US3420717A - Metal softening process and product thereof - Google Patents
Metal softening process and product thereof Download PDFInfo
- Publication number
- US3420717A US3420717A US537939A US3420717DA US3420717A US 3420717 A US3420717 A US 3420717A US 537939 A US537939 A US 537939A US 3420717D A US3420717D A US 3420717DA US 3420717 A US3420717 A US 3420717A
- Authority
- US
- United States
- Prior art keywords
- temperature
- eutectoid
- stock
- forming
- working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 39
- 230000008569 process Effects 0.000 title claims description 39
- 229910052751 metal Inorganic materials 0.000 title description 15
- 239000002184 metal Substances 0.000 title description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 238000010791 quenching Methods 0.000 claims description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000011701 zinc Substances 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 8
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 229910001092 metal group alloy Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000013019 agitation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/165—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S420/00—Alloys or metallic compositions
- Y10S420/902—Superplastic
Definitions
- Strain rate sensitivity m is the exponential variable in the expression wherein 11 represents stress in pounds per unit area; Erepresents strain rate in terms of length change per unit guage length per unit time; and K represents a proportionality constant which may be termed the strain rate coefficient. The numerical value of K depends upon the specific dimensions selected for the other variables.
- Another object of our invention has been to investigate the effect of typical expected variations in our process to permit the generalization necessary to practical utilization of this process on other alloys related functionally to the pure zinc-aluminum eutectoid, and to permit predictable variations in the process itself.
- FIGURES 1(a), 1(b) and 1(0) are schematic views of the principal steps of our process
- FIGURE 2 is a data plot of true stress 0' vs. true strain rate 5, for differently preconditioned materials
- FIGURE 3 is a data plot of forming depth vs. forming time for differently preconditioned materials when subjected to a standardized part-forming operation involving biaxial tension;
- FIGURE 4 is a data plot of forming depth vs. forming time similar to FIGURE 3 from tests of materials pre- 3,420,717 Patented Jan. 7, 1969 ice conditioned at different temperatures t demonstrate the optimum working temperature and the effect of variations therefrom;
- FIGURE 5 is a cross plot of data taken from the curve end points of FIGURE 4, more vividly illustrating the significance thereof;
- FIGURE 6 is a comparative data plot of instantaneous load as produced by a standard applied strain rate to specimens of varying zinc-aluminum content.
- FIGURES 7 and 8 are data plots of forming depth vs. forming time similar to FIGURE 3 from tests to other alloys differing from the substantially pure eutectoid to demonstrate the beneficial effect of our conditioning process thereon.
- stock material 10 having the highly desirable but unexpected property of low strength at superplastic forming temperatures as compared with material prepared without the working step.
- the conditioned stock material is identifiable by its substantially reduced strain rate coefficient K at forming temperatures.
- the decreased strength level of the material permits improvement of the final forming process, either by reducing the loads required, the time required, or some combination of these two primary expense factors.
- FIGURE 2 is a graphical log-log representation of data obtained from uniaxial tensile testing at 520 F. of specimens having different degrees of low temperature working, when tested over a wide range of strain rates More specifically, curve 20 represents the tensile response of a standardized specimen having no low temperature working after the quench stage 12. Curves 21, 22 and 23 represent data taken from standardized specimens having, respectively, 25, 50 and reduction by low tem perature working in accordance with our process.
- FIGURE 3 is a data plot, graphically illustrating the following practical part forming demonstration which had been performed.
- Four sheet specimens were taken from the same section of a common melt provided in the form of reroll stock of an alloy comprising 78% zinc, 22% aluminum, by weight to an accuracy of 99.0% purity.
- the material for each sheet was rolled at 620 F. to a thickness that would permit various degrees of later low temperature working to an ultimate standard thickness of 0.050 inch. All sheets were solution heat-treated at about 600 F. for approximately one hour and then quenched in water with agitation to produce an essentially equal metallurgical state.
- One sheet was employed as a control and was not worked further after the quench.
- Each of the remaining sheets was rolled at about room temperature to reduce its thickness by 25, 50 and 75 percent, respectively, producing final specimens of 0.050 inch thickness in each case.
- Each specimen was placed in a heated die, constructed like that described in the aforementioned application Ser. No. 445,188, and brought to a uniform temperature of 520 F. in a standardized period of sixteen minutes.
- a pneumatic load by way of a 14.7 p.s.i. vacuum was applied to each specimen.
- the time and center point deflection data plotted in FIGURE 3 was recorded during each test.
- the response of the control specimen is plotted as curve in FIGURE 3.
- the response of the specimens worked by 25, and 75% thickness reduction is plotted as respective curves 31, 32 and 33.
- the control specimen (curve 30) required a forming time of 3.4 minutes for the center point to reach the bottom of the die.
- the specimen reduced by 50% (curve 32) required 1.2 minutes for total deflection.
- the specimen reduced by 75% (curve 33) required only 1.1 minutes for total deflection. It can be seen that good correspondence exists between FIGURES 2 and 3. It also can be seen that the effect of our working step on the strength reduction at forming temperature decreases with further working.
- Data plotted in FIGURE 4 was obtained by preparing six test sheet specimens of the zinc-aluminum euctectoid from the same part of the same melt by 'hot rolling ingot (above 600 F.) to 0.100 inch, solution heat treating the specimens for one hour at 600 F. and quenching the specimen in water, with agitation.
- the specimens were individually heated a selected temperature (100, 200, 300, 400, 500, 600 F.) and rolled to 0.050 inch, a deformation of 50%. After rolling, each specimen was quenched. The rolling required several passes and the specimens were returned to the heating oven between passes to maintain as nearly a constant temperature as possible.
- the specimen rolled at 600 F. was considered a control since this temperature is above the eutectoid invariant.
- the control specimen was given the same rolling history as the test specimens, but as expected, it behaved as if all rolling had occurred prior to the first quench.
- Material composition can vary, as with random impurities, significant alloy additions, or off-eutectoid composition and significant softening effect is still obtained by processing in accordance with our invention.
- FIGURE 6 shows the effect on the benefits of our process of relative zinc-aluminum variation over a wide range around the eutectoid (78%22%) composition.
- Curve 60 plots the instantaneous load for a tensile specimen subjected to a standard strain rate for various compositions, but without previous low temperatures working according to our invention.
- Curve 61 plots the forming load for the same compositions, as curve 60, but with 50% low temperature deformation after quenching. The continued benefit of our process over this wide range of composition variation is manifest.
- FIGURES 7 and 8, respectively, show the continued benefit of our process in the presence of small but significant amounts of magnesium and manganese.
- FIG- URE 7 shows the response of comparative 50% low temperature worked (curve 70) and unworked (curve 71) test specimens, containing 0.02% mg. by weight, tested as described in connection with FIGURE 3.
- FIGURE 8 shows the response of comparative 50% low temperature worked (curve 80) and unworked (curve 81) test specimens containing 0.050% Mn.
- heating while conventionally performed in an enclosed oven can with equal etficiency, be performed in a heated press designed to provide the working desired. Quenching can be accomplished by spraying as opposed to dunking and the working can be accomplished by extrusion, forging, etc., as well as rolling.
- a method of making metal forms comprising the steps of:
- a method of making metal forms comprising the steps of:
- a method of making metal forms comprising the steps of:
- a body of metal alloy stock of the eutectoid comprising nominally 78% zinc, 22% aluminum by weight, said body being in a state resulting from processing in accordance With the process defined in claim 1, said body being characterized by exhibiting a substantially reduced strain rate coeflicient at temperatures just below its eutectoid temperature, as compared to a body of the same alloy similarly processed but without said working step.
- a body of metal alloy stock of the eutectoid comprising nominally 78% zinc, 22% aluminum by weight, said body being in a state resulting from processing in accordance with the process defined in claim 2, said body being characterized by exhibiting a substantially reduced strain rate coefiicient at temperatures just below its eutectoid temperature, as compared to a body of the same alloy similarly processed but Without said working step.
- a body of metal alloy stock of the eutectoid comprising nominally 78% zinc, 22% aluminum by weight, said body being in a state resulting from processing in accordance with the process defined in claim 3, said body being characterized by exhibiting a substantially reduced strain rate coeflicient at temperatures just below its eutectoid temperature, as compared to a body of the same alloy similarly processed but without said rolling step,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Forging (AREA)
- Metal Rolling (AREA)
- Powder Metallurgy (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53793966A | 1966-03-28 | 1966-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3420717A true US3420717A (en) | 1969-01-07 |
Family
ID=24144754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US537939A Expired - Lifetime US3420717A (en) | 1966-03-28 | 1966-03-28 | Metal softening process and product thereof |
Country Status (14)
Country | Link |
---|---|
US (1) | US3420717A (is") |
JP (1) | JPS4920454B1 (is") |
AT (1) | AT271922B (is") |
BE (1) | BE693841A (is") |
CH (1) | CH492796A (is") |
CS (1) | CS158607B2 (is") |
DE (1) | DE1558785B2 (is") |
DK (1) | DK135899B (is") |
ES (1) | ES338523A1 (is") |
FR (1) | FR1512991A (is") |
GB (1) | GB1125072A (is") |
NL (1) | NL150166B (is") |
PL (1) | PL79095B1 (is") |
SE (1) | SE315132B (is") |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3595060A (en) * | 1968-03-21 | 1971-07-27 | Pressed Steel Fisher Ltd | Method of forming metal alloys |
US3632454A (en) * | 1970-03-20 | 1972-01-04 | Ibm | Process for inducing superplasticity in zinc or zinc-aluminum alloys containing copper |
US3753791A (en) * | 1970-01-01 | 1973-08-21 | Imp Smelting Corp Ltd | Heat-treatment of zinc/aluminium alloys |
US3793091A (en) * | 1971-08-20 | 1974-02-19 | Noranda Mines Ltd | Superplastic conditioning of ternary and quaternary zinc-aluminum alloys |
US3804677A (en) * | 1971-11-04 | 1974-04-16 | Isc Alloys Ltd | Working of alloys |
US3920175A (en) * | 1974-10-03 | 1975-11-18 | Rockwell International Corp | Method for superplastic forming of metals with concurrent diffusion bonding |
US3972743A (en) * | 1975-10-20 | 1976-08-03 | Ball Corporation | High strength, stable zinc-aluminum alloy |
US4040286A (en) * | 1975-10-09 | 1977-08-09 | St. Joe Minerals Corporation | High-precision, fine-detail forging process |
US4137105A (en) * | 1977-06-20 | 1979-01-30 | Gulf & Western Industries, Inc. | Method of forming tooling for superplastic metal sheet |
US4460657A (en) * | 1981-03-20 | 1984-07-17 | The Boeing Company | Thinning control in superplastic metal forming |
EP0219280A3 (en) * | 1985-10-07 | 1989-03-01 | Ristvedt-Johnson, Inc. | Wrapped coin roll and method and apparatus for forming same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3706605A (en) * | 1970-10-05 | 1972-12-19 | St Joe Minerals Corp | Superplastic lead alloys |
JPS5214372A (en) * | 1975-07-25 | 1977-02-03 | Hitachi Ltd | Pinching tool of the semiconducter wafer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340101A (en) * | 1965-04-02 | 1967-09-05 | Ibm | Thermoforming of metals |
-
1966
- 1966-03-28 US US537939A patent/US3420717A/en not_active Expired - Lifetime
-
1967
- 1967-01-23 JP JP42004208A patent/JPS4920454B1/ja active Pending
- 1967-02-09 BE BE693841D patent/BE693841A/xx not_active IP Right Cessation
- 1967-02-22 FR FR8372A patent/FR1512991A/fr not_active Expired
- 1967-03-09 DE DE19671558785 patent/DE1558785B2/de active Pending
- 1967-03-10 NL NL676703717A patent/NL150166B/xx not_active IP Right Cessation
- 1967-03-10 AT AT233167A patent/AT271922B/de active
- 1967-03-13 GB GB11617/67A patent/GB1125072A/en not_active Expired
- 1967-03-17 PL PL1967119529A patent/PL79095B1/pl unknown
- 1967-03-22 DK DK155867AA patent/DK135899B/da not_active IP Right Cessation
- 1967-03-22 CH CH423867A patent/CH492796A/de not_active IP Right Cessation
- 1967-03-23 SE SE4149/67A patent/SE315132B/xx unknown
- 1967-03-27 ES ES338523A patent/ES338523A1/es not_active Expired
- 1967-03-28 CS CS224367A patent/CS158607B2/cs unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340101A (en) * | 1965-04-02 | 1967-09-05 | Ibm | Thermoforming of metals |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3595060A (en) * | 1968-03-21 | 1971-07-27 | Pressed Steel Fisher Ltd | Method of forming metal alloys |
US3753791A (en) * | 1970-01-01 | 1973-08-21 | Imp Smelting Corp Ltd | Heat-treatment of zinc/aluminium alloys |
US3632454A (en) * | 1970-03-20 | 1972-01-04 | Ibm | Process for inducing superplasticity in zinc or zinc-aluminum alloys containing copper |
US3793091A (en) * | 1971-08-20 | 1974-02-19 | Noranda Mines Ltd | Superplastic conditioning of ternary and quaternary zinc-aluminum alloys |
US3804677A (en) * | 1971-11-04 | 1974-04-16 | Isc Alloys Ltd | Working of alloys |
US3920175A (en) * | 1974-10-03 | 1975-11-18 | Rockwell International Corp | Method for superplastic forming of metals with concurrent diffusion bonding |
US4040286A (en) * | 1975-10-09 | 1977-08-09 | St. Joe Minerals Corporation | High-precision, fine-detail forging process |
US3972743A (en) * | 1975-10-20 | 1976-08-03 | Ball Corporation | High strength, stable zinc-aluminum alloy |
US4137105A (en) * | 1977-06-20 | 1979-01-30 | Gulf & Western Industries, Inc. | Method of forming tooling for superplastic metal sheet |
US4460657A (en) * | 1981-03-20 | 1984-07-17 | The Boeing Company | Thinning control in superplastic metal forming |
EP0219280A3 (en) * | 1985-10-07 | 1989-03-01 | Ristvedt-Johnson, Inc. | Wrapped coin roll and method and apparatus for forming same |
Also Published As
Publication number | Publication date |
---|---|
DE1558785B2 (de) | 1971-07-29 |
SE315132B (is") | 1969-09-22 |
DK135899C (is") | 1977-12-12 |
DK135899B (da) | 1977-07-11 |
CS158607B2 (is") | 1974-11-25 |
GB1125072A (en) | 1968-08-28 |
JPS4920454B1 (is") | 1974-05-24 |
CH492796A (de) | 1970-06-30 |
NL150166B (nl) | 1976-07-15 |
PL79095B1 (is") | 1975-06-30 |
BE693841A (is") | 1967-07-17 |
ES338523A1 (es) | 1968-10-01 |
DE1558785A1 (is") | 1971-07-29 |
AT271922B (de) | 1969-06-25 |
FR1512991A (fr) | 1968-02-09 |
NL6703717A (is") | 1967-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2294648A (en) | Method of rolling magnesium-base alloys | |
US3420717A (en) | Metal softening process and product thereof | |
US3497402A (en) | Stabilized grain-size tantalum alloy | |
US5266131A (en) | Zirlo alloy for reactor component used in high temperature aqueous environment | |
US2249349A (en) | Method of hot working an aluminum base alloy and product thereof | |
US3645800A (en) | Method for producing wrought zirconium alloys | |
US3573999A (en) | Mechanical strength of metals | |
US4652314A (en) | Process for producing products of Al-Li-Mg-Cu alloys having high levels of ductility and isotropy | |
US4715906A (en) | Isothermal hold method of hot working of amorphous alloys | |
US2666721A (en) | Process of producing ductile molybdenum | |
US3346427A (en) | Dispersion hardened metal sheet and process | |
US5296190A (en) | Metallurgical products improved by deformation processing | |
US2676123A (en) | Treatment of brass | |
US3139359A (en) | Method of producing high strength thin steel | |
US3607456A (en) | Deep drawing steel and method of manufacture | |
US2365208A (en) | Manufacture of copper base alloy products | |
US2670309A (en) | Metal-working process and product | |
US2637672A (en) | Process of producing bolts | |
US3966506A (en) | Aluminum alloy sheet and process therefor | |
US4832756A (en) | Controlling distortion in processed beryllium copper alloys | |
US2692216A (en) | Method of manufacturing ductile molybdenum and alloys thereof | |
US4102711A (en) | Method of producing a tube of ultra-high strength steel having remarkably improved ductility and toughness | |
US3230119A (en) | Method of treating columbium-base alloy | |
US3331711A (en) | Method of treating magnesium silicide alloys of aluminum | |
US2826518A (en) | Aluminum base alloy article |