JP5669192B2 - Quay structure or revetment structure - Google Patents
Quay structure or revetment structure Download PDFInfo
- Publication number
- JP5669192B2 JP5669192B2 JP2011004611A JP2011004611A JP5669192B2 JP 5669192 B2 JP5669192 B2 JP 5669192B2 JP 2011004611 A JP2011004611 A JP 2011004611A JP 2011004611 A JP2011004611 A JP 2011004611A JP 5669192 B2 JP5669192 B2 JP 5669192B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- quay
- water level
- revetment
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 258
- 239000000463 material Substances 0.000 claims description 29
- 230000005484 gravity Effects 0.000 claims description 23
- 239000003673 groundwater Substances 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 2
- 239000002689 soil Substances 0.000 description 20
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 239000004576 sand Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 239000004575 stone Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000004927 clay Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Revetment (AREA)
Description
本発明は、岸壁構造または護岸構造に関する。 The present invention relates to a quay structure or a revetment structure.
岸壁や護岸の裏込土に軽量混合処理土を用いる工法が軽量混合処理土工法として知られており(非特許文献1)、この工法は軽量な材料を裏込土に用いることで岸壁や護岸の土圧を減らすことができ、また、地震時における水平力を軽減することができる。また、重力式岸壁や護岸においてケーソンの底面を斜面として水平力に対する抵抗力を増加させる斜底面工法が公知である(特許文献1)。さらに、グラウンドアンカーにより人工壁において水平力に対する抵抗力を増加させることが公知である(特許文献2)。 A construction method that uses light-mixed soil for the backfill soil of a quay or revetment is known as a light-mixed soil treatment method (Non-Patent Document 1), and this method uses a lightweight material for the backfill soil. Earth pressure can be reduced, and the horizontal force during an earthquake can be reduced. In addition, a slope bottom method for increasing resistance to horizontal force using a caisson bottom as a slope on a gravitational quay or revetment is known (Patent Document 1). Furthermore, it is known that the resistance force against the horizontal force is increased in the artificial wall by the ground anchor (Patent Document 2).
軽量混合処理土工法は、発泡ビーズ等の軽量化材を使用するため、材料費が高価となるという問題がある。また、斜底面工法は、ケーソン幅を小さくできるが、底面反力が大きくなるため基礎地盤や基礎マウンドを強固なものとする必要があり、この結果、施工コスト高となってしまう場合がある。グラウンドアンカーを用いる構造は支持地盤が深いとアンカー長が長くなってしまう。 The light-weight mixed processing earth method has a problem that the material cost becomes high because a lightening material such as foam beads is used. In addition, the oblique bottom construction method can reduce the caisson width, but the bottom surface reaction force increases, so that it is necessary to strengthen the foundation ground and foundation mound, resulting in high construction costs. In the structure using the ground anchor, the anchor length becomes long when the supporting ground is deep.
本発明は、岸壁・護岸における地震に対する安定性を保ちつつ、重力式岸壁・護岸の必要重量や矢板式岸壁・護岸に用いる矢板の断面性能を小さくすることの可能な岸壁構造または護岸構造を提供することを目的とする。 The present invention provides a quay structure or a revetment structure capable of reducing the required weight of a gravity-type quay and revetment and the cross-sectional performance of a sheet pile used for a sheet pile quay and revetment while maintaining stability against earthquakes at the quay and revetment. The purpose is to do.
本発明者は、地震に対する岸壁や護岸の安定性を高めるために岸壁・護岸の海側の前面の水位と岸壁・護岸の陸側の背面の水位との水位差に着目し、海側の水圧を陸側に作用させることで岸壁や護岸における地震に対する安定性を保ちつつ重力式岸壁・護岸の必要重量や矢板式岸壁・護岸に用いる矢板の断面性能を小さくすることができるとの着想を得て本発明に至ったものである。 In order to increase the stability of the quay and revetment against earthquakes, the inventor pays attention to the water level difference between the water level on the sea side of the quay and revetment and the water level on the rear side of the land side of the quay and revetment, and the water pressure on the sea side. The idea is that the required weight of gravity piers and revetments and the cross-sectional performance of sheet piles used for sheet pile berths and revetments can be reduced while maintaining stability against earthquakes at the quay and revetments. This has led to the present invention.
本発明の原理について図1を参照して説明する。図1は岸壁・護岸における通常の構造を概略的に示す断面図(a)及び図1(a)の構造において背面の水位を低下させた場合を示す同様の断面図(b)である。 The principle of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view (a) schematically showing a normal structure at a quay / revetment and a similar cross-sectional view (b) showing a case where the water level on the back surface is lowered in the structure of FIG. 1 (a).
岸壁(または護岸)の堤体には、陸側の背面Rの水位と海側の前面Fの水位との差(水位差)に応じた水圧が作用するが、図1(a)のように、陸側の残留水位が海側の水位よりも高い場合、堤体の背面Rに対し土圧とともに水位差による水圧が作用する。これに対し、図1(b)のように、陸側の背面Rの水位を低下させ、海側の前面Fの水位よりも低くした場合、堤体の背面Rには土圧が作用する一方、堤体の前面Fに対し前面Fの水位と背面Rの水位との水位差による水圧が作用する。かかる水圧は、地震動による堤体の背面Rへの水平力と反対方向に作用するため、地震動による堤体に作用する水平力合力を低減させることができる。したがって、岸壁の海側と陸側との水位差を利用して海側から陸側へ水圧を作用させることにより、岸壁または護岸の地震時における安定性を保ちつつ重力式岸壁・護岸の必要重量や矢板式岸壁に用いる矢板の断面性能を小さくすることができる。 The water pressure corresponding to the difference (water level difference) between the water level of the rear side R on the shore side and the water level of the front side F on the sea side acts on the quay (or revetment) dam body as shown in FIG. When the residual water level on the land side is higher than the water level on the sea side, the water pressure due to the water level difference acts on the back surface R of the dam body together with the earth pressure. On the other hand, as shown in FIG. 1B, when the water level of the rear side R on the land side is lowered and lower than the water level of the front side F on the sea side, earth pressure acts on the rear side R of the levee body. The water pressure due to the water level difference between the water level on the front surface F and the water level on the back surface R acts on the front surface F of the levee body. Such water pressure acts in the opposite direction to the horizontal force applied to the back surface R of the levee body due to the earthquake motion, so that the resultant horizontal force acting on the dam body due to the earthquake motion can be reduced. Therefore, by using the water level difference between the sea side and the land side of the quay and applying water pressure from the sea side to the land side, the required weight of the gravity quay and revetment is maintained while maintaining the stability of the quay or revetment during an earthquake. And the cross-sectional performance of the sheet pile used for the sheet pile type quay can be reduced.
上記目的を達成するための岸壁構造または護岸構造は、岸壁または護岸の背面に周囲の地盤との間で地下水の出入りを遮断するように遮水部を設け、前記遮水部が、前記地下水の出入りを遮断するために前記地盤を覆うように敷設されるシート材料と、前記シート材料上に堆積される透水性材料と、を有し、前記シート材料の端部が不透水とされ、前記遮水部に排水手段を設置し、前記排水手段により前記遮水部における水位を前記岸壁または護岸の前面の海面の水位よりも低く保つことで前記岸壁または護岸が耐震性を有することを特徴とする。 A quay structure or a revetment structure for achieving the above object is provided with a water shielding part on the back of the quay or the revetment so as to block the groundwater from entering and leaving the surrounding ground, and the water shielding part comprises the groundwater. A sheet material laid so as to cover the ground in order to block entry and exit, and a water permeable material deposited on the sheet material, and an end portion of the sheet material is impermeable to water, A drainage means is installed in the water part, and the water level in the impermeable part is kept lower than the water level of the sea surface in front of the quay or revetment by the drainage means, so that the quay or the revetment has earthquake resistance. .
この岸壁構造または護岸構造によれば、岸壁または護岸の背面の陸側に設けた遮水部で周囲の地盤との間で地下水の出入りを遮断するとともに、排水ポンプ等の排水手段により遮水部における水位を岸壁または護岸の前面の海面の水位よりも低く保つことで、水位差による水圧が地震動による堤体背面への水平力と反対方向に岸壁または護岸の前面に作用するので、地震動による岸壁または護岸に作用する水平力合力を低減させることができ、このため、岸壁や護岸における地震に対する安定性を向上させることができる。また、重力式岸壁・護岸の必要重量や矢板式岸壁・護岸に用いる矢板の断面性能を小さくすることができる。 According to this quay structure or revetment structure, the water impermeable part provided on the land side at the back of the quay or revetment blocks the entrance and exit of groundwater from the surrounding ground, and the water impervious part by a drainage means such as a drain pump. By keeping the water level at the lower level than the sea level at the front of the quay or revetment, the water pressure due to the difference in water level acts on the front of the quay or revetment in the opposite direction to the horizontal force on the back of the dam due to seismic motion. Alternatively, the resultant horizontal force acting on the revetment can be reduced, and therefore the stability against earthquakes at the quay or revetment can be improved . In addition, it is possible to reduce the required weight of the gravity quay and revetment and the cross-sectional performance of the sheet pile used for the sheet pile quay and revetment.
また、前記遮水部が止水矢板を有し、前記止水矢板が前記岸壁または護岸の背面から所定距離だけ離れて配置されることが好ましい。 Moreover , it is preferable that the said water-impervious part has a water stop sheet pile, and the said water stop sheet pile is arrange | positioned only a predetermined distance away from the back surface of the said quay or revetment.
また、前記岸壁または護岸がケーソンによる重力式の場合、前記シート材料を前記ケーソンの背面または前面の上端部まで敷設し、前記背面または前面の下端部において前記シート材料がたるむようにシート余裕部を設けることが好ましい。地震時にケーソンが移動してもシート材料はケーソンの下端部の余裕部で伸張するので、シート材料の破損を防止でき、遮水部による遮水性を維持できる。 Further, when the quay or revetment is a gravity type by caisson, the sheet material is laid to the upper end of the back or front of the caisson, and a sheet margin is provided so that the sheet material sags at the lower end of the back or front It is preferable. Even if the caisson moves during an earthquake, the sheet material extends at the margin at the lower end of the caisson, so that the sheet material can be prevented from being damaged, and the water imperviousness by the water shielding part can be maintained.
また、原地盤の不透水層を前記シート材料の代わりに用いるようにしてもよい。原地盤に粘土層等の不透水層がある場合、これをシート材料の代わりに用いることで材料費を削減することができる。 Moreover, you may make it use the impermeable layer of a raw ground instead of the said sheet material. When there is a water-impermeable layer such as a clay layer on the original ground, the material cost can be reduced by using this instead of the sheet material.
なお、上記岸壁構造または護岸構造は、上述のように、岸壁または護岸の背面に加わる水位差による水圧により岸壁や護岸における地震に対する安定性を保つことができるので、岸壁または護岸が耐震性を有する耐震構造に構成可能である。 As mentioned above, the quay structure or revetment structure can maintain stability against earthquakes at the quay or revetment due to the water pressure due to the water level difference applied to the back of the quay or revetment, so that the quay or revetment has earthquake resistance. It can be constructed in an earthquake resistant structure.
本発明の岸壁構造または護岸構造によれば、岸壁・護岸における地震に対する安定性を保ちつつ重力式岸壁・護岸の必要重量や矢板式岸壁に用いる矢板の断面性能を小さくすることができる。 According to the quay structure or the revetment structure of the present invention, it is possible to reduce the required weight of the gravity quay / revetment and the cross-sectional performance of the sheet pile used for the sheet pile quay while maintaining stability against earthquakes at the quay / revetment.
以下、本発明を実施するための形態について図面を用いて説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
〈第1の実施形態〉
図2は第1の実施形態による矢板式岸壁に適用した岸壁構造の第1例を説明するための断面図である。図3は同じく第2例を説明するための断面図である。
<First Embodiment>
FIG. 2 is a cross-sectional view for explaining a first example of a quay structure applied to a sheet pile quay according to the first embodiment. FIG. 3 is a cross-sectional view for explaining the second example.
本実施形態による第1例は、矢板式岸壁構造であり、図2に示すように、この矢板式岸壁構造は、水底Gに打設した鋼管矢板11の背面(陸側)に遮水部12を設け、遮水部12における水位Hを設定水位以下に恒常的に保つために排水ポンプ18を設置したものである。
A first example according to the present embodiment is a sheet pile quay structure, and as shown in FIG. 2, this sheet pile quay structure has a
遮水部12における設定水位は、遮水材料の強度やポンプの排水能力から定まる水位低下可能量と水位低下による水平力の低下に応じた岸壁(護岸)構造の経済性とを考慮して決定されることが好ましい。
The set water level in the water-
遮水部12は、水底Gを覆うように敷設された遮水シート14と、鋼管矢板11から陸側(図の右側)水平方向に所定距離だけ離れた位置に打設された止水矢板17と、遮水シート14上に堆積されて鋼管矢板11の背面に裏込された透水性の高い捨石13と、から構成される。
The water-
遮水シート14は、鋼管矢板11の下端の水底Gから、止水矢板17の下端の水底Gまで、水底Gを覆っており、その一端側(海側)が水底Gに打設された水中コンクリート15で固定されて不透水とされ、その他端側(陸側)が止水矢板17側の水底Gに打設された水中コンクリート16で固定されて不透水とされている。遮水シート14は、捨石や地盤に接しても破損しないように上下の両面が図9のように保護材14aで覆われている。止水矢板17は継手部にモルタルの充填や遮水材の塗布等を行い、水が浸入しないようにする。
The water-
また、遮水部12の捨石13内へ排水ポンプ18から配管が延び、その先端の吸引口18aが捨石13内の設定水位よりも下方の位置にある。これにより、遮水部12の水位Hが設定水位を超えると排水ポンプ18を作動させ排水することで遮水部12の水位Hを設定水位以下に恒常的に保つことができる。
Further, a pipe extends from the
遮水部12の上面には雨水の侵入を防ぐための不透水舗装20が施される。また、止水矢板17の背面側(陸側)には埋土Mが埋め戻される。
An
埋土Mにおける残留水位(R.W.L)や海水面の水位HSが遮水部12の水位Hよりも大きいため、遮水シート14に上向きまたは斜め上向きの水圧が作用するが、上述のように、遮水シート14上に捨石13を堆積し、この捨石重量で水位差による水圧に抵抗する構造としている。
Since the residual water level (RWL) in the buried soil M and the water level HS of the seawater surface are larger than the water level H of the
また、遮水シート14に作用する水圧は、例えば水位低下が2mの場合には、2tf/m2となるため、相応の強度に耐えるシート材料または遮水部構造とする必要がある。
The water pressure acting on the
なお、遮水シート、止水矢板等の遮水材料や施工方法については廃棄物処分場で用いられる遮水シートや止水矢板と同様の技術を利用することができる。 In addition, about water shielding materials, such as a water shielding sheet and a water-stop sheet pile, and a construction method, the technique similar to the water-blocking sheet and water sheet pile used at a waste disposal site can be utilized.
上述のように、図2の矢板式岸壁では鋼管矢板11の背面に、捨石13と遮水シート14と止水矢板17とによる遮水部12が構築される。矢板式岸壁の背後において遮水シート14が砂層Nに対して地下水の出入りを遮断し、止水矢板17が埋土Mに対して地下水の出入りを遮断するとともに、捨石13が水をよく透過することで、遮水部12の水位Hを容易に低下させることができる。このようにして、矢板式岸壁の背後に遮水部12により水位低下範囲Aが構成される。
As described above, in the sheet pile type quay of FIG. 2, the
以上のように、矢板式岸壁の背面において、遮水部12の遮水シート14と止水矢板17とにより周囲の地盤に対し地下水の行き来が生じない部分を構築し、水位低下範囲A内の水位Hが上昇したとき、排水ポンプ18により水位Hを設定水位以下に恒常的に保つことで水位が低下した状態が恒久的に持続する岸壁構造を構築することができる。
As described above, on the back side of the sheet pile quay, a portion where the groundwater does not flow with respect to the surrounding ground is constructed by the
また、雨水の侵入等により遮水部12の水位Hが上昇することがあっても、排水ポンプ18で排水することで、容易に再度水位Hを設定水位以下に低下させることができる。このように、水位低下範囲A内の水位Hが設定水位以下となるように排水ポンプ18で水位Hを制御することにより、海水面の水位HSと水位低下範囲A内の水位Hとの水位差はΔH(HS−H)となり、水位差ΔHによる水圧が鋼管矢板11の前面に恒常的に作用することになる。
Moreover, even if the water level H of the
以上のように、図2の矢板式岸壁構造によれば、岸壁において海側の前面から陸側の背面へと水圧を作用させることにより、矢板式岸壁の地震時における安定性を保ちつつ鋼矢板の断面性能を小さくし矢板長も小さくすることができる。 As described above, according to the sheet pile type quay structure of FIG. 2, the steel sheet pile is maintained while maintaining the stability of the sheet pile type quay during an earthquake by applying water pressure from the sea side front surface to the land side rear surface. The cross-sectional performance can be reduced and the sheet pile length can be reduced.
また、遮水シート14や止水矢板17は変形性能が高いので、沈下等の経年変化等による岸壁や地盤の変位が生じても遮水部12における止水性を保つことができる。
Moreover, since the water-
また、遮水部12への雨水の浸入や矢板継手からの浸水等によって水位低下範囲A内の水位Hが上昇するため日常的に水位Hを監視することが好ましく、この水位監視に基づいて排水ポンプ18により排水を行うことで、本実施形態の岸壁構造が有する耐震構造の信頼性が向上する。なお、遮水部12内に水位計を設置し、水位Hが設定水位に達したことを検知したら、この検知に基づいて自動的に排水ポンプ18を駆動するようにしてもよい。
Moreover, it is preferable to monitor the water level H on a daily basis because the water level H in the water level lowering range A rises due to the intrusion of rainwater into the
なお、従来、掘削工事において土留工施工時の水圧低減を目的としてポンプにより水位を低下させるディープウエル工法やウエルポイント工法等の水位低下工法等が知られているが、これらの工法は仮設工事に用いられ、永久構造物に用いられる技術ではない。 Conventionally, water level lowering methods such as deep well method and well point method that lower the water level with a pump for the purpose of reducing water pressure during earth retaining work in excavation work are known, but these methods are used for temporary work. It is not a technique used for permanent structures.
次に、本実施形態による第2例は、矢板式岸壁構造であるが、図3に示すように原地盤の粘性土層等の不透水層を遮水シートの代わりに利用し、遮水シートを省略した点が図2と異なる。 Next, the second example according to the present embodiment is a sheet pile type quay structure. As shown in FIG. 3, an impermeable layer such as a viscous soil layer of the original ground is used instead of the impermeable sheet, 2 is different from FIG.
図3のように、原地盤が例えば砂層Kの上に不透水層である粘性土層Lを有する場合、鋼管矢板11を水底Gから打設し、鋼管矢板11から陸側(図の右側)水平方向に所定距離だけ離れた位置で止水矢板17を粘性土層Lに打設し、鋼管矢板11の背面と止水矢板17の前面との間で粘性土層L上に透水性の高い捨石13を堆積し裏込する。このようにして、遮水部22が止水矢板17と粘性土層Lと捨石13とにより構成される。排水ポンプ18により遮水部22における水位Hが設定水位以下に恒常的に保たれる。
As shown in FIG. 3, when the raw ground has a viscous soil layer L that is an impermeable layer on the sand layer K, for example, the steel
以上のように、矢板式岸壁の背後において、遮水部22の粘性土層Lと止水矢板17とにより周囲の地盤に対し地下水の行き来が生じない部分を構築し、水位低下範囲A内の水位Hが上昇したとき、排水ポンプ18により水位Hを設定水位以下に恒常的に保つことで水位が低下した状態が恒久的に持続する岸壁構造を構築することができる。
As described above, behind the sheet pile quay, a portion where the groundwater does not flow to the surrounding ground by the viscous soil layer L of the
図3のように原地盤に粘土層等の不透水層がある場合、不透水層を遮水シートの代わりに利用でき、遮水シートを省略できるので、材料費を削減することができる。また、条件が満足されれば既設の岸壁や護岸にも適用可能である。 When there is a water-impermeable layer such as a clay layer on the original ground as shown in FIG. 3, the water-impermeable layer can be used in place of the water-impervious sheet, and the water-impervious sheet can be omitted, so that the material cost can be reduced. It can also be applied to existing quays and revetments if the conditions are satisfied.
遮水部22の水位低下範囲A内の水位Hを、図2と同様に設定水位よりも低くなるように排水ポンプ18で制御することにより、海水面の水位HSと水位低下範囲A内の水位Hとの水位差ΔHによる水圧が鋼管矢板11の前面に恒常的に作用することになる。
By controlling the water level H within the water level lowering range A of the
以上のように、図3の矢板式岸壁構造によれば、図2と同様に海側から陸側へ水圧を作用させることにより、矢板式岸壁の地震時における安定性を保ちつつ鋼矢板の断面性能を小さくし矢板長も小さくすることができる。 As described above, according to the sheet pile type quay structure of FIG. 3, the cross section of the steel sheet pile while maintaining the stability of the sheet pile type quay during an earthquake by applying water pressure from the sea side to the land side as in FIG. Performance can be reduced and sheet pile length can be reduced.
図9に第1の実施形態による矢板式岸壁に適用した岸壁構造の第3例を説明するための断面図を示す。図9の矢板式岸壁構造は、図2と基本的に同様の構造であるが、遮水部12が砂層Nの法面に遮水シート14を敷設して構成されている。図9の矢板式岸壁構造により図2と同様の効果を得ることができる。
FIG. 9 is a sectional view for explaining a third example of the quay structure applied to the sheet pile quay according to the first embodiment. The sheet pile type quay structure in FIG. 9 is basically the same structure as in FIG. 2, but the
〈第2の実施形態〉
図4は第2の実施形態による重力式岸壁に適用した岸壁構造の第1例を説明するための断面図である。図5は同じく第2例を説明するための断面図である。図6は同じく第3例を説明するための断面図である。
<Second Embodiment>
FIG. 4 is a cross-sectional view for explaining a first example of a quay structure applied to a gravity quay according to the second embodiment. FIG. 5 is a cross-sectional view for explaining the second example. FIG. 6 is a sectional view for explaining the third example.
本実施形態による第1例は、重力式岸壁構造であり、図4に示すように、この重力式岸壁構造は、水底Gに築かれた基礎捨石P上にケーソン31を設置し、ケーソン31の背面31b(陸側)に遮水部32を設け、遮水部32における水位Hを設定水位以下に恒常的に保つために排水ポンプ38を設置したものである。
The first example according to the present embodiment is a gravity quay structure. As shown in FIG. 4, this gravity quay structure has a
遮水部32は、図2と同様に、基礎捨石P及び砂層Nを覆うように敷設された遮水シート34と、ケーソン31の背面31bから陸側(図の右側)水平方向に所定距離だけ離れた位置で砂層N内に打設された止水矢板37と、遮水シート34上に堆積されてケーソン31の背面31bに裏込された透水性の高い捨石33と、から構成される。
As in FIG. 2, the water-
遮水シート34は、ケーソン31の背面31bから下端の基礎捨石P、砂層Nの法面、さらに止水矢板37が打設された砂層Nの基礎捨石Pよりも高い部分まで延びて、ケーソン31の背面31bと基礎捨石Pと砂層Nとを覆っている。遮水シート34の一端34bは、ケーソン31の背面31bの上端まで延びて固定されて不透水とされ、その他端は止水矢板17の下端で捨石13により押さえ付けられるとともに止水矢板17に密着されて不透水とされている。一端34bの部分の遮水シートはケーソン31の目地部のみとしてもよい。遮水シート34は、捨石や地盤に接しても破損しないように上下の両面が保護材34aで覆われている。なお、保護材34aは、ケーソン31の背面31bでは省略されているが、設けてもよい。
The water-
また、遮水部32の捨石33内へ排水ポンプ38から配管が延び、その先端の吸引口38aが捨石33内の設定水位以下の位置にある。これにより、遮水部32の水位Hを設定水位に恒常的に保つことができる。
Further, a pipe extends from the
遮水部32の上面には不透水舗装40が施される。また、止水矢板37の背面側(陸側)には埋土Mが埋め戻される。
An
以上のように、重力式岸壁の背後において、遮水部32の遮水シート34と止水矢板37とにより周囲の地盤に対し地下水の行き来が生じない部分を構築し、水位低下範囲A内の水位Hが上昇したとき、排水ポンプ38により水位Hを設定水位以下に恒常的に保つことで水位が低下した状態が恒久的に持続する岸壁構造を構築することができる。
As described above, behind the gravity quay, a portion where the groundwater does not flow with respect to the surrounding ground is constructed by the
遮水部32の水位低下範囲A内の水位Hを、設定水位よりも低くなるように排水ポンプ38で制御することにより、海水面の水位HSと水位低下範囲A内の水位Hとの水位差はΔH(HS−H)となり、水位差ΔHによる水圧がケーソン31の前面31aに恒常的に作用することになる。かかる水圧は地震動によるケーソン31の背面31bへの水平力と反対方向に作用するため、地震動によるケーソン31の背面31bへの水平力を低減させ、ケーソンの必要重量を小さくすることができる。
The water level difference between the water level HS in the sea level and the water level H in the water level lowering range A is controlled by the
また、日常的に水位Hを監視し、この水位監視に基づいて排水ポンプ18により排水を行うことで、本実施形態の岸壁構造が有する耐震構造の信頼性が向上する。
Moreover, the reliability of the earthquake-resistant structure which the quay structure of this embodiment has improves by monitoring the water level H on a daily basis, and draining with the
以上のように、図4の重力式岸壁構造によれば、海側から陸側へ水圧を作用させることにより、重力式岸壁の地震時における安定性を向上させ、ケーソンの必要重量を小さくすることができる。 As described above, according to the gravity quay structure of FIG. 4, the water pressure is applied from the sea side to the land side, thereby improving the stability of the gravity quay during an earthquake and reducing the required weight of the caisson. Can do.
また、本例のように重力式岸壁の場合には背面の水位低下によりケーソン等の提体に作用する浮力も小さくなり堤体重量が増すためさらに安定性が増加するという効果も得ることができる。 In addition, in the case of a gravitational quay as in this example, the buoyancy acting on the laying body such as caisson is reduced due to the lowering of the water level on the back surface, and the weight of the levee body is increased, so that the effect of further increasing the stability can be obtained. .
次に、本実施形態による第2例は、重力式岸壁構造であるが、図5に示すように止水矢板を省略し、遮水シートによって周囲の地盤に対し地下水の行き来が生じないように遮水部42を構成した点が図4と異なる。
Next, although the 2nd example by this embodiment is a gravity type quay structure, as shown in FIG. 5, a water-stop sheet pile is abbreviate | omitted so that the passage of groundwater may not arise with respect to the surrounding ground by a water-impervious sheet. The point which comprised the water-
すなわち、遮水部42の遮水シート34は、ケーソン31の背面31bから下端の基礎捨石P、埋土Mの法面、さらに地盤表面まで延びて、ケーソン31の背面31bと基礎捨石Pと埋土Mとを覆っている。遮水シート34の一端34bは、ケーソン31の背面31bの上端まで延びて固定されて不透水とされ、その他端34cは地盤表面で固定されて不透水とされている。
That is, the water-
以上のように、重力式岸壁の背後において、遮水部42の遮水シート34により周囲の地盤に対し地下水の行き来が生じない部分を構築し、水位低下範囲A内の水位Hが上昇したとき、排水ポンプ38により水位Hを設定水位以下に恒常的に保つことで水位が低下した状態が恒久的に持続する岸壁構造を構築することができる。
As described above, when the water level H in the water level lowering range A rises behind the gravity-type quay by constructing a portion where the water-
遮水部42の水位低下範囲A内の水位Hを、図2と同様に設定水位よりも低くなるように排水ポンプ38で制御することにより、海水面の水位HSと水位低下範囲A内の水位Hとの水位差ΔH(HS−H)による水圧がケーソン31の前面31aに恒常的に作用することになる。
By controlling the water level H within the water level lowering range A of the
以上のように、図5の重力式岸壁構造によれば、図4と同様に海側から陸側へ水圧を作用させることにより、重力式岸壁の地震時における安定性を向上させ、ケーソンの必要重量を小さくすることができる。 As described above, according to the gravitational quay structure of FIG. 5, the stability of the gravitational quay during an earthquake is improved by applying water pressure from the sea side to the land side as in FIG. Weight can be reduced.
また、止水矢板を省略したことにより、止水矢板材料及びその打設が不要となるので、材料や工数のコスト減に寄与することができる。 Further, since the water-stop sheet pile is omitted, the water-stop sheet pile material and its placement are unnecessary, which can contribute to cost reduction of materials and man-hours.
次に、本実施形態による第3例は、重力式岸壁構造であるが、図6に示すように基本的な構成は図5とほぼ同様であるが、遮水シートをケーソン31の前面31aの上端まで延長させて遮水部52を構成した点が図5と異なる。
Next, the third example according to the present embodiment is a gravitational quay structure. As shown in FIG. 6, the basic configuration is substantially the same as in FIG. The point which extended to the upper end and comprised the
すなわち、遮水部52の遮水シート34は、ケーソン31の前面31aから基礎捨石Pとケーソン31の底面との間、背面31bの下端の基礎捨石P、埋土Mの法面、さらに地盤表面まで延びて、ケーソン31の前面31aと基礎捨石Pと埋土Mとを覆っている。遮水シート34の一端34bは、ケーソン31の背面31bの上端まで延びて固定されて不透水とされ、その他端34cは地盤表面で固定されて不透水とされている。
That is, the water-
以上のように、重力式岸壁の背後において、遮水部52の遮水シート34により周囲の地盤に対し地下水の行き来が生じない部分を構築し、水位低下範囲A内の水位Hが上昇したとき、排水ポンプ38により水位Hを設定水位以下に恒常的に保つことで水位が低下した状態が恒久的に持続する岸壁構造を構築することができる。
As described above, when the water level H in the water level lowering range A is increased behind the gravity quay by constructing a part where the groundwater does not flow to the surrounding ground by the
遮水部42の水位低下範囲A内の水位Hを、図2と同様に設定水位よりも低くなるように排水ポンプ38で制御することにより、海水面の水位HSと水位低下範囲A内の水位Hとの水位差ΔH(HS−H)による水圧がケーソン31の前面31aに恒常的に作用することになる。
By controlling the water level H within the water level lowering range A of the
以上のように、図6の重力式岸壁構造によれば、図4と同様に海側から陸側へ水圧を作用させることにより、重力式岸壁の地震時における安定性を向上させ、ケーソンの必要重量を小さくすることができる。 As described above, according to the gravity type quay structure of FIG. 6, the stability of the gravity type quay during an earthquake is improved by applying water pressure from the sea side to the land side as in FIG. Weight can be reduced.
また、ケーソン31の底面および海側の前面31aに遮水シートを設置する構造としたので、遮水シートの点検等が可能となる。
Moreover, since it was set as the structure which installs a water shielding sheet in the bottom face of the
次に、図4〜図6の重力式岸壁において遮水シートにシート余裕部を設けた例について図7を参照して説明する。図7は、図4または図5のケーソン背面の下端で遮水シートにシート余裕部を設けた例を示す部分図(a)及び図6のケーソン前面の下端で遮水シートにシート余裕部を設けた例を示す部分図(b)である。 Next, the example which provided the sheet | seat margin part in the water-impervious sheet in the gravity type quay of FIGS. 4-6 is demonstrated with reference to FIG. 7 is a partial view (a) showing an example in which a sheet margin portion is provided on the water-impervious sheet at the lower end of the back side of the caisson in FIG. 4 or FIG. 5 and a sheet margin portion on the water-impervious sheet at the lower end of the front side of the caisson in FIG. It is a partial view (b) showing an example provided.
図5の重量式岸壁において、図7(a)のように、ケーソン31の背面31bの下端部に遮水シート34がたるむようにシート余裕部34dを遮水シート34に設ける。
In the weight-type quay of FIG. 5, as shown in FIG. 7A, a
また、図6の重量式岸壁において、図7(b)のように、ケーソン31の前面31aの下端部において遮水シート34がたるむようにシート余裕部34eを遮水シート34に設ける。
In addition, in the heavy weight type quay of FIG. 6, as shown in FIG. 7B, a sheet margin 34 e is provided on the
ケーソン式等の重力式岸壁の場合は地震発生時にケーソンが海側へ移動し、遮水シートが破損することが懸念されるが、図7(a)(b)の構成によれば、地震時にケーソン31が海側に移動しても、遮水シート34はケーソン31の背面31bの下端部のシート余裕部34d、または、前面31aの下端部のシート余裕部34eにおいてたるみにより伸張することで、遮水シート34の破損を防止でき、遮水部42,52における遮水性を保つことができる。
In the case of a gravity quay such as the caisson type, there is a concern that the caisson will move to the sea side when an earthquake occurs, and the water shielding sheet will be damaged. However, according to the configuration of FIGS. Even if the
次に、水位低下による水平力の低下量について検討した。すなわち、図8に、クーロンの土圧式による土圧と水圧の合力として算出した水平力の、水位低下による低下割合(%)を試算した結果を示す。天端高さDL+4.0m、内部摩擦角φ=40°の石材、水平震度0.2の地震時を想定したものである。比較として背後の地下水面上のみを軽量盛土(γ=12kN/m3)に置き換えた場合では、水平力低下割合は、87%(水深16mの場合)程度となり、水位低下量を大きくすると水平力低減効果が高く、堤体の設計水平力を小さくすることができ、重力式岸壁の堤体幅を小さくしたり矢板式岸壁の矢板長を短くしたりすることができることがわかる。このように、水位低下量を大きくすると水平力が低下し岸壁(護岸)のコスト削減が可能である。 Next, the amount of decrease in horizontal force due to a drop in water level was examined. That is, FIG. 8 shows the result of trial calculation of the rate of decrease (%) due to the water level drop of the horizontal force calculated as the combined force of earth pressure and water pressure by the Coulomb earth pressure formula. This assumes a stone with a top height of DL + 4.0m, an internal friction angle of φ = 40 °, and an earthquake with a horizontal seismic intensity of 0.2. As a comparison, when only the groundwater surface behind is replaced with lightweight embankment (γ = 12 kN / m 3 ), the horizontal force drop rate is about 87% (when the water depth is 16 m). It can be seen that the reduction effect is high, the design horizontal force of the levee body can be reduced, the dam body width of the gravity quay can be reduced, and the sheet pile length of the sheet pile quay can be reduced. As described above, when the amount of water level decrease is increased, the horizontal force decreases and the cost of the quay (revetment) can be reduced.
なお、計算条件は次のとおりである。
・天端高さ DL+4.0m
・上載荷重 15kN/m2
・土質条件
空中重量 18 kN/m3
水中重量 10 kN/m3
内部摩擦角φ=40°
壁面摩擦角15°
・水位条件
水位低下なし時:D.L.+0.67m(HWL:D.L.+2.0m,LWL:D.L.+0.0mとしたときの残留水位を想定)
水位低下時:LWLからの水位低下量
The calculation conditions are as follows.
・ Height DL + 4.0m
・ Upload 15kN / m 2
・ Soil
Underwater weight 10 kN / m 3
Internal friction angle φ = 40 °
・ Water level condition No water level drop: DL + 0.67m (assuming residual water level when HWL: DL + 2.0m, LWL: DL + 0.0m)
When water level drops: Amount of water level drop from LWL
以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本実施形態では岸壁構造について説明したが、本発明はこれに限定されず、護岸構造であってもよいことはもちろんである。 As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, although the quay structure has been described in the present embodiment, the present invention is not limited to this, and may be a shore structure.
また、本実施形態では、遮水部内の水位を岸壁の前面の海面よりも低くし、遮水部内の水位と岸壁の前面との水位差により海側から陸側へと岸壁の前面に水圧を作用させるようにしたが、本発明は必ずしもこれに限定されず、例えば、遮水部内の水位を陸側の残留水位(R.W.L)よりも低くすることで、少なくとも岸壁の背面への水圧が低下するので、地震動による岸壁に作用する水平力合力が低減し、岸壁の地震時における安定性を保つことができる。 Moreover, in this embodiment, the water level in the impermeable part is made lower than the sea level on the front of the quay, and the water pressure on the front of the quay is increased from the sea side to the land side due to the water level difference between the water level in the impermeable part and the front of the quay However, the present invention is not necessarily limited to this. For example, by making the water level in the water shielding portion lower than the residual water level (RWL) on the land side, at least the water pressure to the back of the quay is lowered. Therefore, the horizontal force acting on the quay due to earthquake motion is reduced, and the stability of the quay during an earthquake can be maintained.
本発明の岸壁構造、護岸構造によれば、海側から陸側へ水圧を作用させることができるので、岸壁、護岸の地震時における安定性を保ちつつ重力式岸壁・護岸の必要重量や矢板式岸壁・岸壁に用いる矢板の断面性能を小さくすることができる。このため、耐震性を維持しつつ岸壁構造、護岸構造の構築コスト削減が可能となる。 According to the quay structure and revetment structure of the present invention, water pressure can be applied from the sea side to the land side, so that the required weight of the gravity quay and revetment and the sheet pile type can be maintained while maintaining the stability of the quay and revetment during an earthquake. The cross-sectional performance of the sheet pile used for the quay / quay can be reduced. For this reason, construction cost reduction of a quay structure and a seawall structure is attained, maintaining earthquake resistance.
11 鋼管矢板 12 遮水部 13 捨石 14 遮水シート 17 止水矢板 18 排水ポンプ 18a 吸引口 22 遮水部 31 ケーソン 31a ケーソンの前面 31b ケーソンの背面 32 遮水部 33 捨石 34 遮水シート 34d,34e シート余裕部 37 止水矢板 38 排水ポンプ 38a 吸引口 42,52 遮水部 A 水位低下範囲 G 水底 H 水位低下範囲A範囲内の水位 HS 海水面の水位 L 粘性土層 P 基礎捨石 ΔH 水位差
DESCRIPTION OF
Claims (5)
前記遮水部が、前記地下水の出入りを遮断するために前記地盤を覆うように敷設されるシート材料と、前記シート材料上に堆積される透水性材料と、を有し、
前記遮水部に排水手段を設置し、前記排水手段により前記遮水部における水位を前記岸壁または護岸の前面の海面の水位よりも低く保つことで前記岸壁または護岸が耐震性を有することを特徴とする岸壁構造または護岸構造。 Provide a water-blocking part on the back of the quay or revetment so as to block the groundwater from entering and leaving the surrounding ground,
The water-impervious portion has a sheet material laid so as to cover the ground in order to block the entry and exit of the groundwater, and a water-permeable material deposited on the sheet material,
The drainage means is installed in the impermeable part , and the quay or the revetment has earthquake resistance by keeping the water level in the impermeable part lower than the water level of the sea surface in front of the quay or revetment by the drainage means. Wharf structure or revetment structure.
前記遮水部内に水位計を設置し、
前記遮水部内の水位が設定水位に達したことを前記水位計が検知すると、前記検知に基づいて前記排水ポンプが自動的に駆動される請求項1乃至4のいずれか1項に記載の岸壁構造または護岸構造。 The drainage means comprises a drainage pump;
A water level meter is installed in the water shielding part,
The quay according to any one of claims 1 to 4, wherein when the water level gauge detects that the water level in the impermeable portion has reached a set water level, the drain pump is automatically driven based on the detection. Structure or revetment structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011004611A JP5669192B2 (en) | 2011-01-13 | 2011-01-13 | Quay structure or revetment structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011004611A JP5669192B2 (en) | 2011-01-13 | 2011-01-13 | Quay structure or revetment structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012144917A JP2012144917A (en) | 2012-08-02 |
JP5669192B2 true JP5669192B2 (en) | 2015-02-12 |
Family
ID=46788752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011004611A Active JP5669192B2 (en) | 2011-01-13 | 2011-01-13 | Quay structure or revetment structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5669192B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110258457B (en) * | 2019-06-26 | 2024-02-13 | 中国电建集团成都勘测设计研究院有限公司 | Dam structure for overhauling full hole section of diversion tunnel of hydroelectric engineering in canyon area |
CN112942241B (en) * | 2021-02-03 | 2022-08-30 | 中国电建集团成都勘测设计研究院有限公司 | Deadweight water retaining unit and deadweight water retaining system for potential breach of bank |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930844B2 (en) * | 1978-08-21 | 1984-07-30 | 真人 押川 | Sand control board for covering the slope of a reclamation embankment |
JPS59109609A (en) * | 1982-12-13 | 1984-06-25 | Nippon Kokan Kk <Nkk> | Steel marine structure and construction thereof |
JPH05112924A (en) * | 1991-10-22 | 1993-05-07 | Bando Chem Ind Ltd | Water shielding sheet construction for final disposal place for waste |
JP3308070B2 (en) * | 1993-09-20 | 2002-07-29 | 新日本製鐵株式会社 | Diffusion barrier |
JP4518530B2 (en) * | 2001-01-17 | 2010-08-04 | 独立行政法人鉄道建設・運輸施設整備支援機構 | Waste landfill revetment structure |
JP4129762B2 (en) * | 2002-04-30 | 2008-08-06 | 東洋建設株式会社 | Sea surface waste disposal site |
-
2011
- 2011-01-13 JP JP2011004611A patent/JP5669192B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012144917A (en) | 2012-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shin et al. | Coastal erosion prevention by geotextile tube technology | |
CN102535488B (en) | Waterproof construction method for bottom plate of high-water-level basement | |
US10538889B2 (en) | Berm or levee expansion system and method | |
CN111851587A (en) | Telescopic vibration-damping mooring-type suspension tunnel end connecting device and construction method | |
WO2014192930A1 (en) | Reinforcement structure for embankment and method for constructing same | |
JP5669192B2 (en) | Quay structure or revetment structure | |
CN202440826U (en) | Waterproof system for high-water level basement foundation slabs | |
Chu et al. | Embankments on soft ground and ground improvement | |
CN112195980A (en) | Water-resisting pressure-controlling anti-floating structure and construction method | |
JP4315620B2 (en) | Impermeable treatment method for managed waste landfill revetment | |
JP2003320335A (en) | Sea surface waste disposal yard and management method therefor | |
CN216275788U (en) | Drainage device used after failure of water interception curtain of deep foundation pit | |
CN112523272B (en) | Anti-floating blind ditch for strongly weathered rock stratum and construction method thereof | |
CN204435321U (en) | A kind of steam power station water intaking open channel | |
CN211646434U (en) | Earth-rock cofferdam structure of silt foundation | |
KR100429370B1 (en) | Method for constructing revetment dike using a fiber for public works | |
CN113737831A (en) | Combined structure of steel sheet pile, cofferdam and rotary spraying wall for coastal and construction method | |
Wong | Design of substructures against hydrostatic uplift | |
JP7564741B2 (en) | Earth retaining structure | |
CN217026896U (en) | River sluice flood control dyke structure | |
RU2453653C1 (en) | Method to erect dike dam on arctic sea shore | |
CN220202720U (en) | Seepage-proofing cofferdam structure and cofferdam structure of reservoir | |
CN221167881U (en) | Foundation pit hydrophobic structure suitable for under rich water stratum condition | |
RU2791119C1 (en) | Method for construction of geotechnical structures in the water area of urban rivers and canals | |
CN222810079U (en) | A kind of underground building drainage pressure relief and floating reduction structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5669192 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |