US3407638A - Method for forming serrated or corrugated hollow tubes - Google Patents

Method for forming serrated or corrugated hollow tubes Download PDF

Info

Publication number
US3407638A
US3407638A US537173A US53717366A US3407638A US 3407638 A US3407638 A US 3407638A US 537173 A US537173 A US 537173A US 53717366 A US53717366 A US 53717366A US 3407638 A US3407638 A US 3407638A
Authority
US
United States
Prior art keywords
tube
mandrel
teeth
dies
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US537173A
Inventor
Howard A Greis
Vincent T Kubert
George H Pettee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinefac Corp
Original Assignee
Kinefac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinefac Corp filed Critical Kinefac Corp
Priority to US537173A priority Critical patent/US3407638A/en
Priority to GB53110/66A priority patent/GB1125188A/en
Priority to DK4667AA priority patent/DK130951B/en
Priority to NL6700126A priority patent/NL6700126A/xx
Priority to SE1889/67A priority patent/SE321913B/xx
Priority to FR96188A priority patent/FR1515321A/en
Priority to ES337295A priority patent/ES337295A1/en
Priority to CH293667A priority patent/CH447084A/en
Priority to NO00167173A priority patent/NO127795B/no
Priority to BE695701D priority patent/BE695701A/xx
Priority to DE19671602264 priority patent/DE1602264C/en
Application granted granted Critical
Publication of US3407638A publication Critical patent/US3407638A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/04Corrugating tubes transversely, e.g. helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/02Corrugating tubes longitudinally

Definitions

  • This invention relates to an improved method for producing serrated or corrugated hollow tubes which have particular utility as heat transfer media, as well as other uses.
  • a distillation apparatus employing serrated or corrugated tubes as heat transfer surfaces has previously been disclosed in U.S. application Ser. No. 242,184, filed Dec. 4, 1962, now Patent No. 3,244,601.
  • These tubes are thinwalled hollow cylinders, having nominal diameters of from 2 /2 to 6 inches, and of varying lengths.
  • the corrugations or serrations are substantially longitudinal and provide both internal and external tube surfaces having alternate ridges and grooves running along the main body of the tube.
  • corrugated or serrated surfaces can be produced either internally or externally upon cylindrical members by modifying conventional thread rolling apparatus.
  • a familiar example of this is found in knurled surfaces.
  • difiiculties arise when attempting to provide both internal and external corrugations or serrations on a thin-walled member, so that the transverse thickness of the corrugated wall in the completed member is substantially uniform,
  • one object of the present invention is to provide an improved method for economically producing thin-walled hollow tubes having regularly spaced, substantially longitudinal corrugations or serrations out of smooth tubes.
  • Another object of the invention is to provide an improved method for rolling internal and external, substantially longitudinal corrugations in a smooth tube member so that the final product has walls of substantially uniform thickness.
  • the invention is practiced by placing a smooth thin-walled hollow tube over a mandrel having longitudinal teeth with uniform spacing.
  • Two or more external toothed dies with a slightly greater tooth spacing are rotated while they are forced radially against the tube, so that the tube wall is deformed between the teeth of mandrel and dies.
  • the tube and mandrel are moved longitudinally between the dies.
  • the mandrel anddies are rotated in synchronism as the process commences, and thereafter only the dies are rotated while radial force is maintained, the deformed tube itself then performingthe synchronizing function.
  • FIG. 1 is a perspective view of a portion of a corrugated tube fabricated in accordance with the invention
  • FIG. 2 is a cross-sectional view of a smooth tube mounted on a mandrel
  • FIG. 3 is a schematic plan view of one type of apparatus utilized to mount the uncorru gated tube on the mandrel, I
  • FIG. 4 is a schematic plan view of the apparatus used to corrugate the tubes
  • FIG. 5 is a cross-sectional view of the tube, mandrel, and dies, taken along lines V, V of FIG. 4,
  • FIG. 6 is a view, partly in section, illustrating the principle of operation.
  • FIGS. 7 and 8 are sectional longitudinal and transverse views respectively illustrating an alternate means for synchronizing dies and mandrels.
  • a tube 1 has external corrugations or serrations 2 and corresponding internal corrugations or serrations 3.
  • the tube diameter and length will vary according to the type of apparatus in Which it is to be used.
  • the configuration and spacing of the corrugations may also vary as is disclosed, for example, in United States patent application entitled Distillation Apparatus, filed Mar. 1, 1962 and having Ser. No. 176,711, now abandoned.
  • the method herein disclosed can produce configurations ranging from smoothly contoured corrugations to almost V-shaped serrations, all 'of which will be referred to hereinafter as corrugations for convenience.
  • the external and internal corrugations mate with one another so that the wall thickness of tube 1 is uniform.
  • Suitable materials for tube 1 consist of various ductile or semi-ductile materials such as copper, -10 coppernickel, aluminum or other readily deformable materials.
  • the first step of the process comprises placing a mandrel having an outside diameter slightly smaller than the inside diameter of the tube 1, within the tube.
  • Mandrel 4 is formed with parallel regularly spaced teeth of the configuration desired.
  • High carbon steel has been found to be a satisfactory material for mandrel 4.
  • the mandrel extends at least the length of tube 1 and fits within the tube.
  • the mandrel includes, on one end, a synchronizing pinion 5 and a connecting shaft portion 6.
  • the end having the synchronizing pinion 5 is abutted against a fixed support 7 while the opposite end is started into one end of tube 1.
  • a cylindrical extension 8 of a movable base 9 In the opposite end of tube 1 is placed a cylindrical extension 8 of a movable base 9. Rollers or the like (not shown) may be provided at intervals along the length of mandrel 4 and tube 1 to maintain alignment. Cables 10 and 11, secured to movable base 9, are also connected to the drums of a winch 12. Operation of winch 12 will consequently force tube 1 onto mandrel 4.
  • the end of tube 1 is pulled onto the mandrel until it overlaps the clamping grooves 13 cut in the mandrel.
  • the diameter of the synchronizing pinion 5 is preferably smaller than the mandrel diameter. This allows the tube to be placed over the mandrel from the other end, as well, which may be preferable if automatic apparatus is to be used.
  • a suitable apparatus for providing the corrugations or serrations on tube 1.
  • a pair of yokes 1 4 and 15 are adapted for rotatably supporting toothed dies 16, 17 respectively.
  • Yokes 14, 15 are adapted to be skewed in vertical planes, as shown, and means are provided such as hydraulic cylinders (not shown) to force the yokes and dies toward one another, as indicated by the arrows 18, 19, with force sufficient to deform tube 1.
  • a suitable machine for giving the proper pressure and orientation of the dies may be provided by adapting a standard thread rolling machine, such as the Kine-Roller machine, model MC-S-FT, manufactured by Kinefac Corporation of Worcester, Massachusetts. This machine is modified by substitution of the dies 16, 17 for the rollers normally used in thread rolling.
  • Means for rotating dies 16, 17 at the same speed include a drive motor 20, meshed gears 21, 22 and 23 with universal drive shafts 24, 25 connected to the shafts of dies 16, 17 as will be apparent from the drawing.
  • a mechanism is provided to clamp tube 1 to mandrel 4, whichis illustrated schematically by a number of wedges 26 driven into clamping grooves 13 (also see'FIG. 3). It will be apparent that there are various types of automatic clamping devices which would also be suitable.
  • a movable base'27 serves to exert nominal longitudinal force upon the tube if needed, although in most cases, the skew angle of dies 16, 17 will provide suflicient axial thrust component to move the tube and mandrel longitudinally between the dies as the process takes place.
  • the mandrel and die teeth In order for the tube to have uniform wall thickness, the mandrel and die teeth must rotate in proper phase relationship. This relationship is provided automatically once a section of the tube has been corrugated due to the presence of the deformed tube wall in intimate contact with the teeth of both dies and mandrel. However, at the start of the process, there is no assurance that the teeth of the mandrel and dies will be in registry with one another, i.e., that the crowns of the die teeth will fall exactly between the crowns of the mandrel teeth (similar to meshing gears) so that the wall thickness of the deformed tube will be uniform throughout.
  • a synchronizing device shown generally as 29 includes a pair of synchro nizing gears 30, 31 mounted on movable yokes 32, 33 which mesh with the synchronizing pinion 5.
  • Gear 30 is driven from the shaft of die 16 through a universal drive shaft 34 connected thereto by an adjustable coupling 35.
  • universal drive shaft 34 (as well as univensal drive shafts 24,- 25 mentioned previously) are of the so-called constant velocity type which provide correspondence of angular velocity between driving and driven shafts.
  • ratio of teeth of the synchronizing gears 30, 31 to synchronizing pinion must be the same as the ratio of teeth of dies 16, 17 to those on mandrel 4.
  • the coupling 35 is used to adjust for lost motion and torsional elasticity of the path between dies 16, 17 and mandrel 4 so that the dies and the mandrel are synchronized in proper phase relationship when the system is rotating under torsional stress.
  • the purpose of the movable yokes 32, 33 is to allow gears 31, 32 to pivot away from the synchronizing pinion 5, so that the tube 1 and mandrel 4 will freely pass therebetween, once the synchronizing function has been taken over by the deformed tube wall and the synchronizing gears are no longer needed.
  • FIGURE 5 illustrates the direction of rotation of dies, mandrel and tube. There it is seen that proper phase relationship of dies and mandrel is provided by the deformed tube, once synchronization is achieved.
  • FIG. 6 of the drawing shows the principles governing selection of tooth and skew angles on the dies and mandrel.
  • The, angle of skew A is greatly exaggerated for purposes of illustration only, and would normally be in the neighborhood of /a of a degree to 5 degrees.
  • the teeth 16a on die 16 are helical, so that, at the point of meshing with the deformed tube wall, they lie parallel to the mandrel teeth.
  • the helix angle of die teeth 16a is the same as the angle of skew A.
  • yokes132, 33 are pivoted to disable the synchronizing device and to allow the tubeand mandrel to pass freelybetweenthe synchronizing gears as the process proceeds. Only the" dies 16 and 17 are now being rotated by the motor, while maintaining radial force. Nominal'axial pressure may be" exerted by movable base 27, if desired, to assist in moving the tube and mandrel.
  • FIGURES 7 and 8 illustrate an alternate'method of synchronizing through the use of a leader member 39 in lieu of the synchronizing device 29 of FIG. 4.
  • leader 39 which is a piece the shape of a corrugated tube. This is placed on mandrel 4 ahead of the end of tube 1 and it will heapparent that the die and mandrel will be in proper phase relation as the end of tube 1 passes under the starting relief portion 16b of the die.
  • This is a simpler way of achieving synchronization, but it will be seen that it requires more time, is less adaptable to automatic processing, and does not permit forming in middle of tube while leaving ends smooth'for easy mounting and sealing in a heat exchanger.
  • the leader 39 is disengaged automatically as it moves beyond the die.
  • tube 1 is corrugated to the extent desired, it isremoved from mandrel 4.
  • the entire length of tube 1 can be corrugated by the process, it maybe suitable to leave each end smooth, as shown, so that it can be more easily attached to other structural members.
  • the circular pitch 'of the die teeth must be the same a's the circular pitch of the teeth of the deformed tube to achieve proper meshing.
  • the actual cir-, cular pitch of the mandrel teeth must be slightly less than that of the die teeth, due to the fact that the wall thickness of the tube increases the effective circular pitch ofthe mandrel teeth.
  • the process disclosed herein has the advantage of being simple and, moreover, is economical and adapted to use for various diameter tubes by providing different diameter mandrels. Great flexibility is achieved through the factthat the length can be controlled very easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Seats For Vehicles (AREA)

Description

H. A. GREIS ETAL 3,407,638
I METHOD on FORMING SERRATED 0R CORRUGATED HOLLOW TUBES Filed March 24. 1966 2 Sheets-Sheet 1 INVENTORS HOWARD A. GREIS VINCENT T. KUBERT, GEORGE H. PETTEE, BY 6. @224,
THEIR ATTORNEY.
Oct. 29, 1968 H. A. GREIS ETAL 7,
METHOD FOR FORMING SERRATED OR CORRUGATED HOLLOW TUBES I Filed March 24, 1966 2 Sheets-Sheet 2 INVENTORS HOWARD A. GREIS, VINCENT T. KUBERT, GEORGE H. P ETTEE,
BY 4/. f. @0734.
THEIR ATTORNEY.
United States Patent 3,407,638 METHOD FOR FORMING SERRATED OR CORRUGATED HOLLOW TUBES Howard A. Greis, Holden, Vincent T. Kubert, Oxford, and
This invention relates to an improved method for producing serrated or corrugated hollow tubes which have particular utility as heat transfer media, as well as other uses.
A distillation apparatus employing serrated or corrugated tubes as heat transfer surfaces has previously been disclosed in U.S. application Ser. No. 242,184, filed Dec. 4, 1962, now Patent No. 3,244,601. These tubes are thinwalled hollow cylinders, having nominal diameters of from 2 /2 to 6 inches, and of varying lengths. The corrugations or serrations are substantially longitudinal and provide both internal and external tube surfaces having alternate ridges and grooves running along the main body of the tube.
Uncorrugated thin-walled tubes of various materials and sizes are readily and economically available; however, the cost of accurately formed serrated or corrugated tubes has been high due to lack of a suitable method for making them economically.
It has been suggested previously, that corrugated or serrated surfaces can be produced either internally or externally upon cylindrical members by modifying conventional thread rolling apparatus. A familiar example of this is found in knurled surfaces. However, difiiculties arise when attempting to provide both internal and external corrugations or serrations on a thin-walled member, so that the transverse thickness of the corrugated wall in the completed member is substantially uniform,
Accordingly, one object of the present invention is to provide an improved method for economically producing thin-walled hollow tubes having regularly spaced, substantially longitudinal corrugations or serrations out of smooth tubes.
Another object of the invention is to provide an improved method for rolling internal and external, substantially longitudinal corrugations in a smooth tube member so that the final product has walls of substantially uniform thickness.
Briefly stated, the invention is practiced by placing a smooth thin-walled hollow tube over a mandrel having longitudinal teeth with uniform spacing. Two or more external toothed dies with a slightly greater tooth spacing are rotated while they are forced radially against the tube, so that the tube wall is deformed between the teeth of mandrel and dies. The tube and mandrel are moved longitudinally between the dies. The mandrel anddies are rotated in synchronism as the process commences, and thereafter only the dies are rotated while radial force is maintained, the deformed tube itself then performingthe synchronizing function.
The invention will be better understood from the following description, taken in connection with the accompanying drawings in which:
FIG. 1 is a perspective view of a portion of a corrugated tube fabricated in accordance with the invention,
FIG. 2 is a cross-sectional view of a smooth tube mounted on a mandrel,
FIG. 3 is a schematic plan view of one type of apparatus utilized to mount the uncorru gated tube on the mandrel, I
FIG. 4 is a schematic plan view of the apparatus used to corrugate the tubes,
3,407,638 Patented Oct. 29, 1968 ice FIG. 5 is a cross-sectional view of the tube, mandrel, and dies, taken along lines V, V of FIG. 4,
FIG. 6 is a view, partly in section, illustrating the principle of operation, and,
FIGS. 7 and 8 are sectional longitudinal and transverse views respectively illustrating an alternate means for synchronizing dies and mandrels.
Referring to FIG. 1 of the drawing, a tube 1 has external corrugations or serrations 2 and corresponding internal corrugations or serrations 3. The tube diameter and length will vary according to the type of apparatus in Which it is to be used. The configuration and spacing of the corrugations may also vary as is disclosed, for example, in United States patent application entitled Distillation Apparatus, filed Mar. 1, 1962 and having Ser. No. 176,711, now abandoned. The method herein disclosed can produce configurations ranging from smoothly contoured corrugations to almost V-shaped serrations, all 'of which will be referred to hereinafter as corrugations for convenience. However, it is noted that the external and internal corrugations mate with one another so that the wall thickness of tube 1 is uniform.
Suitable materials for tube 1 consist of various ductile or semi-ductile materials such as copper, -10 coppernickel, aluminum or other readily deformable materials.
Referring to FIG. 2 of the drawing, the first step of the process comprises placing a mandrel having an outside diameter slightly smaller than the inside diameter of the tube 1, within the tube. Mandrel 4 is formed with parallel regularly spaced teeth of the configuration desired. High carbon steel has been found to be a satisfactory material for mandrel 4. The mandrel extends at least the length of tube 1 and fits within the tube.
Referring to FIG. 3 of the drawing, a suitable apparatus for placing tube 1 on mandrel 4 is illustrated. The mandrel includes, on one end, a synchronizing pinion 5 and a connecting shaft portion 6. The end having the synchronizing pinion 5 is abutted against a fixed support 7 while the opposite end is started into one end of tube 1. In the opposite end of tube 1 is placed a cylindrical extension 8 of a movable base 9. Rollers or the like (not shown) may be provided at intervals along the length of mandrel 4 and tube 1 to maintain alignment. Cables 10 and 11, secured to movable base 9, are also connected to the drums of a winch 12. Operation of winch 12 will consequently force tube 1 onto mandrel 4. The end of tube 1 is pulled onto the mandrel until it overlaps the clamping grooves 13 cut in the mandrel.
It should be noted that the diameter of the synchronizing pinion 5 is preferably smaller than the mandrel diameter. This allows the tube to be placed over the mandrel from the other end, as well, which may be preferable if automatic apparatus is to be used.
Referring now to FIG. 4 of the drawing, a suitable apparatus is shown for providing the corrugations or serrations on tube 1. A pair of yokes 1 4 and 15 are adapted for rotatably supporting toothed dies 16, 17 respectively. Yokes 14, 15 are adapted to be skewed in vertical planes, as shown, and means are provided such as hydraulic cylinders (not shown) to force the yokes and dies toward one another, as indicated by the arrows 18, 19, with force sufficient to deform tube 1. A suitable machine for giving the proper pressure and orientation of the dies may be provided by adapting a standard thread rolling machine, such as the Kine-Roller machine, model MC-S-FT, manufactured by Kinefac Corporation of Worcester, Massachusetts. This machine is modified by substitution of the dies 16, 17 for the rollers normally used in thread rolling.
Means for rotating dies 16, 17 at the same speed include a drive motor 20, meshed gears 21, 22 and 23 with universal drive shafts 24, 25 connected to the shafts of dies 16, 17 as will be apparent from the drawing.
A mechanism is provided to clamp tube 1 to mandrel 4, whichis illustrated schematically by a number of wedges 26 driven into clamping grooves 13 (also see'FIG. 3). It will be apparent that there are various types of automatic clamping devices which would also be suitable.
At the other end of tube 1, a movable base'27 (with bearings 28 to allow rotation) serves to exert nominal longitudinal force upon the tube if needed, although in most cases, the skew angle of dies 16, 17 will provide suflicient axial thrust component to move the tube and mandrel longitudinally between the dies as the process takes place.
In order for the tube to have uniform wall thickness, the mandrel and die teeth must rotate in proper phase relationship. This relationship is provided automatically once a section of the tube has been corrugated due to the presence of the deformed tube wall in intimate contact with the teeth of both dies and mandrel. However, at the start of the process, there is no assurance that the teeth of the mandrel and dies will be in registry with one another, i.e., that the crowns of the die teeth will fall exactly between the crowns of the mandrel teeth (similar to meshing gears) so that the wall thickness of the deformed tube will be uniform throughout.
In order to accomplish synchronizing, a synchronizing device shown generally as 29 includes a pair of synchro nizing gears 30, 31 mounted on movable yokes 32, 33 which mesh with the synchronizing pinion 5. Gear 30 is driven from the shaft of die 16 through a universal drive shaft 34 connected thereto by an adjustable coupling 35. It is important to note that universal drive shaft 34 (as well as univensal drive shafts 24,- 25 mentioned previ ously) are of the so-called constant velocity type which provide correspondence of angular velocity between driving and driven shafts. Also, ratio of teeth of the synchronizing gears 30, 31 to synchronizing pinion must be the same as the ratio of teeth of dies 16, 17 to those on mandrel 4. It will be apparent, therefore, that there is a torsion path set up through dies 16, 17, coupling 35, universal drive shaft 34, synchronizing gears 30, 33, synchronizing pinion 5, shaft 6 and mandrel 4, so that when synchronizing gears 30, 31 are in place, mandrel 4 will be constrained to rotate with dies 16, 17.
The coupling 35 is used to adjust for lost motion and torsional elasticity of the path between dies 16, 17 and mandrel 4 so that the dies and the mandrel are synchronized in proper phase relationship when the system is rotating under torsional stress.
The purpose of the movable yokes 32, 33 is to allow gears 31, 32 to pivot away from the synchronizing pinion 5, so that the tube 1 and mandrel 4 will freely pass therebetween, once the synchronizing function has been taken over by the deformed tube wall and the synchronizing gears are no longer needed.
The schematic view of FIGURE 5 illustrates the direction of rotation of dies, mandrel and tube. There it is seen that proper phase relationship of dies and mandrel is provided by the deformed tube, once synchronization is achieved.
Reference to FIG. 6 of the drawing shows the principles governing selection of tooth and skew angles on the dies and mandrel. The, angle of skew A is greatly exaggerated for purposes of illustration only, and would normally be in the neighborhood of /a of a degree to 5 degrees. It will be observed that the teeth 16a on die 16 are helical, so that, at the point of meshing with the deformed tube wall, they lie parallel to the mandrel teeth. Thus if longitudinal tube corrugations are to be formed, the helix angle of die teeth 16a is the same as the angle of skew A. It will also be observed that rotation of die 16 in the direction of arrow 36 causes an axial thrust component on tube and mandrel in the direction of arrow 37, as determined by skew angle A. It is not necessary that the corrugations be 15. Once a short length of tube 1 has been furnished with;
corrugations, as indicated at 38 in FIG. 4, yokes132, 33 are pivoted to disable the synchronizing device and to allow the tubeand mandrel to pass freelybetweenthe synchronizing gears as the process proceeds. Only the" dies 16 and 17 are now being rotated by the motor, while maintaining radial force. Nominal'axial pressure may be" exerted by movable base 27, if desired, to assist in moving the tube and mandrel.
FIGURES 7 and 8 illustrate an alternate'method of synchronizing through the use of a leader member 39 in lieu of the synchronizing device 29 of FIG. 4. In FIGS. 7 and 8, a die 16, mandrel 4 are shown commenced in proper phase relationship by leader 39, which is a piece the shape of a corrugated tube. This is placed on mandrel 4 ahead of the end of tube 1 and it will heapparent that the die and mandrel will be in proper phase relation as the end of tube 1 passes under the starting relief portion 16b of the die. This is a simpler way of achieving synchronization, but it will be seen that it requires more time, is less adaptable to automatic processing, and does not permit forming in middle of tube while leaving ends smooth'for easy mounting and sealing in a heat exchanger. As the tube and mandrel move longitudinally, the leader 39 is disengaged automatically as it moves beyond the die.
After the tube 1 is corrugated to the extent desired, it isremoved from mandrel 4. Although the entire length of tube 1 can be corrugated by the process, it maybe suitable to leave each end smooth, as shown, so that it can be more easily attached to other structural members.
By reference to FIG. 5, it will be apparent-that the circular pitch 'of the die teeth must be the same a's the circular pitch of the teeth of the deformed tube to achieve proper meshing. In other words, the actual cir-, cular pitch of the mandrel teeth must be slightly less than that of the die teeth, due to the fact that the wall thickness of the tube increases the effective circular pitch ofthe mandrel teeth. It will be understood thatth'is inherent relationship applies when the terms equivalent spacing or the like are employed in the claims. l
The process disclosed herein has the advantage of being simple and, moreover, is economical and adapted to use for various diameter tubes by providing different diameter mandrels. Great flexibility is achieved through the factthat the length can be controlled very easily.
While aparticular embodiment of the invention has been illustrated and described, changes and modifications in the process will become apparent to those skilled in the art. It is ,desired to cover inthe appended claims all such-changes and, modifications which do not depart from the true spirit and scope. of the invention. A
What is claimed as new and; desired to be secured by Letters Patent of the United-States is: 1 I,
1. The process' of forming uniform corrugations in a hollow tube comprising:
placing a mandrel having teeth thereon within a. tube, providing a plurality of toothed dies, the die teeth having a spacing equivalent to those on the mandrel, rotating said dies and mandrel together in phase relationship so that the die teeth register with the spaces between mandrel teeth, and
forcing said dies radially against the tube with sufiicient force to cause the tube to deform between die teeth and mandrel teeth, and
rotating the dies alone while maintaining said radial force.
2. The process of forming substantially longitudinal corrugations in a hollow tube comprising:
placing a mandrel having regularly spaced, substantially longitudinal teeth within a tube,
providing a plurality of toothed dies, the die teeth having a spacing equivalent to those on the mandrel, rotating the dies and mandrel in synchronism, so that the die teeth fall midway between the mandrel teeth,
forcing the dies toward the tube to apply radially directed pressure sufficient to deform the tube between die teeth and mandrel teeth,
causing the tube and mandrel to move longitudinally between said dies, and
rotating the dies and mandrel in synchronism, so
the synchronizing function.
3. The process of forming substantially longitudinal corrugations in a hollow tube comprising:
placing a mandrel having regularly spaced substantially longitudinal teeth within a thin-walled tube,
providing a plurality of dies having helical teeth of a slightly greater circular pitch than that of the mandrel teeth as required by the tube wall thickness, and skewed slightly with respect to the tube axis approximately by the amount of the helix angle of said teeth,
rotating the dies and mandrel together in synchronism so that the die teeth fall midway between the mandrel teeth,
forcing the dies radially against the tube with sufficient force to deform the tube wall between die teeth and mandrel teeth, and
rotating the dies alone while maintaining said radial force, allowing the tube and mandrel to move longitudinally between the skewed dies as the deformed tube assumes the synchronizing function.
4. The process of forming substantially longitudinal corrugations in a hollow tube comprising:
placing a mandrel having regularly spaced, substantially longitudinal teeth within a tube,
providing a plurality of toothed dies, the die teeth having a spacing equivalent to those on the mandrel,
rotating the dies and mandrel in synchronism, so that the die teeth fall midway between the mandrel teeth,
forcing the dies toward the tube to apply radially directed pressure sufiicient to deform the tube between die teeth and mandrel teeth, and
causing the tube and mandrel to move longitudinally between said dies.
5. The process of forming substantially longitudinal corrugations in a hollow tube comprising:
placing a mandrel having regularly spaced substantially longitudinal teeth within a thin-walled tube,
providing a plurality of dies having helical teeth of a slightly greater circular pitch than that of the mandrel teeth as required by the tube wall thickness, and skewed slightly with respect to the tube axis approximately by the amount of the helix angle of said teeth,
rotating the dies and mandrel together in synchronism so that the die teeth fall midway between the mandrel teeth,
forcing the dies radially against the tube with suflicient force to deform the tube wall between die teeth and mandrel teeth, and
causing the tube and mandrel to move longitudinally between said dies.
References Cited UNITED STATES PATENTS 214,581 4/1879 Packham 72-105 838,570 12/1906 Numan 72-l05 2,001,553 5/1935 Spencer 72--196 CHARLES W. LANHAM, Primary Examiner.
L. A. LARSON, Assistant Examiner.

Claims (1)

1. THE PROCESS OF FORMING UNIFORM CORRUGATIONS IN A HOLLOW TUBE COMPRISING: PLACING A MANDREL HAVING TEETH THEREON WITHIN A TUBE, PROVIDING A PLURALITY OF TOOTHED DIES, THE DIE TEETH HAVING A SPACING EQUIVALENT TO THOSE ON THE MANDREL, ROTATING SAID DIES AND MANDREL TOGETHER IN PHASE RELATIONSHIP TO THAT THE DIE TEETH REGISTER WITH THE SPACES BETWEEN MANDREL TEETH, AND FORCING SAID DIES RADIALLY AGAINST THE TUBE WITH SUFFICIENT FORCE TO CAUSE THE TUBE TO DEFORM BETWEEN DIE TEETH AND MANDREL TEETH, AND
US537173A 1966-03-24 1966-03-24 Method for forming serrated or corrugated hollow tubes Expired - Lifetime US3407638A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US537173A US3407638A (en) 1966-03-24 1966-03-24 Method for forming serrated or corrugated hollow tubes
GB53110/66A GB1125188A (en) 1966-03-24 1966-11-28 Method of forming serrated or corrugated hollow tubes
DK4667AA DK130951B (en) 1966-03-24 1967-01-04 A method of making corrugations in a pipe and apparatus for carrying out the method.
NL6700126A NL6700126A (en) 1966-03-24 1967-01-04
SE1889/67A SE321913B (en) 1966-03-24 1967-02-10
FR96188A FR1515321A (en) 1966-03-24 1967-02-23 Corrugated pipe manufacturing process
ES337295A ES337295A1 (en) 1966-03-24 1967-02-25 Method for forming serrated or corrugated hollow tubes
CH293667A CH447084A (en) 1966-03-24 1967-02-28 Process for generating uniform waves in a pipe
NO00167173A NO127795B (en) 1966-03-24 1967-03-08
BE695701D BE695701A (en) 1966-03-24 1967-03-17
DE19671602264 DE1602264C (en) 1966-03-24 1967-03-21 Device for the production of a tube which is corrugated in the longitudinal direction over its entire circumference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US537173A US3407638A (en) 1966-03-24 1966-03-24 Method for forming serrated or corrugated hollow tubes

Publications (1)

Publication Number Publication Date
US3407638A true US3407638A (en) 1968-10-29

Family

ID=24141517

Family Applications (1)

Application Number Title Priority Date Filing Date
US537173A Expired - Lifetime US3407638A (en) 1966-03-24 1966-03-24 Method for forming serrated or corrugated hollow tubes

Country Status (10)

Country Link
US (1) US3407638A (en)
BE (1) BE695701A (en)
CH (1) CH447084A (en)
DK (1) DK130951B (en)
ES (1) ES337295A1 (en)
FR (1) FR1515321A (en)
GB (1) GB1125188A (en)
NL (1) NL6700126A (en)
NO (1) NO127795B (en)
SE (1) SE321913B (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791184A (en) * 1970-09-03 1974-02-12 Mannesmann Ag Skew rolling of solid ingots
US3832878A (en) * 1972-05-10 1974-09-03 Automated Reference Corp Vehicle identification apparatus and indenting method and mandrel
US3918626A (en) * 1971-12-30 1975-11-11 Olin Corp Method of fabricating patterned tubing from metallic strip
DE2549230A1 (en) * 1975-02-24 1976-09-02 Grob Ernst Fa METHOD OF MANUFACTURING A TUBULAR, STRAIGHT OR ANGLED INTERNAL AND EXTERNAL PROFILES
US3982415A (en) * 1975-01-02 1976-09-28 Anderson-Cook, Inc. Forming method and machine for splining power transmission members
DE2735960A1 (en) 1976-10-15 1978-04-20 Anderson Cook Inc METHOD AND DEVICE FOR SPROCKETS OF RING-SHAPED POWER TRANSFER ELEMENTS
US4596127A (en) * 1983-09-12 1986-06-24 Ex-Cell-O Corporation Method and machine for splining clutch hubs
US4653165A (en) * 1982-02-24 1987-03-31 Aisin Seiki Kabushiki Kaisha Method for making a poly-V grooved pulley with interior ribs
US4658619A (en) * 1983-09-12 1987-04-21 Ex-Cell-O Corporation Machine for splining clutch hubs
US4705150A (en) * 1983-06-03 1987-11-10 Hill Gary R Method and machine for splining clutch hubs with close tolerance spline bellmouth and oil seal surface roundness
US4768392A (en) * 1987-06-12 1988-09-06 Facet Enterprises, Inc. Engine starter device
US4833905A (en) * 1983-06-03 1989-05-30 Micromatic Textron Inc. Method for splining clutch hubs with close tolerance spline bellmouth and oil seal surface roundness
US4872250A (en) * 1986-09-18 1989-10-10 Ernst Grob Ag Method for fabricating a dished hollow body possessing a linear or helical inner toothing
US4884427A (en) * 1986-12-15 1989-12-05 Hitachi, Ltd. Method of producing helical internal gear
US4918961A (en) * 1983-06-03 1990-04-24 Micromatic Textron Inc. Machine for splining clutch hubs with close tolerance spline bellmouth and oil seal surface roundness
US5279442A (en) * 1991-12-18 1994-01-18 Ball Corporation Drawn and ironed container and apparatus and method for forming same
EP1151811A2 (en) * 2000-05-03 2001-11-07 Miele & Cie. GmbH & Co. Method and apparatus for making a hollow cylinder with curved bulged structure
US6477878B2 (en) * 2001-02-22 2002-11-12 Les Aciers Robond Inc. Machine for producing corrugated wheel spacers
US20040250587A1 (en) * 2000-09-21 2004-12-16 Packless Metal Hose, Inc. Apparatus and methods for forming internally and externally textured tubing
US20060081688A1 (en) * 2004-10-15 2006-04-20 Sonoco Development, Inc. Paperboard container having curvilinear portion
US20130340880A1 (en) * 2012-06-22 2013-12-26 Lucio Carretta Method And Apparatus For Fabricating A Metal Pipe Having At Least One Smooth Portion And At Least One Grooved Portion
USD780529S1 (en) * 2015-04-07 2017-03-07 The Greatest Wine Cooler Company Inc. Beverage chiller
US20170197242A1 (en) * 2014-08-12 2017-07-13 Fuji Filter Manufacturing Co., Ltd. Porous metal body manufacturing method and porous metal body
USD825879S1 (en) * 2017-03-15 2018-08-14 Immanuel Industrial Co., Ltd. Trash can
USD973448S1 (en) 2020-08-12 2022-12-27 Neil Aneja Silicone sleeve for a tinned can
USD982392S1 (en) 2021-10-19 2023-04-04 Neil Aneja Beverage container sleeve
USD1030177S1 (en) * 2022-04-14 2024-06-04 Spirit Elec. Household Co., Limited Capsule coffee recycling tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1361437A (en) * 1971-12-07 1974-07-24 Yorkshire Imperial Metals Ltd Method and apparatus for producing fluted tubes
DE3118783C2 (en) * 1981-05-12 1986-02-20 Cantec, Inc., Fort Worth, Tex. Device for beading the body of a sheet metal container
ATE24851T1 (en) * 1982-06-04 1987-01-15 Vaw Ver Aluminium Werke Ag METHOD AND HOLLOW PROFILE FOR CONNECTING WITH OTHER PROFILES BY CLOSING ON, FLAMMING ON, OR THE SAME.
FR2690858B1 (en) * 1992-05-06 1994-07-01 Escofier Tech Sa DEVICE FOR FORMING HELICOUIDAL FINS ON THE OUTER WALL OF TUBES.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US214581A (en) * 1879-04-22 Improvement in machines for crimping and tapering stove-pipes
US838570A (en) * 1906-05-22 1906-12-18 Isaac W Numan Sheet-metal-corrugating machine.
US2001553A (en) * 1930-06-26 1935-05-14 Gen Plate Co Method of manufacturing radially corrugated disks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US214581A (en) * 1879-04-22 Improvement in machines for crimping and tapering stove-pipes
US838570A (en) * 1906-05-22 1906-12-18 Isaac W Numan Sheet-metal-corrugating machine.
US2001553A (en) * 1930-06-26 1935-05-14 Gen Plate Co Method of manufacturing radially corrugated disks

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791184A (en) * 1970-09-03 1974-02-12 Mannesmann Ag Skew rolling of solid ingots
US3918626A (en) * 1971-12-30 1975-11-11 Olin Corp Method of fabricating patterned tubing from metallic strip
US3832878A (en) * 1972-05-10 1974-09-03 Automated Reference Corp Vehicle identification apparatus and indenting method and mandrel
US3982415A (en) * 1975-01-02 1976-09-28 Anderson-Cook, Inc. Forming method and machine for splining power transmission members
DE2549230A1 (en) * 1975-02-24 1976-09-02 Grob Ernst Fa METHOD OF MANUFACTURING A TUBULAR, STRAIGHT OR ANGLED INTERNAL AND EXTERNAL PROFILES
DE2759979C2 (en) * 1976-10-15 1987-07-16 Anderson-Cook Inc., Fraser, Mich., Us
DE2735960A1 (en) 1976-10-15 1978-04-20 Anderson Cook Inc METHOD AND DEVICE FOR SPROCKETS OF RING-SHAPED POWER TRANSFER ELEMENTS
US4653165A (en) * 1982-02-24 1987-03-31 Aisin Seiki Kabushiki Kaisha Method for making a poly-V grooved pulley with interior ribs
US4833905A (en) * 1983-06-03 1989-05-30 Micromatic Textron Inc. Method for splining clutch hubs with close tolerance spline bellmouth and oil seal surface roundness
US4705150A (en) * 1983-06-03 1987-11-10 Hill Gary R Method and machine for splining clutch hubs with close tolerance spline bellmouth and oil seal surface roundness
US4918961A (en) * 1983-06-03 1990-04-24 Micromatic Textron Inc. Machine for splining clutch hubs with close tolerance spline bellmouth and oil seal surface roundness
US4658619A (en) * 1983-09-12 1987-04-21 Ex-Cell-O Corporation Machine for splining clutch hubs
US4596127A (en) * 1983-09-12 1986-06-24 Ex-Cell-O Corporation Method and machine for splining clutch hubs
US4872250A (en) * 1986-09-18 1989-10-10 Ernst Grob Ag Method for fabricating a dished hollow body possessing a linear or helical inner toothing
US4884427A (en) * 1986-12-15 1989-12-05 Hitachi, Ltd. Method of producing helical internal gear
US4768392A (en) * 1987-06-12 1988-09-06 Facet Enterprises, Inc. Engine starter device
US5279442A (en) * 1991-12-18 1994-01-18 Ball Corporation Drawn and ironed container and apparatus and method for forming same
EP1151811A2 (en) * 2000-05-03 2001-11-07 Miele & Cie. GmbH & Co. Method and apparatus for making a hollow cylinder with curved bulged structure
EP1151811A3 (en) * 2000-05-03 2003-02-05 Miele & Cie. GmbH & Co. Method and apparatus for making a hollow cylinder with curved bulged structure
US20040250587A1 (en) * 2000-09-21 2004-12-16 Packless Metal Hose, Inc. Apparatus and methods for forming internally and externally textured tubing
US6968719B2 (en) * 2000-09-21 2005-11-29 Packless Metal Hose, Inc. Apparatus and methods for forming internally and externally textured tubing
US6477878B2 (en) * 2001-02-22 2002-11-12 Les Aciers Robond Inc. Machine for producing corrugated wheel spacers
US20060081688A1 (en) * 2004-10-15 2006-04-20 Sonoco Development, Inc. Paperboard container having curvilinear portion
US7703664B2 (en) 2004-10-15 2010-04-27 Sonoco Development, Inc. Paperboard container having curvilinear portion
US9573180B2 (en) * 2012-06-22 2017-02-21 Lucio Carretta Method and apparatus for fabricating a metal pipe having at least one smooth portion and at least one grooved portion
US20130340880A1 (en) * 2012-06-22 2013-12-26 Lucio Carretta Method And Apparatus For Fabricating A Metal Pipe Having At Least One Smooth Portion And At Least One Grooved Portion
US20170197242A1 (en) * 2014-08-12 2017-07-13 Fuji Filter Manufacturing Co., Ltd. Porous metal body manufacturing method and porous metal body
US9968984B2 (en) * 2014-08-12 2018-05-15 Fuji Filter Manufacturing Co., Ltd. Porous metal body manufacturing method and porous metal body
USD780529S1 (en) * 2015-04-07 2017-03-07 The Greatest Wine Cooler Company Inc. Beverage chiller
USD825879S1 (en) * 2017-03-15 2018-08-14 Immanuel Industrial Co., Ltd. Trash can
USD973448S1 (en) 2020-08-12 2022-12-27 Neil Aneja Silicone sleeve for a tinned can
USD982392S1 (en) 2021-10-19 2023-04-04 Neil Aneja Beverage container sleeve
USD1030177S1 (en) * 2022-04-14 2024-06-04 Spirit Elec. Household Co., Limited Capsule coffee recycling tool

Also Published As

Publication number Publication date
GB1125188A (en) 1968-08-28
CH447084A (en) 1967-11-30
NL6700126A (en) 1967-09-25
DE1602264A1 (en) 1970-05-14
DE1602264B2 (en) 1972-07-20
FR1515321A (en) 1968-03-01
DK130951C (en) 1975-10-13
ES337295A1 (en) 1968-02-16
SE321913B (en) 1970-03-23
NO127795B (en) 1973-08-20
BE695701A (en) 1967-09-01
DK130951B (en) 1975-05-12

Similar Documents

Publication Publication Date Title
US3407638A (en) Method for forming serrated or corrugated hollow tubes
JPS6054210A (en) Cold rolling method of pipe by pilger rolling mill and rolling mill for executing said method
US3387477A (en) Apparatus and method for roll forming flexible tubing
US1896350A (en) Apparatus for and method of making finned tubing
US1926628A (en) Rolled tube and method and apparatus for producing same
US4287743A (en) Method and device for the manufacture of helical rotor blanks for helical gear machines
US3327039A (en) Method of fabricating spiral hose
US3780556A (en) Tube corrugating apparatus and method
US4435968A (en) Apparatus for corrugating pipes
US2059578A (en) Method of and apparatus for forming spiral pipes
US3568288A (en) Apparatus and method for making finned tubing
US3855832A (en) Method of and apparatus for manufacturing integral finned tubing
US3260090A (en) Method and apparatus for reducing tubing
US4339936A (en) Annular corrugator
EP0073652A2 (en) Annular corrugator
US3260088A (en) Apparatus for corrugating metal tubing
JPS6159806B2 (en)
US2693779A (en) Machine for making round flexible metal tubes
US1210895A (en) Apparatus for and method of corrugating metal tubes.
US2618233A (en) Machine for making noncircular tubing on continuously rotating arbors
US3581330A (en) Method and apparatus for forming threads by reciprocating hammers
US3651677A (en) Apparatus for helically winding strip into a lock-seamed pipe or tube
JPS6359769B2 (en)
JPS6012133B2 (en) Cold pilger mill pipe manufacturing method
US3572078A (en) Variable orifice, zero friction draw die