundation must be dimensioned with regard to the total weight of the building (its own weight and its charging load, etc.) when -the subsoil water surface is at its lowermost position and final-ly,
  • the bottom slab must be dimensioned with regard to the maximum and the minimum subsoil water pressure.
  • An object of the present invention is to provide a construction for creating an upwardly directed water pressure against the foundation construction of a building and thereby take advantage of the reduction of the load obtained by means of this water pressure in upwards direction at the dimensioning of the foundation.
  • a further object of the invention is also to reduce or to equalize sinkings in the building while using the upward water pressure as an aid at the foundation, by cohesion piling, extended bottom slab, etc.
  • the foundation construction of the building is made of a water tight material and a liquid supply or storage is arranged in the bottom slab of the foundation construction, said liquid storage being in communication with the space below the bottom slab.
  • This space may be filled by macadam, pebbles, etc., closest under the bottom slab of t-he foundation construction.
  • this space is preferably enclosed by a watertight, downwardly directed sheeting or disk construction in watertight connection with the lower border of the watertight bottom slab.
  • the Iwater level in the liquid storage will always be situated above the lower border of the bottom slab and it is determined to a suitable maximum position so that the building with a certain safety does not rise and oat on the foundation.
  • the water level must not be so high that in case the watertight bottom slab or the liquid storage is destroyed by means of a deterimental influence, e.g. sabotage or war actions or the like, and the water is emptied from the liquid supply, the load increase thereby caused on the foundation will cause a rupture of the same.
  • the water level in the liquid supply is kept within narrow limits so that there is obtained a precise and even upwards directed water pressure on the bottom slab such that the bottom slab has to Ibe dimensioned (its strength be calculated) only with regard to the upper water limit and will thus be independent of the water level, mostly the subsoil water level, in the ground surrounding the building.
  • the storage is provided -with a device for feeding water to and from the same, e.g. by means of pumping, an overflow board, pressure valves, etc.
  • the liquid storage may be located outside the foundation wall of the building and this wall should comprise a watertight material and such as the excavating sheeting or a part thereof from the outer limitation of the liquid storage.
  • the liquid storage may be put in communication with the space below the bottom slab of the building.
  • FIG. l is a partial cross section of a building level with the foundation level and provided with a liquid storage arranged in the watertight bottom slab,
  • FIG. 2 shows a partial cross section through a building level with the foundation level where a liquid storage is arranged at the side of the water tight foundation construction
  • FIG. 3 shows a plan view of a ground plot on which the buildings have been provided with foundation according to the invention.
  • FIG. l there is shown a first embodiment for the foundation of a building where the foundation wall 1 (the cellar wall) and the bottom slab 2 (cellar floor) are ⁇ constructed water tightly. It might be necessary to put down excavating sheeting 3 in order that the excavation of the ground down to the excavation bottom 4 may be carried out without any risk of falls.
  • the excavation bottom 4 may be made hard, c g. by means of coarse concrete moulding or stabilization by means of mort-ar of lime.
  • a watertight sheeting or disk construction 5 extending all around the 'building and thus enclosing the space 6 under the bottom slab 2.
  • the sheeting 5 is watertightly connected with the bottom slab 2, being moulded in.
  • a watertight storage 8 in direct communication with the space 6 under the bottom slab 2.
  • the filling material 7 may partly fill the liquid storage 8.
  • the space 6 under the bottom slab 2 :and the liquid storage 8 are filled with a liquid, preferably water, to a liquid level 9 for a suitable liquid pressure in upward direction against the bottom slab 2.
  • the liquid storage 8 is in communication, as indicated diagrammatically in FIG. l, through a tube conduit with a pump 10 controlled by a relay. If the liquid level 9 lowers to -below a determined minimum level 11, the pump 10 is connected for feeding liquid to the liquid storage 8 and in case the liquid in the liquid storage 8 rises up over a determined maximum level 12, the pump 10 is connected for discharging liquid.
  • the maximum level 12 may also be controlled and ensured tby means of an overflow outlet 13 (brim discharge) and the overflowing liquid is gathered and discharged through a tube conduit to pump sumps.
  • the volume of the liquid storage 8, the maximum level 12 of the liquid and the minimum level 11 of the liquid, the depth of the sheeting 5, the capacity of the pump 10, etc., are determined while bearing in mind uctuations in the levels of the water and the subsoil water around the building and its pressure differences in relation to the level of the liquid in the liquid storage 8, the water penetrability for water in the soil, etc.
  • FIG. 2 there is shown a partial cross section of a second embodiment of the invention where the foundation wall 1 (cellar wall) and bottom slab 2 (cellar floor) are likewise of a watertight construction.
  • the foundation wall 1 cellar wall
  • bottom slab 2 cellar floor
  • the sheeting 3 or a portion thereof which is intended to form the outer limitation for the liquid storage 14 is made watertight.
  • a layer 16 of a material permitting the passage of water this layer 16 extending under the whole of the -bottom slab 2 and partly up into the liquid storage 14.
  • the space 15 under the bottom slab 2 and the water storage 14 is filled with a liquid, preferably water, to a level suitable for the upward liquid pressure against the bottom sla-b 2.
  • the water storage 14 is, also in this case through a tube conduit, connected to a pump 17 which is controlled by relays in such a way that the liquid level 18 is maintained within a predetermined limits, viz. the minimum level 19 and the maximum level 20.
  • the maximum level can also in this case be ensured by means of an overliow outlet 21 (overflow discharge).
  • FIG. 3 shows how it is possible to surround a construction ground 22 by a water tight sheeting as indicated with broken lines 23 and then each building within this sheeting may be separated from neighbouring objects by means of watertight plates as indicated by means of chain lines 24. Further, each building object may as indicated in one case by means of double dot and dash lines be divided into sections 25, 26, 27 and 28. It is hereby rendered possible on the one hand to control the upward water pressure in each -building separately and on the other hand to expose every section in one and the same building to different upward pressure. Every building may thereby be individually adapted for an uneven load, uneven ground conditions, etc.
  • control of the liquid level in the liquid storages may be carried out either from a common pump central for the whole building area or by means of a separate pump for each building or even for each separate section, 25-28, within the same building.
  • the lateral limitation can of course be shaped in many different ways and be treated for being rendered water resistant.
  • the pump equipment may as obvious from the aforegoing be constructed arbitrarily within the scope of the invention as long as the equipment is such that it keeps the liquid level in the storage within the predetermined limits.
  • a foundation for buildings and the like comprising a water-tight bottom slab having a space underneath the same, liquid storage means associated with said slab, means for controlling the liquid level in said storage means, means connecting said storage means with said space, water-tight means surrounding said space, said space containing a liquid permeable material which extends partly into said liquid storage means.
  • a foundation as set forth in claim 1 wherein said means for controlling the liquid level in said storage means comprises a pump and an overflow outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Foundations (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Building Environments (AREA)

Description

HYDROSTATICALLY FRESSURIZED BUILDING FOUNDATION Filed March 30, 1967 Sheet l of 3 /N VEN TOR www@ 4 @Af/arma( Feb. 4, 1969 B. H. GERDE 3,425,175
HYnRosTATIcALLY PREssURIzED BUILDING FouNDAToN Filed Maron 3o, 1967 sheet 2. of z l AI8 *l B. H. @ERDE 3,425,175 HYDROSTATICALLY PRESSURIZED BUILDING FOUNDATION Feb. 4, 1969 Sheet Q -of Filed March 30, 1967 Bm/w AMJ/044W( United States Patent O 3,425,175 HYDROSTATICALLY PRESSURIZED BUILDING FOUNDATION Bernt Hialmar Gerde, Oktobergatan 6, Goteborg, Sweden Filed Mar. 30, 1967, Ser. No. 627,216 Claims priority, application Sweden, Apr. 5, 1966,
4,544/66 U.s. c1. 52--169 s claims Int. ci. Eozd 31/12, 27/01, 27/10 ABSTRACT F THE DISCLOSURE The present invention relates to a foundation in pairticular for great buildings and by means of the invention there is obtained a possibility of maintaining the subsoil water level constant around the building such that its foundation will be exposed toa constant pressure.
This invention relates to a foundation for buildings wherein liquid means are utilized for providing an upward pressure against the bottom slab of the foundation.
The foundation of buildings depends upon lground Iconditions generally in conventional methods using ground plinths, extended slabs, piling or special methods such as sink wells, caissons etc. With subsoil water, the level of this water is lowered permanently, e.g. by means of drainage or pumping or the lowermost building parts have been constructed watertight when such pumping was impossible.
The subsoil water level is very seldom constant but its height varies generally within wide limits depending upon atmospheric precipitation, the lwater penetrability of the ground etc. Further, the position of the subsoil water level is easily disturbed by excavating works, drainage measures, etc.
For this reason one can seldom take advantage of the lifting forces against the building part situated below the subsoil water level. Mostly the foundations and the base slabs of the buildings have to be dimensioned in such a way that (l) their own weight will be high enough so that there is obtained a security against rising when the subsoil water surface is at its maximum and,
(2) the foundation must be dimensioned with regard to the total weight of the building (its own weight and its charging load, etc.) when -the subsoil water surface is at its lowermost position and final-ly,
(3) the bottom slab must be dimensioned with regard to the maximum and the minimum subsoil water pressure.
An object of the present invention is to provide a construction for creating an upwardly directed water pressure against the foundation construction of a building and thereby take advantage of the reduction of the load obtained by means of this water pressure in upwards direction at the dimensioning of the foundation.
A further object of the invention is also to reduce or to equalize sinkings in the building while using the upward water pressure as an aid at the foundation, by cohesion piling, extended bottom slab, etc.
In the following specication and in the appended claims the expression water is used but is intended to cover any liquid suitable for the intended purpose.
ICC
In order to obtain the objects above the foundation construction of the building is made of a water tight material and a liquid supply or storage is arranged in the bottom slab of the foundation construction, said liquid storage being in communication with the space below the bottom slab. This space may be filled by macadam, pebbles, etc., closest under the bottom slab of t-he foundation construction. In order to limit the space in outward direction, this space is preferably enclosed by a watertight, downwardly directed sheeting or disk construction in watertight connection with the lower border of the watertight bottom slab.
When the space below the bottom slab and the liquid supply is filled with water, there is obtained a water pressure directed upwards against the bottom slab and a corresponding reduction of the foundation load of the order 1.0 metric ton per sq. meter for every meter of altitude with which the water level in the liquid storage exceeds the lower border of the bottom slab.
The Iwater level in the liquid storage will always be situated above the lower border of the bottom slab and it is determined to a suitable maximum position so that the building with a certain safety does not rise and oat on the foundation. However, the water level must not be so high that in case the watertight bottom slab or the liquid storage is destroyed by means of a deterimental influence, e.g. sabotage or war actions or the like, and the water is emptied from the liquid supply, the load increase thereby caused on the foundation will cause a rupture of the same. The water level in the liquid supply is kept within narrow limits so that there is obtained a precise and even upwards directed water pressure on the bottom slab such that the bottom slab has to Ibe dimensioned (its strength be calculated) only with regard to the upper water limit and will thus be independent of the water level, mostly the subsoil water level, in the ground surrounding the building.
There will occur a water stream between the water level of the liquid supply and the Water or subsoil water level surrounding the building, the direction of the water stream as Well as the size of the same will be dependent on the pressure difference, the water penetrability of the soil, the sheeting depth, etc.
So as to make it possible to maintain the water level in the liquid storage within the desired limits the storage is provided -with a device for feeding water to and from the same, e.g. by means of pumping, an overflow board, pressure valves, etc.
As a modication of the construction described in the aforegoin-g the liquid storage may be located outside the foundation wall of the building and this wall should comprise a watertight material and such as the excavating sheeting or a part thereof from the outer limitation of the liquid storage. The liquid storage may be put in communication with the space below the bottom slab of the building.
By dividing the space under the bottom slab of the foundation construction several sections with the water tight sheeting or disk construction and providing each section with its own liquid storage, there is obtained a possibility to provide different water pressures in the upward direction. When constructing buildings on uneven grounds or when utilizing building portions of different weights it is possible, by suitable control of the water pressure in upwards direction in the dilferent sections,
to counteract or to balance different settings of the building.
The invention will in the following be described in detail with reference to the accompanying, partly diagrammatical drawings showing some embodiments of the invention. In the drawings:
FIG. l is a partial cross section of a building level with the foundation level and provided with a liquid storage arranged in the watertight bottom slab,
FIG. 2 shows a partial cross section through a building level with the foundation level where a liquid storage is arranged at the side of the water tight foundation construction, and
FIG. 3 shows a plan view of a ground plot on which the buildings have been provided with foundation according to the invention.
Referring to FIG. l there is shown a first embodiment for the foundation of a building where the foundation wall 1 (the cellar wall) and the bottom slab 2 (cellar floor) are `constructed water tightly. It might be necessary to put down excavating sheeting 3 in order that the excavation of the ground down to the excavation bottom 4 may be carried out without any risk of falls. The excavation bottom 4 may be made hard, c g. by means of coarse concrete moulding or stabilization by means of mort-ar of lime.
Around the building circumference there has been lowered into the ground a watertight sheeting or disk construction 5 extending all around the 'building and thus enclosing the space 6 under the bottom slab 2. The sheeting 5 is watertightly connected with the bottom slab 2, being moulded in. In the space 6 under the bottom slab 2 there could be arranged a layer of filling material 7, e.g. coarse pebbles, macadam, or vthe like, which is shaped for giving a water penetration as good las possible and which extends under the whole of the bottom slab 2.
In the bottom slab 2 is arranged a watertight storage 8 in direct communication with the space 6 under the bottom slab 2. The filling material 7 may partly fill the liquid storage 8.
The space 6 under the bottom slab 2 :and the liquid storage 8 are filled with a liquid, preferably water, to a liquid level 9 for a suitable liquid pressure in upward direction against the bottom slab 2. In order to render possible a maintaining of the liquid level within narrow limits for level and thus obtain a well determined upward liquid pressure against the bottom slab 2, the liquid storage 8 is in communication, as indicated diagrammatically in FIG. l, through a tube conduit with a pump 10 controlled by a relay. If the liquid level 9 lowers to -below a determined minimum level 11, the pump 10 is connected for feeding liquid to the liquid storage 8 and in case the liquid in the liquid storage 8 rises up over a determined maximum level 12, the pump 10 is connected for discharging liquid. The maximum level 12 may also be controlled and ensured tby means of an overflow outlet 13 (brim discharge) and the overflowing liquid is gathered and discharged through a tube conduit to pump sumps.
The volume of the liquid storage 8, the maximum level 12 of the liquid and the minimum level 11 of the liquid, the depth of the sheeting 5, the capacity of the pump 10, etc., are determined while bearing in mind uctuations in the levels of the water and the subsoil water around the building and its pressure differences in relation to the level of the liquid in the liquid storage 8, the water penetrability for water in the soil, etc.
In FIG. 2 there is shown a partial cross section of a second embodiment of the invention where the foundation wall 1 (cellar wall) and bottom slab 2 (cellar floor) are likewise of a watertight construction. At the foundation there has been lowered into the soil an excavation sheeting 3 which at a certain distance surrounds the building and the ground is excavated around the building within this sheeting 3 down to the excavation bottom 4. The sheeting 3 or a portion thereof which is intended to form the outer limitation for the liquid storage 14 (the spacing between the sheeting 3 and the foundation wall 1) is made watertight.
In the space 15 below the bottom slab 2 there could be arranged a layer 16 of a material permitting the passage of water, this layer 16 extending under the whole of the -bottom slab 2 and partly up into the liquid storage 14. The space 15 under the bottom slab 2 and the water storage 14 is filled with a liquid, preferably water, to a level suitable for the upward liquid pressure against the bottom sla-b 2.
The water storage 14 is, also in this case through a tube conduit, connected to a pump 17 which is controlled by relays in such a way that the liquid level 18 is maintained within a predetermined limits, viz. the minimum level 19 and the maximum level 20. The maximum level can also in this case be ensured by means of an overliow outlet 21 (overflow discharge).
FIG. 3 shows how it is possible to surround a construction ground 22 by a water tight sheeting as indicated with broken lines 23 and then each building within this sheeting may be separated from neighbouring objects by means of watertight plates as indicated by means of chain lines 24. Further, each building object may as indicated in one case by means of double dot and dash lines be divided into sections 25, 26, 27 and 28. It is hereby rendered possible on the one hand to control the upward water pressure in each -building separately and on the other hand to expose every section in one and the same building to different upward pressure. Every building may thereby be individually adapted for an uneven load, uneven ground conditions, etc.
The control of the liquid level in the liquid storages may be carried out either from a common pump central for the whole building area or by means of a separate pump for each building or even for each separate section, 25-28, within the same building.
The invention has been described in the aforegoing for purposes of illustration only and is not intended to be limited by this description or otherwise except as defined in the appended claims. Thus, the lateral limitation can of course be shaped in many different ways and be treated for being rendered water resistant. The liquid storage may also be shaped in many different ways and may be arranged anywhere in the celler (basement) where it may =be suitable with regard to other space requirements. The pump equipment may as obvious from the aforegoing be constructed arbitrarily within the scope of the invention as long as the equipment is such that it keeps the liquid level in the storage within the predetermined limits.
What I claim is:
1. A foundation for buildings and the like comprising a water-tight bottom slab having a space underneath the same, liquid storage means associated with said slab, means for controlling the liquid level in said storage means, means connecting said storage means with said space, water-tight means surrounding said space, said space containing a liquid permeable material which extends partly into said liquid storage means.
2. A foundation at set forth in claim 1 wherein said water-tight means surrounding said space is in water-tight connection with said bottom slab.
3. A foundation as set forth in claim 1 wherein said space is divided into sections by water-tight downwardly directed sheeting constructions.
4. A foundation as set forth in claim 1 wherein said liquid storage means is located at a side of said watertight bottom slab.
5. A foundation as set forth in claim 1 wherein said means for controlling the liquid level in said storage means comprises a pump and an overflow outlet.
(References on following page) Nicaise 52-303 Colgnet 52-169 Lane 52-169 Hartmann 52-303 Smith 52-302 Schneller 52-274 6 OTHER REFERENCES Wellpoint Team Dewaters Site While Recharging Surroundings, Construction Methods and Equipment, April 1956, PP. 74-76. Copy in Group 350.
HENRY C. SUTHERLAND, Primary Examiner.
U.S. C1. X.R.
US627216A 1966-04-05 1967-03-30 Hydrostatically pressurized building foundation Expired - Lifetime US3425175A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE4544/66A SE306503B (en) 1966-04-05 1966-04-05

Publications (1)

Publication Number Publication Date
US3425175A true US3425175A (en) 1969-02-04

Family

ID=20264425

Family Applications (1)

Application Number Title Priority Date Filing Date
US627216A Expired - Lifetime US3425175A (en) 1966-04-05 1967-03-30 Hydrostatically pressurized building foundation

Country Status (8)

Country Link
US (1) US3425175A (en)
DE (1) DE1634372C3 (en)
FI (1) FI47213C (en)
FR (1) FR1515726A (en)
GB (1) GB1178013A (en)
NL (1) NL6704806A (en)
NO (1) NO120726B (en)
SE (1) SE306503B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227266A (en) * 1978-11-20 1980-10-14 Fox Pool Corporation Ground water level control system
US4273475A (en) * 1976-09-22 1981-06-16 Raymond International Inc. Load supporting structure
US4534143A (en) * 1983-10-24 1985-08-13 Midwest Irrigation And Foundation, Inc. System for controlling the moisture in the subsurface soil surrounding a building
US4553561A (en) * 1984-06-22 1985-11-19 Morris Daniel C Device for the prevention of flooding from drainage systems
US4622790A (en) * 1984-04-02 1986-11-18 Johansson Jan E Device for relieving floors on ground in buildings
US4824292A (en) * 1986-05-13 1989-04-25 Roger Bullivant Of Texas, Inc. Support for building structures
US4995764A (en) * 1989-04-13 1991-02-26 Connery Daniel P Technique for stabilizing building foundations
US5007451A (en) * 1989-05-30 1991-04-16 Andrew Bralich Sump protection system
US5070672A (en) * 1986-01-30 1991-12-10 Roger Bullivant Of Texas, Inc. Supports for building structures
US5526623A (en) * 1994-02-19 1996-06-18 Roxbury Limited Structural beams
US5944445A (en) * 1997-07-10 1999-08-31 Smart Vent, Inc. Device and method for relieving flooding from enclosed space
US6287050B1 (en) 1997-07-10 2001-09-11 Smart Vent, Inc. Foundation flood gate with ventilation
US6485231B2 (en) 1997-07-10 2002-11-26 Smart Vent, Inc. Foundation flood gate with ventilation
US9353569B1 (en) 2015-04-08 2016-05-31 Smart Vent Products, Inc. Connectors for a flood vent
US9376803B1 (en) 2015-04-08 2016-06-28 Smart Vent Products, Inc. Flood vent trigger systems
US9551153B2 (en) 2015-04-08 2017-01-24 Smart Vent Products, Inc. Scupper door systems
US9624637B2 (en) 2015-04-08 2017-04-18 Smart Vent Products, Inc. Flood vent
US9637912B1 (en) 2015-12-10 2017-05-02 Smart Vent Products, Inc. Flood vent having a panel
US9719249B2 (en) 2015-12-10 2017-08-01 Smart Vent Products, Inc. Flood vent having a panel
US9758982B2 (en) 2015-12-10 2017-09-12 Smart Vent Products, Inc. Flood vent having a panel
US10113309B2 (en) 2015-04-08 2018-10-30 Smart Vent Products, Inc. Flood vent barrier systems
US10385611B2 (en) * 2015-12-10 2019-08-20 Smart Vent Products, Inc. Flood vent having a panel
US10619345B2 (en) * 2015-12-10 2020-04-14 Smart Vent Products, Inc. Flood vent having a panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2483980A1 (en) * 1980-06-04 1981-12-11 Charles Gerard METHOD FOR BUILDING A HOUSE AND HOUSE RELATING THERETO
DE3048742A1 (en) * 1980-12-23 1982-07-22 Heilit + Woerner Bau-AG, 8000 München Joining sheet piling to underwater concrete - involves first welding connectors above water and submerging with piling
CA2353243C (en) * 2001-07-18 2009-07-07 Robert Ralph Robbins Building levelling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US349735A (en) * 1886-09-28 Draining cellars
US937694A (en) * 1905-11-23 1909-10-19 Edmond Coignet Foundation construction.
US997835A (en) * 1910-10-27 1911-07-11 James William Lane Waterproof cellar.
US1811009A (en) * 1930-01-07 1931-06-23 Samuel A Hartmann Drainage system
US3017722A (en) * 1958-02-28 1962-01-23 Frederick A Smith Combination hollow footing stringer and foundation drain duct
US3226935A (en) * 1961-06-08 1966-01-04 Joseph W Schneller Retaining wall and method of constructing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US349735A (en) * 1886-09-28 Draining cellars
US937694A (en) * 1905-11-23 1909-10-19 Edmond Coignet Foundation construction.
US997835A (en) * 1910-10-27 1911-07-11 James William Lane Waterproof cellar.
US1811009A (en) * 1930-01-07 1931-06-23 Samuel A Hartmann Drainage system
US3017722A (en) * 1958-02-28 1962-01-23 Frederick A Smith Combination hollow footing stringer and foundation drain duct
US3226935A (en) * 1961-06-08 1966-01-04 Joseph W Schneller Retaining wall and method of constructing same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273475A (en) * 1976-09-22 1981-06-16 Raymond International Inc. Load supporting structure
US4227266A (en) * 1978-11-20 1980-10-14 Fox Pool Corporation Ground water level control system
US4534143A (en) * 1983-10-24 1985-08-13 Midwest Irrigation And Foundation, Inc. System for controlling the moisture in the subsurface soil surrounding a building
US4622790A (en) * 1984-04-02 1986-11-18 Johansson Jan E Device for relieving floors on ground in buildings
US4553561A (en) * 1984-06-22 1985-11-19 Morris Daniel C Device for the prevention of flooding from drainage systems
US5070672A (en) * 1986-01-30 1991-12-10 Roger Bullivant Of Texas, Inc. Supports for building structures
US4824292A (en) * 1986-05-13 1989-04-25 Roger Bullivant Of Texas, Inc. Support for building structures
US4995764A (en) * 1989-04-13 1991-02-26 Connery Daniel P Technique for stabilizing building foundations
US5007451A (en) * 1989-05-30 1991-04-16 Andrew Bralich Sump protection system
US5526623A (en) * 1994-02-19 1996-06-18 Roxbury Limited Structural beams
US5944445A (en) * 1997-07-10 1999-08-31 Smart Vent, Inc. Device and method for relieving flooding from enclosed space
US6287050B1 (en) 1997-07-10 2001-09-11 Smart Vent, Inc. Foundation flood gate with ventilation
US6485231B2 (en) 1997-07-10 2002-11-26 Smart Vent, Inc. Foundation flood gate with ventilation
US9624637B2 (en) 2015-04-08 2017-04-18 Smart Vent Products, Inc. Flood vent
US9376803B1 (en) 2015-04-08 2016-06-28 Smart Vent Products, Inc. Flood vent trigger systems
US9551153B2 (en) 2015-04-08 2017-01-24 Smart Vent Products, Inc. Scupper door systems
US9353569B1 (en) 2015-04-08 2016-05-31 Smart Vent Products, Inc. Connectors for a flood vent
US10619319B2 (en) 2015-04-08 2020-04-14 Smart Vent Products, Inc. Flood vent
US9670717B2 (en) 2015-04-08 2017-06-06 Smart Vent Products, Inc. Flood vent trigger systems
US10113309B2 (en) 2015-04-08 2018-10-30 Smart Vent Products, Inc. Flood vent barrier systems
US10113286B2 (en) 2015-04-08 2018-10-30 Smart Vent Products, Inc. Flood vent
US10017937B2 (en) 2015-12-10 2018-07-10 Smart Vent Products, Inc. Flood vent having a panel
US9909302B2 (en) 2015-12-10 2018-03-06 Smart Vent Products, Inc. Flood vent having a panel
US9758982B2 (en) 2015-12-10 2017-09-12 Smart Vent Products, Inc. Flood vent having a panel
US9719249B2 (en) 2015-12-10 2017-08-01 Smart Vent Products, Inc. Flood vent having a panel
US10161156B2 (en) 2015-12-10 2018-12-25 Smart Vent Products, Inc. Flood vent having a panel
US10385611B2 (en) * 2015-12-10 2019-08-20 Smart Vent Products, Inc. Flood vent having a panel
US10584510B2 (en) 2015-12-10 2020-03-10 Smart Vent Products, Inc. Flood vent having a panel
US10619345B2 (en) * 2015-12-10 2020-04-14 Smart Vent Products, Inc. Flood vent having a panel
US9637912B1 (en) 2015-12-10 2017-05-02 Smart Vent Products, Inc. Flood vent having a panel
US11002006B2 (en) * 2015-12-10 2021-05-11 Smart Vent Products, Inc. Flood vent having a panel
US11021886B2 (en) 2015-12-10 2021-06-01 Smart Vent Products, Inc. Flood vent having a panel

Also Published As

Publication number Publication date
SE306503B (en) 1968-11-25
NO120726B (en) 1970-11-23
DE1634372B2 (en) 1974-02-28
DE1634372C3 (en) 1974-09-26
NL6704806A (en) 1967-10-06
GB1178013A (en) 1970-01-14
FI47213C (en) 1973-10-10
FR1515726A (en) 1968-03-01
DE1634372A1 (en) 1971-09-30
FI47213B (en) 1973-07-02

Similar Documents

Publication Publication Date Title
US3425175A (en) Hydrostatically pressurized building foundation
Terzaghi Stability and stiffness of cellular cofferdams
CN110387896B (en) Foundation pit dewatering well design method
CN110886327A (en) Basement structure decompression anti-floating system based on slope area and construction method thereof
US20240229410A1 (en) Drainage pressure relief anti-floating system suitable for weakly permeable soft stratum
CN112832288A (en) Anti-floating structure of sloping field building basement and construction method thereof
US4693637A (en) Gravity type oceanic structure and its stable installation
GB2369400A (en) Underground water storage system
CN107700434A (en) A kind of dome grating formula armored concrete mud-rock flow blocking dam and its construction process
US3785158A (en) Hydraulic engineering installations
US2482870A (en) Prefabricated cesspool structure
JPH11158886A (en) Method for constructing underwater foundation
KR100254703B1 (en) A soft settling structure and method for setting the same
JP2018150772A (en) Liquefaction countermeasure structure of underground structure
US4040263A (en) Arrangement in or relating to drainage
CN208201913U (en) A kind of multi-layer underground cell structure of active anti-floating formula
JPH07156992A (en) Underground reservoir
JPH0536044Y2 (en)
JP2612763B2 (en) Basic structure of structure
CN204570717U (en) The dewatering installation of a kind of underground structure underground water
SU977555A1 (en) Retaining wall
CN214574064U (en) Pipe well dewatering and anti integrative underground structure pump drainage system that floats of fat groove prevention of seepage
CN211773946U (en) Basement structure decompression anti system of floating based on slope area
JP2003020611A (en) Float foundation structure
CN209226667U (en) Sewage treatment plant's biochemistry pool float Structure