US3413514A - Storage tube - Google Patents

Storage tube Download PDF

Info

Publication number
US3413514A
US3413514A US428634A US42863465A US3413514A US 3413514 A US3413514 A US 3413514A US 428634 A US428634 A US 428634A US 42863465 A US42863465 A US 42863465A US 3413514 A US3413514 A US 3413514A
Authority
US
United States
Prior art keywords
target
collector
scanning
electrons
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US428634A
Inventor
Guillard Claude
Morillot Georges
Sud Georges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
CSF Compagnie Generale de Telegraphie sans Fil SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSF Compagnie Generale de Telegraphie sans Fil SA filed Critical CSF Compagnie Generale de Telegraphie sans Fil SA
Application granted granted Critical
Publication of US3413514A publication Critical patent/US3413514A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/39Charge-storage screens
    • H01J29/41Charge-storage screens using secondary emission, e.g. for supericonoscope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/08Electrodes intimately associated with a screen on or from which an image or pattern is formed, picked-up, converted or stored, e.g. backing-plates for storage tubes or collecting secondary electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/28Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen
    • H01J31/30Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen having regulation of screen potential at anode potential, e.g. iconoscope

Definitions

  • FIGzB INVENTORS
  • the V invention corrects this effect by uniformizing the rest current in the target, especially by introducing in the structure of the collector and/or its neighbouring electrodes some modifications of geometrical and/or electrical nature, in view of establishing a dissymmetry in the structure.
  • the present invention relates to image-analyzing storage tubes in which the signal is inscribed in the form of a charge pattern on the surface of an insulating target charged by the inscription electrons, this target being thereupon discharged in the course of scanning by a reading beam whose electrons have such a velocity that the insulating surface emits several secondary electrons for a primary impact electron (secondary emission coefiicient 1), the signal being finally collected on a collector of at least a part of these secondary electrons.
  • secondary emission coefiicient 1 secondary emission coefiicient 1
  • the present invention relates more particularly to tubes of this type in which the scanned area occupies only a portion of the insulating surface, as is the case with the circular targets scanned according to television standards (scanning in two rectangular directions, rectangular format, ratio of the sides of the rectangle 4:3, the diagonal at the most equal to the diameter of the target).
  • Another object of the present invention resides in the provision of image-analyzing storage tubes in which the image at rest, that is without signal, is uniformly brilliant.
  • a further object of the present invention resides in image-analyzing storage tubes, especially for television and the like, in which the definition of the tube is maintained relatively high and parasitic modulation signals are substantially eliminated.
  • a still further object of the present invention resides in the provision of a storage tube for analyzing images which at least considerably minimizes, by extremely simple and inexpensive means, the objectionable shading effects encountered heretofore with the prior art constructions.
  • FIG. 1 is an explanatory diagram in which the current intensity i is plotted against vertical image coordinates y.
  • FIG. 2 is a plan view of a target assembly of the prior art.
  • FIG. '3 is an axial cross-sectional view through the prior art target of FIG. 2.
  • FIG. 4 is a plan view of a modified collector according to the present invention.
  • FIG. 5 is an axial cross-sectional view of the target and collector assembly of FIG. 4 with the addition of an auxiliary electrode in accordance with the present invention.
  • FIG. 6 is an axial cross-sectional view through a modified embodiment ofa target and collector assembly according to FIG. 4 with the addition of a conductive deposit on the target.
  • FIG. 7 is a plan view of a modified collector, similar to FIG. 4, in accordance with the present invention, cut into several electrically separated sectors.
  • FIG. 8 is an axial cross-sectional view through a still further modified embodiment of a target and collector assembly, similar to FIG. 4, with the collector thereof in an inclined position with respect to the target.
  • FIG. 9 is an axial cross-sectional view through still another modified embodiment of a target-collector assembly in accordance with the present invention.
  • FIG. 10 is a perspective view of the collector of FIG. 9, similar to FIG. 4 but modified by the addition of an auxiliary part approaching the target.
  • the best means to obtain such a uniformity would be to realize the collector in the form of a plain plate parallel to the insulating surface of the target.
  • these means are not practicable, for it is necessary that this plate permits the passage of the reading electron beam.
  • This form of the collector can therefore be realized only in the form of a grid.
  • Such a grid absorbs, however, a portion of the reading beam, the more the smaller its transparency; it additionally gives rise to a parasitic modulation signal which diminishes the definition of the tube.
  • the rest current is no longer represented by the straight line A of FIG. 1, but by the curve B whose ordinates are larger than that of the straight line A at the beginning of the scanning (at the top of the image) but decrease below the straight line A toward the end of the scanning (at the bottom of the image).
  • a shading results therefrom at the reception, impairing the rest image, which is more brilliant at the top and becomes less and less brilliant in descending, to terminate 3 by a black band at the bottom.
  • the same defect though to a lesser degree, affects the image in the horizontal direction.
  • the curve B is precisely the arithmetic sum of the curves C and D.
  • This arrangement may be advantageously combined with a correction electrode 8, provided with a similar aperture 9, disposed between the collector 2 and the target and carried at a suitable potential (FIG. 5), or with a conductive deposit 10 on the surface of the surface of the target 5, this deposit delimiting the area to be scanned (FIG. 6). All of these arrangements have for effect to render uniform the electrical field between each point of the involved segments and the metal of the collector, the lines of force becoming straight and perpendicular to the target also within the limits of these segments.
  • the electrical dissymmetry may be introduced by dividing a collector into several sectors galvanically or electrically separated, for example, into four sectors 11, 12, 13 and 14, and by carrying the sectors at different potentials suitably chosen (FIG. 7).
  • the electrical dissymmetry may be introduced by realizing the collector 2 of FIG. 2 or FIG. 4 of resistive material, and by causing the same to be traversed by a current whose imput and output are located at diametrically opposite points 21 and 22 of the axis parallel to the coordinate y of the image,
  • the geometric dissymmetry may be introduced by decreasing the distance between the target and the metal of the collector on the side of the rim of the aperture corresponding to the bottom of the image, with respect to the rim of the opposite side.
  • a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signal.
  • a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, the active area covered by said scanning being a portion of the entire area of said target, and the shading eliminating means including means for masking by plain parts of said planar electrode the differential area portions between the area of said target and said actively scanned area.
  • a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, said aperture having substantially the same shape and size as the said active area covered by said scanning on said target.
  • a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame electrons, and secondary electron collector means said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means providing a dissymmetry for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals.
  • a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, and correcting electrode means between said planar electrode and said target, said correcting electrode means having an aperture of substantially the same shape and size as the aperture in said planar electrode, and both apertures being in substantial alignment.
  • a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, and a conductive coating applied on the surface of said target and forming a frame for said active area.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

Nov. 26, 1968 c. GUILLARD ETAL 3,413,514
STORAGE TUBE Filed Jan. 28. 1965 2 Sheets-Sheet 1 z z DRIOR ART a Film H6; 3
2 'I E a i 'r 3 A FIGzB INVENTORS:
Nov. 26, 1968 C. GUILLARD ETAL STORAGE TUBE 2' Sheets-Sheet 2 Filed Jan. 28, 1965 FiG=7 FiG:
FiG; 10
mvzuroas: C-GUILKARD, a non/nor et ;.su0
av non" United States Patent 3,413,514 STORAGE TUBE Claude Guillard, Georges Morillot, and Georges Sud, Paris, France, assignors to CSF-Compagnie Generale de Telegraphic Sans Fil, Paris, France Filed Jan. 28, 1965, Ser. No. 428,634 Claims priority, application France, Feb. 4, 1964, 962,555 14 Claims. (Cl. 315-12) ABSTRACT OF THE DISCLOSURE An image analyzing storage tube wherein a rectangular picture is inscribed upon a circular target the surface of which is only in part occupied by the picture, and having a plane secondary electron collector in front of the target. In that case a shading effect arises in the picture, and the V invention corrects this effect by uniformizing the rest current in the target, especially by introducing in the structure of the collector and/or its neighbouring electrodes some modifications of geometrical and/or electrical nature, in view of establishing a dissymmetry in the structure.
The present invention relates to image-analyzing storage tubes in which the signal is inscribed in the form of a charge pattern on the surface of an insulating target charged by the inscription electrons, this target being thereupon discharged in the course of scanning by a reading beam whose electrons have such a velocity that the insulating surface emits several secondary electrons for a primary impact electron (secondary emission coefiicient 1), the signal being finally collected on a collector of at least a part of these secondary electrons.
The present invention relates more particularly to tubes of this type in which the scanned area occupies only a portion of the insulating surface, as is the case with the circular targets scanned according to television standards (scanning in two rectangular directions, rectangular format, ratio of the sides of the rectangle 4:3, the diagonal at the most equal to the diameter of the target).
Accordingly, it is an object of the present invention to provide a storage tube of the type described hereinabove which is simple in construction and effectively eliminates the shortcomings encountered with the prior art constructions, particularly as regards the shading eiiect encountered therewith.
Another object of the present invention resides in the provision of image-analyzing storage tubes in which the image at rest, that is without signal, is uniformly brilliant.
A further object of the present invention resides in image-analyzing storage tubes, especially for television and the like, in which the definition of the tube is maintained relatively high and parasitic modulation signals are substantially eliminated.
A still further object of the present invention resides in the provision of a storage tube for analyzing images which at least considerably minimizes, by extremely simple and inexpensive means, the objectionable shading effects encountered heretofore with the prior art constructions.
These and other objects, features and advantages of the present invention will become more obvious from the following description when taken in connection with the accompanying drawing which shows, for purposes of illustration only, several embodiments in accordance with the present invention, and wherein:
FIG. 1 is an explanatory diagram in which the current intensity i is plotted against vertical image coordinates y.
FIG. 2 is a plan view of a target assembly of the prior art.
FIG. '3 is an axial cross-sectional view through the prior art target of FIG. 2.
FIG. 4 is a plan view of a modified collector according to the present invention.
FIG. 5 is an axial cross-sectional view of the target and collector assembly of FIG. 4 with the addition of an auxiliary electrode in accordance with the present invention.
FIG. 6 is an axial cross-sectional view through a modified embodiment ofa target and collector assembly according to FIG. 4 with the addition of a conductive deposit on the target.
FIG. 7 is a plan view of a modified collector, similar to FIG. 4, in accordance with the present invention, cut into several electrically separated sectors.
FIG. 8 is an axial cross-sectional view through a still further modified embodiment of a target and collector assembly, similar to FIG. 4, with the collector thereof in an inclined position with respect to the target.
FIG. 9 is an axial cross-sectional view through still another modified embodiment of a target-collector assembly in accordance with the present invention, and
FIG. 10 is a perspective view of the collector of FIG. 9, similar to FIG. 4 but modified by the addition of an auxiliary part approaching the target.
It is known that for the proper operation of these types of tubes, particularly to obtain at the reception an image during rest (i.e., without signal), which is uniformly brilliant, it is desirable that the rest potential of the target be uniform at all points of its surface. This uniformity will translate itself by a straight horizontal line on the diagram representing the current intensity on the collector as a function of time, and therefore also in the diagram representing the same current intensity as a function of the vertical coordinate of the image (the vertical scanning or frame scanning being linear as a function of time). This straight line is indicated at A in the diagram of FIG. 1 whose .abscissae are graduated in vertical image coordi nate y and whose ordinates are graduated in collector current intensity 1.
The best means to obtain such a uniformity would be to realize the collector in the form of a plain plate parallel to the insulating surface of the target. However, these means are not practicable, for it is necessary that this plate permits the passage of the reading electron beam. This form of the collector can therefore be realized only in the form of a grid. Such a grid absorbs, however, a portion of the reading beam, the more the smaller its transparency; it additionally gives rise to a parasitic modulation signal which diminishes the definition of the tube. These defects have lead to a search for the realization of the collector either in the form of a hollow cylinder with walls perpendicular to the target or in the form of a plate parallel to the target and pierced with a circular orifice, the internal diameter of the cylinder or the diameter of the orifice being at least equal to the diagonal of the image. This arrangement is represented in FIG. 2 where reference numeral 1 designates the rectangular scanned area, and reference numeral 2 designates the annular collector pierced with a circular orifice 3 whose rim 4 coincides in this projection with the contour of the target 5, visible in FIG. 3. In this latter figure, one has also schematically indicated by the arrow 6 the reading beam.
The experience has demonstrated that with this arrangement of the prior art, the rest current is no longer represented by the straight line A of FIG. 1, but by the curve B whose ordinates are larger than that of the straight line A at the beginning of the scanning (at the top of the image) but decrease below the straight line A toward the end of the scanning (at the bottom of the image). A shading results therefrom at the reception, impairing the rest image, which is more brilliant at the top and becomes less and less brilliant in descending, to terminate 3 by a black band at the bottom. The same defect, though to a lesser degree, affects the image in the horizontal direction.
Research of applicants have established (it being understood that the essence of the present invention described herein does not depend on the correctness of this theory) that this defect appears to be due to the superposition of two effects:
(a) Effect of the existence on the target of areas not scanned by the beam (segments of the circle comprised between the circumference 4 and the rims of the area 1 in FIG. 2); if this effect existed alone, the potential distribution at rest on the target would be such that the rest current as a function of the coordinate y would have the shape of the curve C in FIG. 1.
(b) Effect of the dissymmetry of scanning (saw-tooth form), effect which would translate itself by the fact that those of the secondary electrons emitted by the target which fall back on its surface, fall back in preferential manner on the surface already scanned by the beam in the course of a given exploration (surface above the line scanned at a given moment) While a relatively small quantity falls back on the portion of the area not yet scanned. Owing to this redistribution, the rest potential is modified in such a manner that, if this effect existed alone, the collector current as a function of the coordinate y would follow the substantially rectilinear curve D of FIG. 1.
The curve B is precisely the arithmetic sum of the curves C and D.
According to the present invention, one makes in the collector structural modifications susceptible to eliminate these effects and to render substantially uniform the rest current by bringing the same back substantially to the straight line A of FIG 1.
These modifications act conjointly in the desired sense but are of different nature, depending on whether one acts against one or the other of the effects (a) and (b) mentioned above:
(1) The effect (a) (nonscanned segments adjacent the rims of the image) is reduced by extending the metallic surface of the collector in such a manner as to extend above these segments. This comes back to replacing the circular aperture of known type by an aperture corresponding to the format of the image, particularly by the rectangular aperture 7 in the collector 2 of FIG. 4, the dimensions of the aperture corresponding to the area 1 of FIG. 2.
This arrangement may be advantageously combined with a correction electrode 8, provided with a similar aperture 9, disposed between the collector 2 and the target and carried at a suitable potential (FIG. 5), or with a conductive deposit 10 on the surface of the surface of the target 5, this deposit delimiting the area to be scanned (FIG. 6). All of these arrangements have for effect to render uniform the electrical field between each point of the involved segments and the metal of the collector, the lines of force becoming straight and perpendicular to the target also within the limits of these segments.
(2) The effect (b) (the dissymmetry of the scanning) is compensated by a dissymmetry introduced into the collector, this dissymmetry being either electrical or geometric.
The electrical dissymmetry may be introduced by dividing a collector into several sectors galvanically or electrically separated, for example, into four sectors 11, 12, 13 and 14, and by carrying the sectors at different potentials suitably chosen (FIG. 7).
According to a modification, the electrical dissymmetry may be introduced by realizing the collector 2 of FIG. 2 or FIG. 4 of resistive material, and by causing the same to be traversed by a current whose imput and output are located at diametrically opposite points 21 and 22 of the axis parallel to the coordinate y of the image,
ift
in such a manner that the circulation of this current will produce in the collector a variable potential from one point to the next.
The geometric dissymmetry may be introduced by decreasing the distance between the target and the metal of the collector on the side of the rim of the aperture corresponding to the bottom of the image, with respect to the rim of the opposite side. This approachment may be made either by inclining the collector at a certain angle, to be experimentally determined (for example, by an angle a=15 to 20) between the plane of the collector and the plane of the target 8 (FIG. 8) or by fixing to the rim of the aperture 7, facing the lower rim of the area 1, a sheet metal piece 15 folded into an angle iron as shown in cross-section in FIG. 9 and in perspective view in FIG. 10. As an example, favorable results were obtained with distances d=15 mm. and d'=4 mm. (FIG. 9), for the width of the aperture 7 s=30 mm.
While we have shown and described several embodiments in accordance with the present invention it is obvious that the same is not limited thereto but is susceptible of numerous changes and modifications as known to persons skilled in the art. For example, the various arrangements described herein may be combined and interchanged with one another.
Applicants have established that by the applications of these diverse means, it has been possible to obtain for a given target a characteristic i=f(y) according to the curve B of FIG. 1, that is, extremely close to the ideal straight line A.
Thus, it is obvious that the present invention is not limited to the details shown and described herein but is susceptible of numerous changes and modifications as known to persons skilled in the art and we therefore do not wish to be limited to the details shown and described but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.
We claim:
1. In a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signal.
2. In a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, the active area covered by said scanning being a portion of the entire area of said target, and the shading eliminating means including means for masking by plain parts of said planar electrode the differential area portions between the area of said target and said actively scanned area.
3. In a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, said aperture having substantially the same shape and size as the said active area covered by said scanning on said target.
4. In a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame electrons, and secondary electron collector means said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means providing a dissymmetry for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals.
5. The combination according to claim 4, wherein said dissymmetry is mechanical in nature.
6. The combination according to claim 4, wherein said dissymmetry is effectively formed at least in part by an inclination of said planar electrode with respect to the target surface.
7. The combination according to claim 6, wherein the angle of inclination is about to 8. The combination according to claim 4, wherein said dissymmetry is effectively formed at least in part by a metallic piece fixed substantially to the edge of said aperture near the end of the frame scanning, said piece eX- tending into the space between said planar electrode and said target.
9. The combination according to claim 8, wherein said piece is an angularly bent sheet.
10. The combination according to claim 4, wherein said dissymmetry is electrical in nature.
11. The combination according to claim 4, wherein said dissymmetry is effectively formed at least in part by said planar electrode of relatively resistive material, and means for passing an electric current through said electrode approximately in the direction of said frame scanning.
12. The combination according to claim 4, wherein said dissymmetry is effectively formed at least in part by said planar electrode divided into a plurality of electrically separated parts, and means for applying different electric potentials to different ones of said parts.
13. In a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, and correcting electrode means between said planar electrode and said target, said correcting electrode means having an aperture of substantially the same shape and size as the aperture in said planar electrode, and both apertures being in substantial alignment.
14. In a storage tube having a target with an insulating layer for storing modulated signals and means for scanning the surfaces of said layer with electrons of such a velocity that the secondary emission factor of the said surface is greater than unity, the scanning means being operative to scan said surface along two angularly displaced coordinates, one of the coordinates constituting line scanning, while the other coordinate constitutes frame scanning, source means for producing a beam of said electrons, and secondary electron collector means in the form of a substantially planar electrode located between said source means and said target and having an aperture for passing therethrough said beam, said planar electrode including means for substantially eliminating the shading appearing progressively in the secondary electron distribution on the target surface in the direction of said frame scanning in the absence of modulation on said signals, and a conductive coating applied on the surface of said target and forming a frame for said active area.
References Cited UNITED STATES PATENTS 3,086,138 4/1963 Hendry 315-11 3,115,592 12/1963 Scott et a1. 315-12 RICHARD A. FARLEY, Primary Examiner.
J. P. MORRIS, Assistant Examiner.
US428634A 1964-02-04 1965-01-28 Storage tube Expired - Lifetime US3413514A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR962555A FR1392619A (en) 1964-02-04 1964-02-04 Improvements to image analyzer tubes

Publications (1)

Publication Number Publication Date
US3413514A true US3413514A (en) 1968-11-26

Family

ID=8822381

Family Applications (1)

Application Number Title Priority Date Filing Date
US428634A Expired - Lifetime US3413514A (en) 1964-02-04 1965-01-28 Storage tube

Country Status (6)

Country Link
US (1) US3413514A (en)
CH (1) CH422048A (en)
DE (1) DE1489728A1 (en)
FR (1) FR1392619A (en)
GB (1) GB1087752A (en)
NL (1) NL6501275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917139A1 (en) * 1988-05-27 1989-11-30 Hitachi Ltd METHOD FOR PRODUCING AN IMAGE RECEIVING EAR AND A DISK SEGMENT USED IN IT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086138A (en) * 1958-08-29 1963-04-16 English Electric Valve Co Ltd Television and like camera tubes
US3115592A (en) * 1960-10-04 1963-12-24 Rca Corp Method and circuit for compensating for non-uniformities in display storage tubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086138A (en) * 1958-08-29 1963-04-16 English Electric Valve Co Ltd Television and like camera tubes
US3115592A (en) * 1960-10-04 1963-12-24 Rca Corp Method and circuit for compensating for non-uniformities in display storage tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917139A1 (en) * 1988-05-27 1989-11-30 Hitachi Ltd METHOD FOR PRODUCING AN IMAGE RECEIVING EAR AND A DISK SEGMENT USED IN IT

Also Published As

Publication number Publication date
FR1392619A (en) 1965-03-19
NL6501275A (en) 1965-08-05
CH422048A (en) 1966-10-15
DE1489728A1 (en) 1969-05-22
GB1087752A (en) 1967-10-18

Similar Documents

Publication Publication Date Title
US3866081A (en) Cathode ray gun having first and second grids with orthogonal apertures
US2749465A (en) Visual indicating device for electric voltages
US2518434A (en) Electron discharge device such as a television transmitting tube
US2906904A (en) Cathode ray tube
US2689314A (en) Cathode-ray tube
US2999957A (en) Cathode ray tube
US3185879A (en) Cathode ray tube having deflection enhancement means
JPS58101457U (en) cathode ray tube
US2837689A (en) Post acceleration grid devices
US3102212A (en) Cathode ray tube with low velocity deflection and post deflection beam acceleration
US3731136A (en) Cylindrical electrode system for focusing and deflecting an electron beam
US3171056A (en) Flat display tube utilizing unique collimator
US3735190A (en) Color cathode ray tube
US3921025A (en) Dual-beam CRT with vertical trace bowing correction means
US3413514A (en) Storage tube
US2849647A (en) Color television reproducing device
US2467734A (en) Shading compensating mosaic screen electrode
US2850669A (en) Television picture tube or the like
US3313975A (en) Electron impervious flexible shield member for electron discharge tubes
US2213172A (en) Electrode system
GB787409A (en) Improvements in or relating to cathode-ray tubes for the reproduction of colour television images
US3801855A (en) Television camera tube
US2890379A (en) Distortion correction in cathode-ray tubes
GB953881A (en) Low-power-deflection cathode ray tube
US2228958A (en) Cathode ray tube