JP2018150772A - Liquefaction countermeasure structure of underground structure - Google Patents

Liquefaction countermeasure structure of underground structure Download PDF

Info

Publication number
JP2018150772A
JP2018150772A JP2017049421A JP2017049421A JP2018150772A JP 2018150772 A JP2018150772 A JP 2018150772A JP 2017049421 A JP2017049421 A JP 2017049421A JP 2017049421 A JP2017049421 A JP 2017049421A JP 2018150772 A JP2018150772 A JP 2018150772A
Authority
JP
Japan
Prior art keywords
water
underground
underground structure
impermeable
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017049421A
Other languages
Japanese (ja)
Other versions
JP6854479B2 (en
Inventor
貴嗣 濱田
Takatsugu Hamada
貴嗣 濱田
忠 原
Tadashi Hara
忠 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Shin Kurushima Dockyard Co Ltd
Original Assignee
Kyushu University NUC
Kochi University NUC
Shin Kurushima Dockyard Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC, Shin Kurushima Dockyard Co Ltd filed Critical Kyushu University NUC
Priority to JP2017049421A priority Critical patent/JP6854479B2/en
Publication of JP2018150772A publication Critical patent/JP2018150772A/en
Application granted granted Critical
Publication of JP6854479B2 publication Critical patent/JP6854479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flotation countermeasure or a subsidence countermeasure of an underground structure when a natural ground in the periphery of the structure is liquefied by quake such as earthquake, and to quickly remove underground water having an excess pore water pressure.SOLUTION: A liquefaction countermeasure structure of an underground structure has a water collecting frame 3 projecting to the lower part from a peripheral edge part on a lower end face of a foundation part of an underground structure in the underground structure or the peripheral edge part thereof, efficiently collects underground water having an excess pore water pressure from a ground of the lower part of the underground structure by a combination of a water collecting non-permeable surface 4 and a water collecting permeable layer 42, and drains the underground water by a tubular vent 5 of which an upper part reaches a peripheral underground water level or higher.SELECTED DRAWING: Figure 1

Description

本発明は、地下埋設の貯水槽や防火水槽等地下構造物について、構造物周辺の地山が地震等の揺れによって、液状化した際の前記地下構造物の浮上対策又は沈下対策に関するものである。   The present invention relates to an underground structure such as an underground water storage tank or fire prevention water tank, and the underground structure around the structure is liquefied due to an earthquake or the like, and the underground structure is countermeasures against levitation or settlement. .

地下水位が高く、締固めが充分でない砂地盤においては、地震等の揺れによって、地盤が液状化することが知られている。そのような地盤中の地下構造物は、液状化に伴う過剰間隙水圧の発生、地下構造物の支持力及び側面の摩擦抵抗力の減少等によって、浮上や沈下を起こす危険を有している。
特許文献1には、地下構造物構築の際の地下水による構築物の浮上対策として、地下水噴出処置方法が提案されている。
特許文献2には、地下水対策として、地下構造物の底盤部分に地下水を導く開口部とその部分から立設する周辺地下水位以上の高さの中空柱を設けて、特許文献1等における地下水対策を補完している。
特許文献3には、液状化しやすい砂地盤における地中構造物の防護工法として、該構造物の底盤下方に水平の礫層を設け、この礫層から該構造物を通って直上に伸びる排水管を設置し、過剰間隙水圧を地上又は該構造物内に排水する工法が提案されている。
特許文献4には、地下埋設型貯水槽の液状化による浮上対策として、該貯水槽底版の下方に、石敷詰め層とその上方にコンクリート打設層を設け、前記底版中心部から前記構造物頂版中心部に及ぶ排水管と前記コンクリート打設層に設けられた誘導通路によって、過剰間隙水を地上に排出することができ、過剰間隙水圧による浮上を防止できるとしている。
It is known that in ground with high groundwater level and insufficient compaction, the ground liquefies due to shaking such as an earthquake. Such underground structures in the ground have a risk of rising and sinking due to generation of excess pore water pressure accompanying liquefaction, reduction of the supporting capacity of the underground structure and frictional resistance of the side surfaces.
Patent Document 1 proposes a groundwater ejection treatment method as a countermeasure for the floating of a structure caused by groundwater when constructing an underground structure.
In Patent Document 2, as an countermeasure against groundwater, an opening that guides groundwater to the bottom part of the underground structure and a hollow column that is higher than the surrounding groundwater level standing from that part are provided. Complements
In Patent Document 3, as a protection method for underground structures in a liquefied sand ground, a horizontal gravel layer is provided below the bottom of the structure, and a drain pipe extends from the gravel layer to the top through the structure. And a method of draining excess pore water pressure on the ground or in the structure has been proposed.
In Patent Document 4, as a countermeasure against levitation due to liquefaction of an underground buried water tank, a stone paving layer and a concrete casting layer are provided below the water tank bottom plate, and the top of the structure is formed from the center of the bottom plate. Excess pore water can be discharged to the ground by the drainage pipe extending to the center of the plate and the guide passage provided in the concrete casting layer, and the floating due to excess pore water pressure can be prevented.

間隙が水で飽和している土に働く全応力は、間隙水圧と有効応力の和である。そして有効応力とは、土粒子の骨格構造によって支配される。前記の地下貯水槽等の地下構造物の地震時の浮上、沈下及び傾斜といったリスクの原因は、水で飽和したゆる詰めの砂の場合、「地震によって繰返しせん断を受けた砂が密度にかかわりなく体積(間隙比)を減少しようとする。−中略− ところが現実には地震による繰返しせん断は数十秒という短時間に起り、排水が間に合わない(非排水)、」(第四版土木工学ハンドブック第1巻P.383 土木学会編)、といった非排水の状態で砂地盤の元の骨格構造が変化することによって有効応力を失い、それを補う様に間隙水圧が発生することにある。その間隙水圧を過剰間隙水圧という。元の砂粒子間の骨格構造が変化している間は、砂粒子が水中を漂っているような泥水状態になっている。従って、地山中の構造物は、泥水より比重の小さいものは浮上し、重いものは沈下することとなる。その後、過剰間隙水は上昇し、地表面に砂を伴う噴砂等になって現れる。従来技術は、構造物の下方で発生する過剰間隙水圧を有した地下水を排水管で地表に導くものであり、一定の成果を有している。しかしながら、短時間で非排水状態を回避するためには、排水管に至るまでの集水を更に速やかに行って液状化の影響を最小限にとどめる必要がある。   The total stress acting on the soil where the gap is saturated with water is the sum of the pore water pressure and the effective stress. The effective stress is governed by the skeletal structure of the soil particles. In the case of loosely-packed sand saturated with water, the cause of the risk of the underground structures such as underground water tanks such as floating, subsidence, and tilting is as follows. Trying to reduce the volume (gap ratio)-Omitted-However, in reality, repeated shearing due to earthquakes occurs in a short time of several tens of seconds, and drainage is not in time (undrained), "(4th Edition Civil Engineering Handbook Volume 1 P.383, edited by Japan Society of Civil Engineers), the original skeletal structure of the sand ground changes in a non-drained state, so that effective stress is lost and pore water pressure is generated to compensate for it. This pore water pressure is called excess pore water pressure. While the skeletal structure between the original sand particles is changing, it is in a muddy state where the sand particles are floating in the water. Therefore, as for the structure in the natural ground, the structure whose specific gravity is smaller than that of muddy water rises, and the heavy structure sinks. Thereafter, excess pore water rises and appears as a sandblast with sand on the ground surface. The conventional technology leads groundwater having excess pore water pressure generated below a structure to the ground surface by a drain pipe, and has a certain result. However, in order to avoid a non-drainage state in a short time, it is necessary to collect water up to the drain pipe more quickly to minimize the influence of liquefaction.

特開昭52−15111JP 52-15111 A 特開昭55−4455JP-A-55-4455 特開平1−239217JP-A-1-239217 特開2013−189801JP2013-189801A

従来技術によって、過剰間隙水圧を有した地下水の排除は期待できるものの、さらに速やかな排除が求められる。従来技術の過剰間隙水圧を有した地下水の排水を超える速やかで確実な集排水対策を課題とする。加えて、これまで提案されている技術は、地下水位の高い地盤中を更に掘り下げて行う対策工であり、工事中に地下水を従来以上に排水する必要があるなど、提案されている技術には実施困難性という課題があった。   Although removal of groundwater having excess pore water pressure can be expected by the conventional technology, further prompt removal is required. The issue is to quickly and reliably collect and drain water that exceeds the drainage of groundwater with excessive pore water pressure of the prior art. In addition, the technologies that have been proposed so far are countermeasures that are carried out by digging deeper into the ground with high groundwater levels, such as the need to drain groundwater more than before during the construction. There was a problem of implementation difficulty.

地下構造物若しくは地下構造物の基礎部の下端面の周縁部に沿って帯状に連続して閉じた枠であって、前記下端面から下方に突設する集水枠と、前記下端面下方の地盤を上下に2分する不透水の面(非透水層及び難透水層を含む概念である不透水層下面を含む概念)であって、上下方向の傾きにより一つ又は複数の頂点部を有し、その周縁は前記集水枠に達する集水不透水面と、該集水不透水面に接して下方に設ける集水透水層と、上端が少なくとも前記地下構造物の周辺地下水位以上に達して開放され、下方は前記頂点部を含む箇所で前記集水不透水面を貫通し、下端面が前記集水透水層の上面に達して開放された管状のベントと、を備えた地下構造物の液状化対策構造物。   A frame continuously closed in a strip shape along the peripheral edge of the lower end surface of the base part of the underground structure or the underground structure, and a water collecting frame projecting downward from the lower end surface, and a lower part of the lower end surface Impervious surface that divides the ground up and down (concept that includes the lower surface of impermeable layer, which is a concept that includes impermeable layer and hardly permeable layer), and has one or more apexes depending on the vertical inclination And a peripheral edge of the water collecting impermeable surface reaching the water collecting frame, a water collecting permeable layer provided below and in contact with the water collecting impermeable surface, and an upper end at least equal to or higher than a surrounding ground water level of the underground structure. An underground structure including a tubular vent that is open at the bottom and penetrates the water-impermeable impermeable surface at a location including the apex portion, and has a lower end that reaches the upper surface of the water-permeable impermeable layer and is opened. Liquefaction countermeasure structure.

前記集水不透水面が剛性を有する不透水の板の下面である地下構造物の液状化対策構造物。   A liquefaction countermeasure structure for an underground structure, wherein the water impermeable surface is a lower surface of an impermeable plate having rigidity.

前記の集水枠に設けられた孔であって、集水枠の外側の地盤と前記集水透水層若しくはベントとを連通する集水枠地下水流入孔を設けた地下構造物の液状化対策構造物。   A liquefaction countermeasure structure for an underground structure provided with a water collection frame groundwater inflow hole which is a hole provided in the water collection frame and communicates with the ground outside the water collection frame and the water collection permeable layer or vent. object.

地下構造物若しくは地下構造物の基礎部の下端面より下方の地盤中において、地震等の揺れに起因する液状化よって、砂粒子は地下水中に浮遊した状態になり沈降し始める。砂粒子とは逆に、過剰間隙水圧を有する地下水は上方に残ることになる。集水不透水面の下方においては、前記集水透水層の直近下方に残留した地下水は、透水性の高い集水透水層を速やかに通過して、集水不透水面に達し、該集水不透水面の有する勾配に従い、ベントまでの勾配のある流動ルートを通じて、頂点部に存する前記ベント下端の解放面に到達し、該ベントを通じて速やかに周辺地下水位より上方に排水される。特に、前記集水不透水面が滑らかな材料の場合、該不透水面に達した地下水は、砂粒子の間隙での流動を超える速度で流動し、その効果は更に大きくなる。   In the ground below the lower end surface of the underground structure or the foundation of the underground structure, sand particles float in groundwater and begin to sink due to liquefaction caused by shaking such as an earthquake. Contrary to sand particles, groundwater with excess pore water pressure will remain above. Below the catchment impermeable surface, the groundwater remaining immediately below the catchment permeable layer quickly passes through the highly permeable catchment layer and reaches the catchment impermeable surface. According to the gradient of the impervious surface, it reaches the release surface of the lower end of the vent existing at the apex portion through the gradient flow route to the vent, and is quickly drained from the surrounding groundwater level through the vent. In particular, when the water collection impermeable surface is a smooth material, the groundwater that has reached the impermeable surface flows at a speed exceeding the flow in the gaps between the sand particles, and the effect is further increased.

前記集水不透水面が剛性のある不透水の材料として例えば鋼板の下面であり、前記集水透水層として栗石若しくは砕石(以下栗石等ともいう。)を使用する場合、水中での施工が容易な該集水透水層を設けた後、現場付近で組立てた鋼板をそのまま落し込むことで設置が可能であり、工事中に集水不透水面を設けるために、地下水位を下げることなく施工できる。水中ポンプ等による地下水の強制排水(以下水替えという。)困難な現場では極めて有効な工法として採用しうる。   When the water-impermeable impermeable surface is a rigid impermeable material, for example, the lower surface of a steel plate, and when using a crushed stone or crushed stone (hereinafter also referred to as a crushed stone) as the water-collected permeable layer, construction in water is easy. After installing the water-collecting permeable layer, it can be installed by dropping the assembled steel sheet as it is near the site, and it can be constructed without lowering the groundwater level to provide a water-impermeable impermeable surface during construction. . It can be adopted as an extremely effective construction method in places where forced drainage of groundwater by submersible pumps (hereinafter referred to as water change) is difficult.

地盤の液状化は地下構造物下方で浮力の発生や支持力の低下という形で該地下構造物の安定に弊害を及ぼすが、該地下構造物の側面での地盤の液状化や側面下方で被圧水が発生した場合、地山と構造物の境界は上昇する地下水のルートになり易い。そこで、境界付近の地盤と集水透水層とを連通する集水枠に設けた孔である集水枠地下水流入孔を設け、構造物境界付近を上昇する恐れのある地下水を前記ベントへ導くことによって、効果を図る。   The liquefaction of the ground has an adverse effect on the stability of the underground structure in the form of buoyancy and reduced bearing capacity below the underground structure, but liquefaction of the ground on the side of the underground structure and coverage on the lower side of the underground structure. When pressurized water occurs, the boundary between the natural ground and the structure tends to be a route for rising groundwater. Therefore, a water collection frame groundwater inflow hole, which is a hole provided in the water collection frame that communicates the ground near the boundary and the water collection permeable layer, is provided to guide the groundwater that may rise near the structure boundary to the vent. To achieve the effect.

液状化対策構造物全体図Overall view of liquefaction countermeasure structure 構造図(1ベント)Structural drawing (1 vent) 構造図(3ベント)Structural drawing (3 vents) 構造図(4ベント)Structural drawing (4 vents) 集水概念図(鉛直方向)Catchment conceptual diagram (vertical direction) 集水概念図(水平方向)Catchment conceptual diagram (horizontal direction) 集水不透水面パネル組立て図Drainage impermeable surface panel assembly drawing 集水枠地下水流入孔図Catchment frame groundwater inflow hole map 仮設図Temporary figure

代表的な地下構造物として、地下貯水槽2を対象に実施例を説明する。本地下貯水槽2は、図1に示すように、円筒型の構造物で、側版23は鋼製のセグメント24を組立て溶接及びボルトで繋ぎ合わせたもので、底面部と頂部は鋼製の底版27及び頂版21の上部にコンクリートを打設し、構築する。底面部には、中央には集水ピット28(図3に示す。)が設けられ、頂部には、吸管投入孔兼点検孔22を設けている。図示していないが、底版コンクリート上面は、全ての水が集水ピット28から給水できるよう水切り勾配を設けている。地下貯水槽2には、基礎部として栗石若しくは砕石13(以下基礎部栗石等ともいう。)による基礎工とその上面に、均しコンクリート14による不陸整正を施工し、鋼製の底版27を設置し、底版コンクリートを打設する。集水ピット位置には、工事に必要な水替え時の釜場12(図9に示す。)を設けることがある。   As a typical underground structure, an embodiment will be described for the underground water tank 2. As shown in FIG. 1, the underground water storage tank 2 is a cylindrical structure, and the side plate 23 is formed by assembling and joining steel segments 24 by welding and bolts, and the bottom and top are made of steel. Concrete is placed on top of the bottom plate 27 and the top plate 21 to construct. In the bottom portion, a water collecting pit 28 (shown in FIG. 3) is provided in the center, and a suction pipe introduction hole / inspection hole 22 is provided in the top portion. Although not shown in the drawing, the upper surface of the bottom slab concrete is provided with a draining slope so that all water can be supplied from the water collecting pit 28. In the underground water tank 2, foundation work using crushed stone or crushed stone 13 (hereinafter also referred to as foundation crushed stone, etc.) as a foundation and an upper surface of the foundation are leveled with leveling concrete 14, and a steel bottom plate 27 And place bottom slab concrete. The water collecting pit position may be provided with a pottery 12 (shown in FIG. 9) at the time of water change necessary for construction.

実施例では、ベント5の数を1、3及び4とするが、ベント5までの過剰間隙水圧を有する地下水の集水は、集水不透水面4の下の地下水の流れによる。地下貯水槽2下方の地下水を短時間でバランスよく排水するためには、効率的かつ平面位置的に偏りなく集水することが望ましい。それぞれのケースでは各ベントまでの集水不透水面4下での地下水の最大の流動長は概ね集水枠3で囲まれた円の半径の長さとし、複数ベントの場合はそれぞれのベント5への集水面積は均等割りとしている。   In the embodiment, the number of the vents 5 is 1, 3, and 4, but the groundwater collection having the excess pore water pressure up to the vents 5 depends on the flow of the groundwater below the water collection impermeable surface 4. In order to drain the ground water below the underground water storage tank 2 in a short time and in a well-balanced manner, it is desirable to collect water efficiently and evenly in a plane position. In each case, the maximum flow length of the groundwater below the water collection impermeable surface 4 up to each vent is approximately the radius of the circle surrounded by the water collection frame 3, and in the case of multiple vents, to each vent 5 The water collection area is divided equally.

図2に、中央部に1つのベント5を設けた本発明にかかる構造物設置の正面断面図及び底面図を示す。
集水枠3は、図2(2)に示すように地下貯水槽の基礎部栗石等13の底面の周縁部を帯状に連続した枠を形成しており、図2 (1)に示すように基礎部栗石等13から下方に突出した構造になっている。図2の集水枠3は、コンクリート打設による構造物である。地下構造物若しくは地下構造物の基礎部の下端面は、該地下構造物の沈下の場合の支持力若しくは浮上の場合の揚圧力の対象となる面である。前記集水枠3は、前記下端面周縁に設けている。該地下構造物の下方全体を地下水集水範囲とするのが好ましいからである。
FIG. 2 shows a front sectional view and a bottom view of the installation of the structure according to the present invention in which one vent 5 is provided at the center.
As shown in FIG. 2 (2), the water collecting frame 3 forms a continuous frame in the periphery of the bottom of the base part of the underground water storage tank 13, as shown in FIG. 2 (1). It has a structure projecting downward from the base part Kuriishi 13 and the like. The water collecting frame 3 in FIG. 2 is a structure formed by placing concrete. The lower end surface of the underground structure or the base portion of the underground structure is a surface that is a target of a supporting force in the case of subsidence of the underground structure or a lifting pressure in the case of ascent. The water collecting frame 3 is provided on the periphery of the lower end surface. This is because it is preferable that the entire lower part of the underground structure is within the groundwater collection range.

集水不透水面4は、図2(1)に示すように下面を解放した円錐状で、円錐の頂点部41をベント5が貫通することによって上方も解放された状態になっている。図2のケースの集水不透水面4は、鋼製板を加工したものである。図2(2)に底面図を示すが、集水不透水面4の鋼製板とベント5は、下に開いた漏斗の錐体部と上方に伸びる足の部分に相当する。図2(1)及び(2)に示すように、この集水不透水面4の周縁は前記集水枠3に達している。集水不透水面4を形成する鋼板の上には、現場の土が埋め戻し土17として埋め戻され、締め固められている。   As shown in FIG. 2A, the water collection impermeable surface 4 has a conical shape with the lower surface released, and the upper part is also released by the vent 5 passing through the apex 41 of the cone. The water impermeable surface 4 in the case of FIG. 2 is obtained by processing a steel plate. FIG. 2 (2) shows a bottom view, and the steel plate and the vent 5 of the water collection impermeable surface 4 correspond to the cone portion of the funnel opened downward and the foot portion extending upward. As shown in FIGS. 2 (1) and 2 (2), the peripheral edge of the water collection impermeable surface 4 reaches the water collection frame 3. On the steel plate forming the water collection impermeable surface 4, the soil at the site is backfilled as backfill soil 17 and compacted.

集水透水層42は、図2(1)に示すように上面部が前記集水不透水面4に接して、該集水不透水面4の下方にその底面部が略水平になるように設けられている。この集水透水層42は、図2(1)に示すように栗石若しくは砕石(以下栗石等という。)によって構築している。一般に、液状化によって生じる過剰間隙水圧は、地中の同一の高さにおいて同程度の大きさになると考えられる。先に記載した通り、過剰間隙水圧が土の有効応力を補てんするものであり、有効応力は地中の深さに比例するからである。一方で、前記集水透水層42中を流動する地下水の流動速度は、透水係数が同一の場合、過剰間隙水圧の大きさに関わる動水勾配に比例すると考えられ、集水透水層42下面部を略水平にすることによって、集水透水層下面部を上方へ向かう流動速さに大きな違いはなく、偏りのある地下水の流動を回避することができる。   As shown in FIG. 2 (1), the water collection permeable layer 42 has an upper surface portion in contact with the water collection impermeable surface 4, and a bottom surface portion of the water collection impermeable surface 4 below the water collection impermeable surface 4. Is provided. As shown in FIG. 2 (1), the water collecting / permeable layer 42 is constructed of chestnut stone or crushed stone (hereinafter referred to as chestnut stone or the like). In general, it is considered that the excess pore water pressure caused by liquefaction becomes the same level at the same height in the ground. This is because, as described above, the excess pore water pressure supplements the effective stress of the soil, and the effective stress is proportional to the depth in the ground. On the other hand, the flow rate of groundwater flowing through the water-collecting permeable layer 42 is considered to be proportional to the hydraulic gradient related to the magnitude of excess pore water pressure when the hydraulic conductivity is the same, and the lower surface of the water-collecting permeable layer 42 Is substantially horizontal, there is no significant difference in the flow rate of the upward flow of the bottom surface of the water-collecting permeable layer, and the flow of biased groundwater can be avoided.

ベント5は、図2(1)に示すように、上方は、基礎部中央位置から地下貯水槽2の周辺に地下水位11以上の高さに達している。下方は、構造物基礎部を貫通し、更に集水不透水面4の頂点部41を貫通し、前記集水透水層42に達している。   As shown in FIG. 2 (1), the vent 5 reaches a height above the groundwater level 11 from the center position of the base portion to the periphery of the underground water storage tank 2. The lower part penetrates the structure base part, further penetrates the apex part 41 of the water collection impermeable surface 4 and reaches the water collection / permeable layer 42.

図5に集水概念図を示す。集水透水層42下方の地山では、液状化によって、集水透水層42直下に過剰間隙水圧を有した地下水が発生する。この地下水は、圧力の低い上方へと流動する。図5(2)の正面断面図に示す上方への矢印は、集水透水層42中の地下水の流動を示すものである。一方、集水透水層42を通過し、集水不透水面4に達した地下水は、同図の斜め上方へ向かう矢印に示すように流動し、中央部のベント下端52の開放部へ達する。図5(1)の底面図には、集水不透水面4直下の地下水の流動を示したものである。この場合、集水不透水面の有する勾配によって最短ルートで中央のベント開放部に向かい、ベントからの距離に応じた到達時間でベントに達して、排水される。その到達時間は、ベントからの距離によって異なるが、方向には影響されない。集水不透水面4の上下方向勾配によって表面の地下水流動の速さは、勾配を有しない不透水面の流動と比較して大きくなり、地下貯水槽下方の地下水は、短時間で効率的な排水が可能となる。   Fig. 5 shows a conceptual diagram of water collection. In the natural ground below the catchment permeable layer 42, liquefaction generates groundwater having an excess pore water pressure immediately below the catchment permeable layer 42. This groundwater flows upward at a low pressure. The upward arrow shown in the front cross-sectional view of FIG. 5 (2) indicates the flow of groundwater in the water catchment permeable layer 42. On the other hand, the groundwater that has passed through the water-collecting permeable layer 42 and has reached the water-impermeable impermeable surface 4 flows as indicated by an arrow directed obliquely upward in the figure, and reaches the open portion of the vent lower end 52 in the center. The bottom view of FIG. 5 (1) shows the flow of groundwater immediately below the water impermeable surface 4. In this case, the slope of the water collection impermeable surface leads to the central vent opening by the shortest route, reaches the vent with an arrival time corresponding to the distance from the vent, and is drained. The arrival time varies depending on the distance from the vent, but is not affected by the direction. The speed of the groundwater flow on the surface is larger than the flow of the water-impervious surface having no gradient due to the vertical gradient of the water-impermeable impermeable surface 4, and the groundwater below the underground water storage tank is efficient in a short time. Drainage is possible.

図6(1)には、前記の集水不透水面4を形成する鋼板の加工展開図を示す。図2に示す頂点部41のベント貫入部と底面の解放された円錐台の円錐体の展開図である。図6(1)の辺Mと辺Lを接合し、面全体に曲率を施す加工は容易でなく、ほぼ同様な効果をもたらす集水不透水面4の形状として6角錐状を形成する場合のパネル組立て図を図6(2)に示す。このような6枚の扇形状の平板パネルを接合することによって円錐体とほぼ同様なルートでベントへ向かう地下水流を生み出し得る。地下水の流れの比較を図7の(1−a)と(1−b)に示す。   FIG. 6 (1) shows a processing development view of the steel plate forming the water collecting impermeable surface 4. FIG. 4 is a development view of a truncated cone having a bent penetrating portion and a bottom surface of a vertex portion 41 shown in FIG. 2. In the case of forming a hexagonal pyramid shape as the shape of the water-impermeable impermeable surface 4 that joins the side M and the side L in FIG. A panel assembly drawing is shown in FIG. By joining such six fan-shaped flat panels, a groundwater flow toward the vent can be generated by a route substantially similar to that of the cone. Comparison of groundwater flow is shown in (1-a) and (1-b) of FIG.

図1及び図3に基礎部下端面の周縁部に3箇所のベント5を配置する実施例を示す。集水枠3は、実施例1と同様である。図1には、集水不透水面4に関して、b、d及びfを頂点部41とする概ね1/3の円錐体を組合せた形状としている。従って、集水不透水面4の下における地下水の流動は、ほとんど全ての流れが同一の勾配で、直接頂点部41へ向かう図7(2−a)の矢印線のようなルートとなる。   FIG. 1 and FIG. 3 show an embodiment in which three vents 5 are arranged at the peripheral edge portion of the lower end surface of the base portion. The water collecting frame 3 is the same as that in the first embodiment. In FIG. 1, the water collection impermeable surface 4 has a shape in which approximately one-third cones having b, d, and f as apexes 41 are combined. Accordingly, the flow of groundwater under the water impermeable surface 4 has a route as shown by the arrow line in FIG.

図3の集水不透水面4は、図3(2)の底面図に示すように底面図上60度の鋼製扇型のパネルの組合せによって形成する。aboとbco、cdoとdeo又はefoとfaoのそれぞれ2枚のパネルで形成される集水エリアからの地下水が、b、d又はfにある1つのベント5から排出される。oa、oc及びoeは、同じ高さの辺(図上、山表示の実線)を形成し、ob、od及びofは、中心から周辺に向かって上昇する辺(図上、谷表示の点線)を形成する。これらの集水不透水面4下を上昇する地下水に対して、oa、oc及びoeは、同じ高さの稜線となり、稜線から垂直方向の流れを生み、ob、od若しくはofに達した場合は、中央部から周辺の頂点部41に向かう。又、abc、cde若しくはefaに達した流れは、辺に沿って頂点部41へ向かうことになる。これらの流れを図7(2-b)に示す。本例も、1ベントの場合と同様に、図1の曲面で形成する集水不透水面4による流動形態の図7(2−a)に近似する流れの加工の容易な例として、図7(2−b)に示す。   The water collecting impermeable surface 4 of FIG. 3 is formed by a combination of steel fan-shaped panels of 60 degrees on the bottom view as shown in the bottom view of FIG. Groundwater from the water collection area formed by two panels, abo and bco, cdo and deo, or efo and fao, is discharged from one vent 5 in b, d, or f. oa, oc, and oe form sides of the same height (solid line in the figure), and ob, od, and of sides rise from the center toward the periphery (dotted line in the valley figure). Form. For the groundwater that rises below these water impermeable surfaces 4, oa, oc and oe become ridgelines of the same height, and when a vertical flow is produced from the ridgelines and ob, od or of is reached From the center to the peripheral vertex 41. In addition, the flow that has reached abc, cde, or efa goes to the apex 41 along the side. These flows are shown in FIG. 7 (2-b). In this example, as in the case of 1 vent, FIG. 7 shows an easy example of the flow processing similar to FIG. 7 (2-a) of the flow form by the water collecting impermeable surface 4 formed by the curved surface of FIG. Shown in (2-b).

図3に示すように、集水不透水面4の周辺部において頂点部41を形成する箇所であるb、d及びfにはベント5を配置する。これによって、集水不透水面下を流動し上方へ向かう過剰間隙水圧を有する地下水は、概ねベント下端52からの距離に応じた到達時間でベント下端52に達して排水される。   As shown in FIG. 3, vents 5 are arranged at b, d, and f where the apex portion 41 is formed in the peripheral portion of the water collection impermeable surface 4. As a result, the groundwater flowing under the impermeable surface of the water collection and having an excess pore water pressure going upward reaches the vent lower end 52 and is drained in an arrival time corresponding to the distance from the vent lower end 52.

集水不透水面4としては、剛性のある素材として鋼製板を用いることができる他、柔らかな素材であるゴムシートや遮水シート等(以下ゴムシート等)を用いることができる。集水透水層42としては、前記の栗石等の他、透水マットなどを用いることができる。集水枠3として、上記ではコンクリート構造物で構築した実施例を示したが、鋼製板等の不透水の材料を用いることができる。集水枠3は、集水不透水面4の材質によって、集水不透水面4と一体加工で構築することができる。以下に、集水枠3と集水不透水面4が鋼製の場合で、本地下貯水槽を井筒沈下工法での施工により実施する場合における本発明の施工手順を示す。   As the water collection impermeable surface 4, a steel plate can be used as a rigid material, and a soft material such as a rubber sheet or a water shielding sheet (hereinafter referred to as a rubber sheet) can be used. As the water-collecting water-permeable layer 42, a water-permeable mat or the like can be used in addition to the chestnut stone described above. Although the Example constructed | assembled with the concrete structure was shown as the water collection frame 3 above, impermeable materials, such as steel plates, can be used. The water collecting frame 3 can be constructed integrally with the water collecting impermeable surface 4 depending on the material of the water collecting impermeable surface 4. Below, the construction procedure of this invention in the case where the water collection frame 3 and the water collection impermeable surface 4 are made of steel and this underground water storage tank is carried out by construction by the well-flooring method is shown.

(集水不透水面4として鋼製材料を用いた場合の施工手順)
(1)表土掘削。必要に応じてこの段階からポンプによる強制排水によって、地下水位11を下げる。
(2)床掘面16に、最下段の刃口29その上にセグメント24を組立(井筒の完成)てる(図8)。
(3)釜場12からのポンプによる強制排水によって、地下水位11を下げつつ、クラムシェルで井筒外部から若しくはバックホーで井筒内部から掘削し、刃口29部は人力で掘削する。
(4)井筒が所定の位置まで沈下した段階で、井筒本体を沈下させないように刃口29を残し、更に井筒内部を一定深さ掘削する。
(5)集水透水層42として、所定の高さまで栗石又は砕石を投入し、上面を成形する。
(6)予め組立てられた鋼製の集水枠3と集水不透水面4の鋼板を井筒上部から降下させて、(5)の成形された集水透水層42上に設置する。
(7)集水不透水面42の鋼板上に土砂を投入し、締固め成形をし、本体工基礎工として栗石又は砕石13を敷設する。
(8)(7)の基礎工上部に第1回コンクリートとして敷均しコンクリート14を打設し、その上部に側板下部を側面に本体底版コンクリートを打設する。
(9)その後人孔の設置、頂版コンクリート打設等を行い、当初地盤の高さへの埋め戻し等を行い、工事を了する。
(Construction procedure when steel material is used as the water impermeable surface 4)
(1) Topsoil excavation. If necessary, the groundwater level 11 is lowered by forced drainage using a pump from this stage.
(2) The segment 24 is assembled on the floor excavation surface 16 on the lowermost cutting edge 29 (completed well) (FIG. 8).
(3) Excavation from the outside of the well with a clamshell or from the inside of the well with a backhoe while the groundwater level 11 is lowered by forced drainage by a pump from Kamba 12, and the blade edge 29 is excavated manually.
(4) At the stage where the well has settled down to a predetermined position, the blade 29 is left so as not to sink the well body, and the inside of the well is further excavated to a certain depth.
(5) As the water collection permeable layer 42, the chestnut or crushed stone is thrown to a predetermined height, and the upper surface is formed.
(6) The steel water collecting frame 3 and the water collecting impermeable surface 4 which are assembled in advance are lowered from the upper portion of the well and installed on the water collecting and permeable layer 42 formed in (5).
(7) Putting earth and sand on the steel plate of the water impermeable surface 42, compacting, and laying the crushed stone or crushed stone 13 as a main construction foundation.
(8) On the upper part of the foundation work in (7), the first concrete is spread and concrete 14 is placed, and the bottom plate concrete is placed on the upper part with the side plate lower part on the side.
(9) After that, installation of manholes, placement of top slab concrete, etc., backfilling to the initial ground level, etc. will be completed, and construction will be completed.

一般に、液状化対策を施す必要のある地盤における地下埋設物設置工事では、図1に示すように、地下水位11は高く、上記(1)の表土掘削から水替え工(強制排水による地下水位の低下させる工程)を行う必要があり、上記(4)以降の段階では、ポンプによる強制排水が困難な状態になっている。そのような状況においても、上記に示すような手順で工事を行うことによって、容易に効果的な液状化対策を実施しうる。また、集水枠3として、コンクリート打設を行う場合は、上記の(5)の後、予め組立てられた集水不透水面4の鋼板設置後水中コンクリートを打設することで施工可能である。なお、(4)以降の段階で強制排水が可能な場合は、次に示すように集水不透水面4としてゴムシート等を用いた施工手順を採用しうる。   In general, in underground construction where grounds where liquefaction measures need to be taken, as shown in FIG. 1, the groundwater level 11 is high, and from the topsoil excavation (1) above, It is necessary to perform a step of reducing the pressure, and forced drainage by the pump is difficult at the stage after (4) above. Even in such a situation, an effective liquefaction countermeasure can be easily implemented by performing the construction according to the procedure shown above. Moreover, when performing concrete placement as the water collection frame 3, after the above (5), construction can be performed by placing underwater concrete after installation of the steel plate of the water collection impermeable surface 4 assembled in advance. . In addition, when forced drainage is possible in the stage after (4), a construction procedure using a rubber sheet or the like as the water collection impermeable surface 4 can be adopted as shown below.

(集水不透水面4としてゴムシート等を用いた場合の施工手順)
上記(4)に関して、更にポンプによる強制排水を行い、地下水位を下げ、地山を掘削し、成形する。
上記(5)に関して、(4)で成形された地山に集水透水層42として透水マットを設置し、その上面にゴムシート等を設置する。
上記(6)の工程はなく、上記(7)以下に続く。
(Construction procedure when using a rubber sheet, etc. as the water impermeable surface 4)
Concerning (4) above, forced drainage with a pump is further performed to lower the groundwater level, excavate natural ground, and form.
Regarding (5) above, a water-permeable mat is installed as the water-collecting water-permeable layer 42 on the natural ground formed in (4), and a rubber sheet or the like is installed on the upper surface.
There is no process of (6) above, and the process continues from (7) onwards.

図4に基礎部下端面の周縁部に4箇所のベント5を配置する実施例を示す。8枚のパネルを組み合わせた集水不透水面4として、図4(2)に底面図を示す。集水概念図は図7(3−b)に示す。   FIG. 4 shows an embodiment in which four vents 5 are arranged on the peripheral edge portion of the lower end surface of the base portion. FIG. 4 (2) shows a bottom view of the water impermeable surface 4 in which 8 panels are combined. A conceptual diagram of water collection is shown in Fig. 7 (3-b).

図9に、ベント5周辺の集水枠3に集水枠地下水流入孔31を設けた例を示す。集水枠3に設置する集水枠地下水流入孔31の外側地盤側には、透水マットや栗石工など周辺地山からの土砂の流入を防止する措置を講ずるのが望ましい。このような集水枠地下水流入孔31の配置によって、ベント5には、集水透水層42から集水不透水面4を通じて流入する地下水と地下構造物側面下方部から集水枠地下水流入孔31を通じて流入する地下水とが共存することになるが、後者は構造物境界付近を上昇する恐れのある地下水を対象とするものであり、前者の様に短時間での排水を目的とするものではない。   FIG. 9 shows an example in which a water collection frame groundwater inflow hole 31 is provided in the water collection frame 3 around the vent 5. It is desirable to take measures to prevent the inflow of earth and sand from the surrounding ground such as a water permeable mat and a chestnut maker on the outer ground side of the water collecting frame groundwater inflow hole 31 installed in the water collecting frame 3. With such an arrangement of the water collecting frame groundwater inflow hole 31, the groundwater flowing into the vent 5 through the water collecting impermeable surface 4 from the water collecting permeable layer 42 and the water collecting frame groundwater inflow hole 31 from the lower side of the underground structure side surface. However, the latter is intended for groundwater that may rise near the boundary of the structure and is not intended for draining in a short time like the former. .

集水枠3の位置は、先に記載のとおり、構造物若しくは構造物の基礎部全体の周縁と重複し、集水枠3と集水不透水面4とで構造物の下方部の全てをから覆うのが好ましいが、施工方法によっては困難な場合もある。井筒沈下工法で、予め組立てた集水枠と集水不透水面の部材を落し込む方法では側版のセグメントの主桁部分や底版下の刃口部分等が支障になって、基礎部周辺の内側に設置せざるを得ない。実施例5の集水枠地下水流入孔の図9は、そのような場合として図示している。   As described above, the position of the water collecting frame 3 overlaps with the periphery of the entire structure or the foundation of the structure, and the water collecting frame 3 and the water impermeable surface 4 cover all the lower part of the structure. However, depending on the construction method, it may be difficult. The method of dropping the pre-assembled water collection frame and water collection impervious surface with the pipe subsidence method hinders the main girder part of the side plate segment and the edge of the bottom plate, etc. It must be installed inside. FIG. 9 of the water collection frame groundwater inflow hole of Example 5 is illustrated as such a case.

実施例においては、実施例2及び実施例4で、地下構造物周縁に設置する集水枠3に近接する位置に複数個のベント5を設ける例を示したが、地下貯水槽等の地下構造物の中央部或いはその周辺にベント5を設置した場合、貯水槽としての使用に支障をきたす場合が多く、地下構造物の管理上、前記地下構造物の周縁部に設置するのが望ましい場合が多い。また、集水枠地下水流入孔31の設置に関しても、ベント5が集水枠3に近接する位置に接する場合は、実施例5に示すように、集水枠地下水流入孔31のみで集水透水層42に連通できるが、実施例1のような中央部にベント5がある場合、集水枠3上方の外側地盤からの地下水を流入させるときには、集水不透水面4を貫通して、集水枠地下水流入孔31と集水透水層42を連通させる管が必要になる。従って、ベント5を複数個設置できる場合、集水枠3に近接する位置に設置する利点は大きい。   In the embodiment, the example in which the plurality of vents 5 are provided in the positions close to the water collecting frame 3 installed on the periphery of the underground structure in the embodiments 2 and 4, but the underground structure such as an underground water storage tank is shown. When the vent 5 is installed at the center of the object or its surroundings, there are many cases in which the use as a water storage tank is hindered, and it may be desirable to install it at the peripheral part of the underground structure for the management of the underground structure. Many. Further, regarding the installation of the water collection frame groundwater inflow hole 31, when the vent 5 is in contact with a position close to the water collection frame 3, as shown in the fifth embodiment, the water collection permeation is performed only by the water collection frame groundwater inflow hole 31. Although it is possible to communicate with the layer 42, when there is a vent 5 at the center as in the first embodiment, when the groundwater from the outer ground above the water collection frame 3 is allowed to flow, the water collection impervious surface 4 is penetrated to collect the water. A pipe that communicates the water frame groundwater inflow hole 31 and the water collection permeable layer 42 is required. Therefore, when a plurality of vents 5 can be installed, the advantage of installing them at positions close to the water collecting frame 3 is great.

実施形態では、地下貯水槽の地震時の地盤液状化に関して、主に貯水槽の浮上対策として考えられるが、実施形態とは異なり、地下構造物の全体の単位体積重量が大きい構造物である場合、過剰間隙水圧によって構造物が浮上することはないが、非排水の状態での繰返しせん断は、泥水状態を惹起し、支持力を失って沈下することとなる。このような構造物に対しても、本発明の対策を講ずることによって、そのような非排水状態をきわめて短い時間に限定することができるため、このような地盤の液状化による地下構造物の沈下対策にもなり得る。   In the embodiment, regarding the ground liquefaction of the underground water tank at the time of earthquake, it can be considered mainly as a countermeasure for the levitation of the water tank, but unlike the embodiment, when the unit volume weight of the entire underground structure is a large structure Although the structure does not rise due to excessive pore water pressure, repeated shearing in an undrained state causes a muddy water state and loses its supporting force and sinks. Even for such a structure, by taking the measures of the present invention, such a non-drained state can be limited to a very short time, so the subsidence of the underground structure due to such ground liquefaction It can be a countermeasure.

地盤の液状化による弊害は、前述のように、水で飽和したゆる詰めの砂が地震の揺れに伴う繰返しせん断によって砂地盤の体積を収縮しようとする過程で生じるものである。本発明では、その繰返しせん断をできる限り排水状態で行わせるものである。非排水での体積収縮過程を限定的にするものであり、本発明においても、体積収縮に伴う地下構造物の沈下を完全に防ぐことはできない。しかしながら、この体積収縮による地下構造物の沈下は、泥水状態での液状化地盤層全体に及ぶ沈下と比較して沈下の規模は小さく、大きな支障にならない場合が多いと考えられる。   As described above, the adverse effects caused by the liquefaction of the ground are caused by the process in which loosely packed sand saturated with water attempts to shrink the volume of the sand ground by repeated shearing associated with the shaking of the earthquake. In the present invention, the repeated shearing is performed in a drained state as much as possible. This is intended to limit the volume shrinkage process in non-drainage, and in the present invention, the subsidence of the underground structure due to the volume shrinkage cannot be completely prevented. However, the subsidence of underground structures due to this volume contraction is considered to be small in scale as compared to the subsidence of the entire liquefied ground layer in the muddy water state, and it is not likely to be a major obstacle.

1 周辺地盤、11 地下水位、12 釜場、13 基礎部栗石又は砕石、14 均しコンクリート、15 表土掘削面、16 床掘面、17 埋め戻し土
2 地下貯水槽、21 頂版、22 吸管投入孔、23 側版、24 セグメント、25 セグメント継手、26 桁材、27 底版、28 集水ピット 29 刃口
3 集水枠、31 集水枠地下水流入孔
4 集水不透水面、41 頂点部、42 集水透水層
5 ベント、51 ベント上端、52 ベント下端
1 ground, 11 groundwater level, 12 Kamaba, 13 foundation crushed stone or crushed stone, 14 leveling concrete, 15 topsoil excavation surface, 16 floor digging surface, 17 backfill soil
2 underground storage tank, 21 top plate, 22 suction pipe insertion hole, 23 side plate, 24 segment, 25 segment joint, 26 girder, 27 bottom plate, 28 water collection pit 29 cutting edge
3 Catchment frame, 31 Catchment frame groundwater inlet
4 water collection impermeable surface, 41 apex, 42 water collection permeable layer
5 Vent, 51 Vent upper end, 52 Vent lower end

Claims (4)

地下構造物若しくは地下構造物の基礎部の下端面の周縁部に沿って帯状に連続して閉じた枠であって、前記下端面から下方に突設する集水枠と、前記下端面下方の地盤を上下に2分する不透水の面であって、上下方向の傾きにより一つ又は複数の頂点部を有し、その周縁は前記集水枠に達する集水不透水面と、該集水不透水面に接して下方に設ける集水透水層と、上端が少なくとも前記地下構造物の周辺地下水位以上に達して開放され、下方は前記頂点部を含む箇所で前記集水不透水面を貫通し、下端面が前記集水透水層に達して開放された管状のベントと、を備えた地下構造物の液状化対策構造物。   A frame continuously closed in a strip shape along the peripheral edge of the lower end surface of the base part of the underground structure or the underground structure, and a water collecting frame projecting downward from the lower end surface, and a lower part of the lower end surface A water impermeable surface that divides the ground vertically into two, having one or a plurality of apex portions according to an inclination in the vertical direction, the periphery of the water collecting impermeable surface reaching the water collecting frame, and the water collecting A water-collecting water-permeable layer provided below and in contact with the water-impermeable surface, and an upper end that reaches at least the groundwater level around the underground structure and is opened, and the lower part penetrates the water-collected water-impermeable surface at a location including the apex portion. An underground structure liquefaction countermeasure structure comprising: a tubular vent having a lower end surface that reaches the water-permeable permeable layer and is opened. 請求項1の集水不透水面が剛性を有する不透水の板の下面である請求項1の地下構造物の液状化対策構造物。   2. The liquefaction countermeasure structure for an underground structure according to claim 1, wherein the water impermeable surface of claim 1 is a lower surface of a rigid impermeable plate. 請求項1のベントを、複数個、集水枠に近接する位置に設置する請求項1若しくは請求項2の地下構造物の液状化対策構造物。   The liquefaction countermeasure structure for an underground structure according to claim 1 or 2, wherein a plurality of the vents according to claim 1 are installed at positions close to the water collecting frame. 請求項1の集水枠に設けられた孔であって、前記集水枠の外側の地盤と請求項1の集水透水層とを連通する集水枠地下水流入孔を設けた請求項1、請求項2若しくは請求項3の地下構造物の液状化対策構造物。   A hole provided in the water collecting frame of claim 1, wherein a water collecting frame groundwater inflow hole is provided to communicate the ground outside the water collecting frame and the water permeable layer of claim 1. A liquefaction countermeasure structure for an underground structure according to claim 2 or claim 3.
JP2017049421A 2017-03-15 2017-03-15 Liquefaction countermeasure structure for underground structures Active JP6854479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049421A JP6854479B2 (en) 2017-03-15 2017-03-15 Liquefaction countermeasure structure for underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049421A JP6854479B2 (en) 2017-03-15 2017-03-15 Liquefaction countermeasure structure for underground structures

Publications (2)

Publication Number Publication Date
JP2018150772A true JP2018150772A (en) 2018-09-27
JP6854479B2 JP6854479B2 (en) 2021-04-07

Family

ID=63681481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049421A Active JP6854479B2 (en) 2017-03-15 2017-03-15 Liquefaction countermeasure structure for underground structures

Country Status (1)

Country Link
JP (1) JP6854479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147237A1 (en) * 2019-01-16 2020-07-23 济南城建集团有限公司 Method for construction of underground space structure across stratum in vadose zone
CN112482869A (en) * 2020-11-09 2021-03-12 济南双纳商贸有限公司 Energy-saving environment-friendly auxiliary device for mobile base station construction and capable of avoiding moisture permeation
CN113356180A (en) * 2020-03-06 2021-09-07 陈赐贤 Structure for preventing structure from liquefying

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239217A (en) * 1988-03-18 1989-09-25 Chubu Electric Power Co Inc Method for protecting underground structure in sand base liable to be liquefied
US5017046A (en) * 1989-11-08 1991-05-21 Ohbayashi Corporation Method of protecting a structure constructed on ground liable to be liquefied
JPH03158524A (en) * 1989-11-15 1991-07-08 Taisei Corp Preventive structure of rise of building
JP2004285678A (en) * 2003-03-20 2004-10-14 Fujita Corp Method and structure for suppressing buoyancy of structure
JP2005315058A (en) * 2004-04-03 2005-11-10 Fujika:Kk Protective equipment for emergency
JP2013155558A (en) * 2012-01-31 2013-08-15 Shimizu Corp Foundation structure for structure
JP2014012981A (en) * 2012-06-08 2014-01-23 Ohbayashi Corp Liquefaction countermeasure structure
JP2015183419A (en) * 2014-03-24 2015-10-22 西松建設株式会社 Ground formation method and ground structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239217A (en) * 1988-03-18 1989-09-25 Chubu Electric Power Co Inc Method for protecting underground structure in sand base liable to be liquefied
US5017046A (en) * 1989-11-08 1991-05-21 Ohbayashi Corporation Method of protecting a structure constructed on ground liable to be liquefied
JPH03158524A (en) * 1989-11-15 1991-07-08 Taisei Corp Preventive structure of rise of building
JP2004285678A (en) * 2003-03-20 2004-10-14 Fujita Corp Method and structure for suppressing buoyancy of structure
JP2005315058A (en) * 2004-04-03 2005-11-10 Fujika:Kk Protective equipment for emergency
JP2013155558A (en) * 2012-01-31 2013-08-15 Shimizu Corp Foundation structure for structure
JP2014012981A (en) * 2012-06-08 2014-01-23 Ohbayashi Corp Liquefaction countermeasure structure
JP2015183419A (en) * 2014-03-24 2015-10-22 西松建設株式会社 Ground formation method and ground structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147237A1 (en) * 2019-01-16 2020-07-23 济南城建集团有限公司 Method for construction of underground space structure across stratum in vadose zone
CN113356180A (en) * 2020-03-06 2021-09-07 陈赐贤 Structure for preventing structure from liquefying
CN112482869A (en) * 2020-11-09 2021-03-12 济南双纳商贸有限公司 Energy-saving environment-friendly auxiliary device for mobile base station construction and capable of avoiding moisture permeation

Also Published As

Publication number Publication date
JP6854479B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
CN102296572A (en) Earth and rockfill dam body seepage monitoring structure provided with abandoned dreg site behind dam and construction method thereof
JP6854479B2 (en) Liquefaction countermeasure structure for underground structures
CN209923959U (en) Open caisson structure for dry-process operation of high-groundwater-level soft soil field
HU226433B1 (en) Foundation slab of underground passage for road
JP2007303270A5 (en)
CN207047796U (en) A kind of light-duty mud-rock flow arch blocking dam
JP2014012981A (en) Liquefaction countermeasure structure
KR101156873B1 (en) Upper structure to increase the height of dam/bank levee crown
JP2015007354A (en) Reinforcement structure for banking
JP4114944B2 (en) Ground improvement method
CN107700434A (en) A kind of dome grating formula armored concrete mud-rock flow blocking dam and its construction process
KR20120012358A (en) Foundation construction methods
CN110080234A (en) A method of it is excavated in the secondary central island of deep foundation pit of soft soil foundation
CN202181539U (en) Dam body seepage monitoring structure used for earth-rock dam with abandoned dreg site arranged behind
CN115045311A (en) Method for combining foundation pit drainage and structure anti-floating
JP2015101938A (en) Liquefaction countermeasure structure for ground
JP2726621B2 (en) Caisson laying method and caisson blade structure
CN207700204U (en) A kind of french drain structure for Slope Prevention
JP2871524B2 (en) Sand blast prevention mat method
JP5519722B2 (en) Ground improvement method
JP5880060B2 (en) Structure and method for suppressing level difference between building and surrounding ground caused by ground subsidence
JP5669192B2 (en) Quay structure or revetment structure
JPH07156992A (en) Underground reservoir
JP2019173521A (en) Embankment structure
JP5850545B2 (en) Improved ground structure near the pole and ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6854479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350