US3411284A - Method and apparatus for spinning textile fibres - Google Patents

Method and apparatus for spinning textile fibres Download PDF

Info

Publication number
US3411284A
US3411284A US564845A US56484566A US3411284A US 3411284 A US3411284 A US 3411284A US 564845 A US564845 A US 564845A US 56484566 A US56484566 A US 56484566A US 3411284 A US3411284 A US 3411284A
Authority
US
United States
Prior art keywords
fibers
electrode
spinning
twisting
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US564845A
Other languages
English (en)
Inventor
Corbaz Andre
Poull Maurice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Development Corp
Original Assignee
Battelle Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Development Corp filed Critical Battelle Development Corp
Application granted granted Critical
Publication of US3411284A publication Critical patent/US3411284A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/28Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques using electrostatic fields

Definitions

  • a method and apparatus for spinning textile fibers including: substantially prealigning the fibers, electrically charging the fibers, delivering the charged fibers into an electrical field which propels the fibers toward an oppositely charged collecting means, and twisting the collected fibers into a thread.
  • the fibers are electrically charged before or as they enter the electrostatic field and are thereby oriented, aligned, and propelled to the collecting means.
  • the similar charges on the fibers keep them separated as they fiy to the collecting means.
  • the apparatus includes, what is called in the textile spinning art, a false twist element which is spinning rapidly and includes the collecting means.
  • This invention relates to texitle fiber spinning. More particularly, it relates to spinning the fibers of a carded sliver or roving using an electrostatic field as a part of the spinning method and apparatus.
  • This application is a continuation of our copending application Ser. No. 468,835 filed July 1, 1965, now abandoned.
  • the 'method according to this invention comprises using a static electric field, extended between a feed means spaced from a twisting means having an axial inlet, to electrically charge the fibers and thereby exert simultaneously on the fibers a propelling force, a pull and an orienting couple whereby the fibers are conveyed separately from the feed means to the inlet of the twisting means and reach the inlet in a tensioned state and in substantial alignment therewith.
  • the roving In nonelectrostatic spinning methods, the roving is not separated into individual fibers. The fibers straightened, tensioned and brought into a more parallel alignment by drawing out the yarn as it is being twisted and often twisted additionally after drawing.
  • the roving which already has the fibers substantially parallel to each other, is drawn to further preorient the fibers before they are released into the electrostatic field. Such a procedure ensures a relatively balanced feed and that practically every fiber is aligned before being spun into yarn.
  • a disadvantage of those electrostatic methods that attempt to eliminate carding or formation of a roving is the lack of control over the amount of fibers that are presented to the electrostatic field at any given time, i.e., irregular feed such as clumps and thin spots.
  • the electrode on the spinning device is constructed so that only a selected number of fibers are captured and spun into yarn. If too many fibers should be propelled toward the electrode on the spinning device, they reverse their charge and are propelled back toward the feeding device. The fibers are captured and twisted inside the channel of the spinner rather than be captured mechanically and partially twisted on the protruding end of the forming yarn.
  • the method of this invention includes charging the fibers at feed means by an electric field extending from the feed means to twisting means spaced from the feed means and having an axial inlet thereby simultaneously exerting on the fibers a pull, a propelling force and an orienting couple whereby the fibers are conveyed separately from the feed means to the inlet of the twisting means and reach the inlet in a tensioned state and is substantial alignment therewith.
  • the apparatus of this invention includes a fiber feed means having a delivery up location and an electrode contiguous to the delivery up location; fiber twisting means spaced from the feed means and having an axial inlet generally directed toward the delivery up location for receiving the fibers delivered up by the feed means and further having an electrode contiguous to the inlet; and a voltage source with electrical connections to the electrodes to charge the fibers at the feed means and produce an electric field extending from the feed means to the twisting means for simultaneously exerting on the charged fibers a pull, propelling force and an orienting couple whereby the fibers are conveyed separately from the feed means to the inlet of the twisting means and reach the inlet in a tensioned state and in substantial alignment therewith.
  • An object of this invention is to provide a method and apparatus for spinning textile fibers wherein the fibers are spun into a continuous yarn to facilitate winding.
  • Another object of this invention is to provide a method and apparatus for spinning textile fibers wherein the fibers are electrically charged and an electric field is used to propel the fibers separately to the spinning means.
  • Another object of this invention is to provide a method and apparatus for spinning textile fibers wherein the yarn is produced at a faster rate than presently used spinning methods and apparatus.
  • FIG. 1 shows a first embodiment of apparatus for spinning textile fibres in accordance with the invention
  • FIG. 2 shows a second embodiment of apparatus for spinning textile fibres in accordance with the invention.
  • FIG. 3 shows a modified construction of a portion of the apparatus illustrated in FIG. 1 or 2.
  • the apparatus illustrated in FIG. 1 comprises a draft system 11 providing means for preorienting the fibres of a roving 13 and then feeding the preoriented fibres to twisting means 15 of the false twist type to produce a thread 17.
  • the twisting means 15 comprises an axial inlet-forming portion 31 generally directly towards the nip between rollers 27 and 29 and having pulley-forming portion 33 driven by a motor 35 through the intermediary of belt 37.
  • the twisting means 15 moreover comprises a funnel 39 of insulating material axially secured to the inlet 31 having a central passage 40.
  • the thread 17, produced by the twisting means 31, passes, upon issuing from the latter, between a pair of drawing rollers 41 and 43, then to proceed to a bobbin 45 where it is wound up.
  • the rollers 27 and 29 and the portions 31 and 33 of the twisting means 15 are made of material of good electrical conductivity or are at least rendered conductive at the surface by a suitable coating to provide a first electrode contingent with a fibre delivery up location defined by the nip between the rollers 27 and 29, and a second electrode contingent with the inlet of the twisting means.
  • a source 47 of high electric voltage is connected to the electrode formed by rollers 27 and 29 through the intermediary of brushes 49 and 51 rubbing against collector rings 53 and 55 on rollers 27 and 29, and is connected to the electrode formed by the inlet-forming portion 31 through the intermediary of a brush 57 rubbing against a collector ring 59 on the pulley-forming portion 33 so as to set up a static electric field, represented by a plurality of lines of force 61, extending from the draft system 11 to the twisting means 15.
  • a static electric field represented by a plurality of lines of force 61
  • the preorienting and feed means formed by the draft system 11 are constructed to deliver up the fibres 1313' substantially separately, i.e. with substantially no contact with one another.
  • the fibres 13'13 become charged as they pass through the rollers 27 and 29.
  • the fibres 1313 upon leaving the preorienting and feed means 19, the fibres 1313 each receive a positive electric charge; each one of them is subjected to a plurality of forces which at its center of gravity, amount to a resultant that propels the fibre 13 towards the inlet 31 of the twisting means 15, and to a couple that orients it parallel to the field and that exerts a pull thereon once oriented.
  • the fibres 1313' get separately conveyed to the twisting means 15 and reach the inlet 31 thereof in a tensioned state and in alignment with the inlet 31, i.e. parallel to the axis of twist; they thus satisfy the required conditions for producing a thread 17 having a regular twist.
  • the function of the funnel 39 is firstly to prevent any charged fibres 13-13 from Striking the outer surface of the inletforming portion 31 from which, once uncharged, they would be repelled, and secondly to compel them to enter the axial passage 49 extending through the twisting means 15.
  • the twist exerted by the twisting means 15 has no effect on the roving 13, there being no mechanical connection between the thread 17 and the roving 13. It is therefore not necessary, in order to prevent the roving 13 from becoming untwisted when the thread 17 is being twisted, to tie the rotation of the twisting member 15 to that of the winding bobbin 45 as in conventional arrangements.
  • the illustrated arrangement thus enables the movement of these two members (15 and 45) to be disjoined.
  • the terminal or the terminal of source 47 can inditferently be connected to the electrode formed by rollers 27 and 29.
  • the draft system 11 of the above-described apparatus enables the fibres 13'13' to be preoriented prior to being delivered up into the static electric field 61.
  • Such preorientation is applicable to the fibres of a roving.
  • the fibers are supplied to the apparatus in the form of a web issuing directly from a carder, the fibers are in greater disorder and it would be appropriate in this case to render them parallel by some modified form of preorienting and feed means. Such means are shown in the embodiment of FIG. 2.
  • a web 63 of disordered fibres is conveyed by a first conveyor belt 65 of electrically conductive material, which causes the fibres to enter a static electric field 67, termed preorienting field, set up between an electrode 69' and the belt 65 forming the associated electrode.
  • a second conveyor belt 71 of low electrically conductive material, is arranged with its useful pass 73 extending through the preorienting field 67, the electrode 69' being located between the useful and return passes of belt 71 and spaced from the inoperative surface of the useful pass 73.
  • This field is set up by a high voltage electric source having one terminal connected to electrode 69 and the other terminal connected to a brush 75 rubbing against a collector ring 77 in electrical contact with belt 65.
  • the pass 73 extends also through a second field 61 set up between a pair of electrodes formed by an electrode 69" and the inlet-forming portion of twisting means 15 similar to the twisting means 15 in FIG. 1.
  • This electrode 69" is positioned so as to be contingent with the pass 73.
  • the two fields 61 and 67 are preferably set up by means of single electric source 47.
  • the terminal of the source 47 is connected to the brush 75, associated with the electrode-forming belt 65, and to the brush 57, associated with the twisting means 15, and its terminal is connected to the electrodes 69 and 69".
  • the latter are preferably formed, as shown, by two portions of a common electrically conductive part 69.
  • the terminal of source 47 is moreover preferably grounded.
  • the fibres making up web 63 are transported in disorder, i.e. without any prior orientation, on the belt 65 to a discharge location in the field 67. Under the action of the latter, they stand up parallel to the lines of force, become negatively charged and, through being attracted by the positive electrode 69', are transferred to the belt 71 to adhere separately by one of their ends, in substantially parallel relationship, to the operative surface of the useful pass 73 at a receiving location traversed by pass 73, which adherence is obtained by positioning the electrode 69 at a distance such from the pass 73 that the fibres 63-63 will not lose their negative charge through the belt 71.
  • the pass 73 then shifts the adhering fibres 6363' to a delivery up location, also traversed by pass 73, where they are introduced into the field 61 and come to be positioned very close to electrode 69".
  • the field 61 has a value such as to cause the fibres to lose their negative charge through the belt 71 and to acquire a positive charge. They are then subjected by the field 61 simultaneously to a propelling force, a pull and an orienting couple whereby the fibres 6363' as in the preceding embodiment, are separately conveyed from the belt 71 to the twisting means 15 and reach the inlet thereof in a tensioned state and in substantial alignment with this inlet.
  • this embodiment in relation to the preceding one, has the advantage of eliminating the drawing roller trains for progressively preorienting the fibres. This results in a saving of several mechanical components that are costly to service; this advantage, coupled with the increased production made possible by dissociating the twisting and Winding movements, renders this method particularly interesting.
  • FIG. 3 shows a particular arrangement enabling this source to be combined with the twisting means 15 by using as a source an electrostatic machine of the Van de Graaff type.
  • This machine comprises a hollow, substantially spherical, electrically conductive body 101 carried by an insulated support 103 secured to a base 105.
  • a charging belt 107 of insulating material passes over a lower roller 109 that is electrically connected to, and rotatably mounted on, the base 105, over an upper driven roller 111, that is electrically connected to, and rotatably mounted inside the body 101, and through a first opening 113 formed in the body 101.
  • Combs 115 and 117 are respectively intended to eliminate towards the base 105 through the sphere 101 the electric charges of opposite sign carried by the upward and downward passes of belt 107.
  • the latter is driven by roller 109 powered by a motor 119.
  • the upper roller 111 is axially solid with the rotary portion of the twist means whose inlet-forming portion 31 terminates in a first opening 113 formed in body 101, flush with the outer surface of the latter.
  • the body 101 thus forms the electrode of the twisting means with the edge of the opening surrounding the inlet-forming portion 31 being contiguous to, although slightly spaced from, the inlet per se.
  • a funnel 39 of electrically insulating material is axially mounted on portion 15 and extends outside body 101.
  • the roller 111 and the rotary portion of the twisting means are formed with an axial passage 40 to enable the thread 17 produced by the twisting means to pass therethrough, and an insulating sleeve 121 then guides the thread 17 out of the body 101.
  • the electrode-forming body 101, and with it the rotary portion of the twisting means 15 which is electrically connected thereto become charged at high voltage.
  • This arrangement thus, for example, combines the high voltage source 47 and the twisting means 15 of FIG. 1.
  • a method of spinning textile fibers comprising the steps of:
  • a method of spinning textile fibers comprising the steps of:
  • a method of spinning textile fibers comprising the steps of:
  • a method of spinning textile fibers comprising the steps of:
  • Apparatus for spinning textile fibers comprising:
  • Apparatus for spinning textile fibers comprising:
  • feed means contiguous to, and for receiving said fibers from said fiber preorienting means, said feed means having a discharge end;
  • said preorienting means is at least two moving belts positioned to carry the fibers between their opposite surfaces and a pair of rollers having a surface speed greater than the surface speed of said belts, one of said pair of rollers being fluted, said pair of rollers additionally being said feed means.
  • Apparatus for spinning textile fibers comprising:
  • a voltage source provided by an electrostatic machine of the Van de Graatf type for providing an electrical field and including a hollow, substantially spherical, electrically conductive body having a first opening and a second opening forming the electrode for said twisting means, an insulating support carrying said body, a driven roller rotatably mounted outside said body, and a charging belt of insulating material passing over said rollers and through said first opening, said twisting means having a rotary portion inside said body and axially solid with said driven roller, and said rotary portion and said driven roller having an axial passage extending therethrough, said passage terminating at the rotary portion end thereof in said second opening to form said axial inlet, and said driven roller, and said driving roller having electrical connections respectively with said body and with the electrode of said feed means to form a static electric field extending from said feed means to said twisting means whei eby the electrodes at said feed means produces a charge on said fibers and said electric field exerts a pulling force on said fibers simultaneously straightening and

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
US564845A 1964-07-03 1966-07-13 Method and apparatus for spinning textile fibres Expired - Lifetime US3411284A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH878664A CH417421A (fr) 1964-07-03 1964-07-03 Procédé de filature de fibres textiles
BE666268A BE666268A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1964-07-03 1965-07-01

Publications (1)

Publication Number Publication Date
US3411284A true US3411284A (en) 1968-11-19

Family

ID=25656240

Family Applications (1)

Application Number Title Priority Date Filing Date
US564845A Expired - Lifetime US3411284A (en) 1964-07-03 1966-07-13 Method and apparatus for spinning textile fibres

Country Status (6)

Country Link
US (1) US3411284A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
BE (1) BE666268A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
CH (1) CH417421A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
GB (1) GB1085155A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
NL (1) NL6508436A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
SE (1) SE316402B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488935A (en) * 1968-12-31 1970-01-13 Daniel W Maxham Open end spinning or twisting machine
US3665695A (en) * 1970-08-25 1972-05-30 Electrospin Corp Textile machine
US3696600A (en) * 1971-04-12 1972-10-10 Us Agriculture Apparatus for producing core yarn
US3696603A (en) * 1971-04-12 1972-10-10 Us Agriculture Electrostatic fiber collecting and yarn spinning apparatus
US3699760A (en) * 1971-04-19 1972-10-24 North American Rockwell Open end electrostatic spinning head
US3699765A (en) * 1970-11-10 1972-10-24 North American Rockwell Electrostatic spinning head
US3699766A (en) * 1970-12-15 1972-10-24 North American Rockwell Drafting cot assembly
US3706193A (en) * 1971-04-19 1972-12-19 Electrospin Corp Spinning head
US3744231A (en) * 1971-04-19 1973-07-10 Electrospin Corp Apparatus and method for freeing drafting rolls of adhering fibers
US3762148A (en) * 1972-03-27 1973-10-02 Hoechst Fibers Inc Texturing process and apparatus therefor
US3768243A (en) * 1971-04-12 1973-10-30 Us Agriculture Yarn twist control apparatus for electrostatic spinner
US3775959A (en) * 1972-03-27 1973-12-04 Hoechst Fibers Inc Electrostatic texturing process and apparatus therefor
US3845611A (en) * 1972-05-03 1974-11-05 Electrospin Corp Method and apparatus for producing composite yarn
US3901012A (en) * 1973-06-07 1975-08-26 Elitex Zavody Textilniho Method of and device for processing fibrous material
US3945185A (en) * 1973-12-19 1976-03-23 Osaka Kiko Co., Ltd. Pneumatic and static electricity open-end spinning method and apparatus therefor
US4002016A (en) * 1974-08-16 1977-01-11 Veb Spinnereimaschinenbau Open end spinning apparatus
US4170866A (en) * 1978-07-31 1979-10-16 Aschenbrenner Frank A Process and apparatus for producing open-end spun yarn
US4468922A (en) * 1983-08-29 1984-09-04 Battelle Development Corporation Apparatus for spinning textile fibers
US5412846A (en) * 1992-10-22 1995-05-09 Rieter Ingolstadt Spinnereimaschinenbau Ag Draw frame fleece hopper including a wear resistant insert
US20160222552A1 (en) * 2015-01-30 2016-08-04 Board Of Regents, The University Of Texas System Systems and methods for electrostatically individualizing and aligning fibers
WO2024240823A1 (en) * 2023-05-22 2024-11-28 Säntis Textiles Ag Integrated textile recycling and spinning machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2231324A (en) * 1938-05-04 1941-02-11 Behr Manning Corp Apparatus for and method of making hat bats
US2442880A (en) * 1944-04-04 1948-06-08 Celanese Corp Textile product
US2468827A (en) * 1944-10-04 1949-05-03 American Viscose Corp Electrostatic control of fibers
US2711626A (en) * 1951-10-24 1955-06-28 Southern Res Inst Method and apparatus for collecting fibrous material and forming it into a strand
US3107478A (en) * 1961-12-20 1963-10-22 Arshinov Serguei Ivanovich Method and apparatus for yarn production from fibres
US3163976A (en) * 1962-05-25 1965-01-05 Alsacienne Constr Meca Spinning device
GB979962A (en) * 1961-12-20 1965-01-06 Central Ny Nii Khlopchatobumaz Electrostatic spinning of textile fibres

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2231324A (en) * 1938-05-04 1941-02-11 Behr Manning Corp Apparatus for and method of making hat bats
US2442880A (en) * 1944-04-04 1948-06-08 Celanese Corp Textile product
US2468827A (en) * 1944-10-04 1949-05-03 American Viscose Corp Electrostatic control of fibers
US2711626A (en) * 1951-10-24 1955-06-28 Southern Res Inst Method and apparatus for collecting fibrous material and forming it into a strand
US3107478A (en) * 1961-12-20 1963-10-22 Arshinov Serguei Ivanovich Method and apparatus for yarn production from fibres
GB979962A (en) * 1961-12-20 1965-01-06 Central Ny Nii Khlopchatobumaz Electrostatic spinning of textile fibres
US3163976A (en) * 1962-05-25 1965-01-05 Alsacienne Constr Meca Spinning device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488935A (en) * 1968-12-31 1970-01-13 Daniel W Maxham Open end spinning or twisting machine
US3665695A (en) * 1970-08-25 1972-05-30 Electrospin Corp Textile machine
US3699765A (en) * 1970-11-10 1972-10-24 North American Rockwell Electrostatic spinning head
US3699766A (en) * 1970-12-15 1972-10-24 North American Rockwell Drafting cot assembly
US3768243A (en) * 1971-04-12 1973-10-30 Us Agriculture Yarn twist control apparatus for electrostatic spinner
US3696603A (en) * 1971-04-12 1972-10-10 Us Agriculture Electrostatic fiber collecting and yarn spinning apparatus
US3696600A (en) * 1971-04-12 1972-10-10 Us Agriculture Apparatus for producing core yarn
US3699760A (en) * 1971-04-19 1972-10-24 North American Rockwell Open end electrostatic spinning head
US3706193A (en) * 1971-04-19 1972-12-19 Electrospin Corp Spinning head
US3744231A (en) * 1971-04-19 1973-07-10 Electrospin Corp Apparatus and method for freeing drafting rolls of adhering fibers
US3762148A (en) * 1972-03-27 1973-10-02 Hoechst Fibers Inc Texturing process and apparatus therefor
US3775959A (en) * 1972-03-27 1973-12-04 Hoechst Fibers Inc Electrostatic texturing process and apparatus therefor
US3845611A (en) * 1972-05-03 1974-11-05 Electrospin Corp Method and apparatus for producing composite yarn
US3901012A (en) * 1973-06-07 1975-08-26 Elitex Zavody Textilniho Method of and device for processing fibrous material
US3945185A (en) * 1973-12-19 1976-03-23 Osaka Kiko Co., Ltd. Pneumatic and static electricity open-end spinning method and apparatus therefor
US4002016A (en) * 1974-08-16 1977-01-11 Veb Spinnereimaschinenbau Open end spinning apparatus
US4170866A (en) * 1978-07-31 1979-10-16 Aschenbrenner Frank A Process and apparatus for producing open-end spun yarn
US4468922A (en) * 1983-08-29 1984-09-04 Battelle Development Corporation Apparatus for spinning textile fibers
US5412846A (en) * 1992-10-22 1995-05-09 Rieter Ingolstadt Spinnereimaschinenbau Ag Draw frame fleece hopper including a wear resistant insert
US20160222552A1 (en) * 2015-01-30 2016-08-04 Board Of Regents, The University Of Texas System Systems and methods for electrostatically individualizing and aligning fibers
WO2016123384A1 (en) * 2015-01-30 2016-08-04 Board Of Regents, The University Of Texas System Systems and methods for electrostatically individualizing and aligning fibers
WO2024240823A1 (en) * 2023-05-22 2024-11-28 Säntis Textiles Ag Integrated textile recycling and spinning machine

Also Published As

Publication number Publication date
CH878664A4 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1966-02-28
SE316402B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1969-10-20
CH417421A (fr) 1967-02-15
DE1510533A1 (de) 1969-09-18
GB1085155A (en) 1967-09-27
BE666268A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1966-01-03
DE1510533B2 (de) 1972-07-06
NL6508436A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1966-01-04

Similar Documents

Publication Publication Date Title
US3411284A (en) Method and apparatus for spinning textile fibres
US4468922A (en) Apparatus for spinning textile fibers
US2349950A (en) Method and apparatus for spinning
US2158415A (en) Method of producing artificial fibers
US3845611A (en) Method and apparatus for producing composite yarn
US2123992A (en) Method and apparatus for the production of fibers
US3901012A (en) Method of and device for processing fibrous material
US2116942A (en) Method and apparatus for the production of fibers
US3107478A (en) Method and apparatus for yarn production from fibres
US3122794A (en) Drafting and scavenging apparatus
US3657871A (en) Method and apparatus for spreading or dividing yarn, tow or the like
US4165600A (en) Apparatus for open-end spinning of fibers
CN109457337A (zh) 一种静电装置
US4598537A (en) Method of manufacturing core yarns from fiber bands
US4365464A (en) Apparatus to uniformly control wrapping a filament around the surface of a spun core yarn during ring spinning
US3696603A (en) Electrostatic fiber collecting and yarn spinning apparatus
US3688487A (en) Method and apparatus for spinning flying fibers into a twisted yarn
US2711626A (en) Method and apparatus for collecting fibrous material and forming it into a strand
US3334483A (en) Method of making direct spinner novelty yarn
US3945185A (en) Pneumatic and static electricity open-end spinning method and apparatus therefor
US3358432A (en) Spinning apparatus and method utilizing miniature carding rolls
PL165034B1 (en) Method and device for preparing the fibres for spinning
US4067181A (en) Fiber-disintegrating unit for a spinning machine
US3038293A (en) Pavek
US4479348A (en) Apparatus for spinning fasciated yarn