US3403531A - Chimney cooler for the cooling of liquids by means of atmospheric air - Google Patents

Chimney cooler for the cooling of liquids by means of atmospheric air Download PDF

Info

Publication number
US3403531A
US3403531A US61040767A US3403531A US 3403531 A US3403531 A US 3403531A US 61040767 A US61040767 A US 61040767A US 3403531 A US3403531 A US 3403531A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
tubes
liquid
cooler
cooling
chimney
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Oesterheld Karl Adolf
Original Assignee
Oesterheld Karl Adolf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/11Cooling towers

Description

1963 K A. OESTERHELD 3,403,531

CHIMNEY COOL ER FOR THE COOLING OF LIQUIDS BY MEANS OF ATMOSPHERIC AIR Filed Jan. 19, 1967 5 Sheets-Sheet l INVENTOR KARL A. 055 TERHElD ATrXs.

Oct. 1, 1968 K. A. OESTERHELD 3,403,531

CHIMNEY COOLER FOR THE COOLING OF LIQUIDS I v v BY MEANS OF ATMOSPHERIC AIR Filed Jan. 19, 1967 .5 Sheets-Sheet 2 INVENTOR KARL A." 05575211510 Oct. 1, 1968 K. A. OESTERHELD 3,403,531 CHIMNEY COOLER FOR THE COOLING OF LIQUIDS BY MEANS OF ATMOSPHERIC AIR Filed Jan. 19, 1967 I a Sheets-Sheet 5 INVENTOR KARL A OESTWElO United States Patent 3,403,531 CHIMNEY COOLER FOR THE COOLING OF LIQUIDS BY MEANS OF ATMOSPHERIC AIR Karl Adolf Oesterheld, Luthe via Wunstorf, near Hannover, Germany Filed Jan. 19, 1967, Ser. No. 610,407 Claims priority, application Germany, Jan. 25, 1966, 0 11,400 Claims. (Cl. 62-314) ABSTRACT OF THE DISCLOSURE This provides a chimney cooler for cooling liquids comprising a plurality of horizontal tub-es having outer and inner surfaces and constructed of material which absorbs liquid and maintains strength and stability at the same time. Means are located above the said tubes to supply liquid to be cooled over the outer surfaces of said tubes. The liquid passes downwardly over the said tubes and is absorbed by the material of the tubes so that the liquid advances to the inner wall surfaces. Means are then provided to pass atmospheric air through the said tubes to evaporate the liquid from the inner surfaces to thereby cool the liquid passing over the outer surfaces of the tube.

Background of the invention Chimney coolers with natural draught must be of large structural dimensions if they are intended to have a fairly satisfactory cooling efliciency. The cooling temperature obtained by such coolers naturally lies above the temperature of the atmospheric air serving as the cooling agent because this latter absorbs heat from the liquid running down and dissipates it. If the liquid is to be cooled down to temperatures below that of the atmospheric air, one has to depend on the use of mechanically operated cooling apparatus or cooling towers, e.g. of the type having incorporated shower surfaces provided by asbestos cement slabs or the like, in which the draught is produced by fans and the cooling air is brought in direct contact with the liquid to be cooled in that, for example, it is conveyed through the cooling tower in a direction opposite to that of the liquid. Cooling apparatus of this kind involve high capital expenditure and operating cost resulting in many cases in an uneconomical cooling operation.

Summary of the invention It is the object of the invention to construct chimney coolers of the initially specified type in such a manner as to considerably improve their cooling efficiency, thereby to make it possible that the liquid can be cooled down, particularly on hot days, to a temperature below that of the atmospheric air, and that by natural draught and without additional technical expenditure or increasing the customary dimensions of the chimney cooler.

To attain this object the invention provides a chimney cooler of the specified type which is characterized in that the tubes are made of asbestos cement, fibrous cement or another hygroscopic material, the strength and stability of which is not impaired by the absorption of liquid, and designed so that small amounts of the liquid absorbed by the outer tube wall are allowed to advance as far as to the inner wall surfaces of the tubes to be evaporated within the tubes by atmospheric air passing therethrough.

During the evaporation heat is absorbed from the cooling air and the tube walls, which results in a considerable increase of the cooling efificiency and, moreover,

in that the liquid to be cooled can be cooled down to temperatures below the temperature of the atmospheric air.

To achieve the desired evaporation effect it will be expedient to incorporate in the cooler tubes of asbestos 3,403,531 Patented Oct. 1, 1968 Brief description of the drawings An embodiment of the invention will now be described by way of example and with reference to the accompanydrawings, in which:

FIG. 1 is a vertical longitudinal section through the chimney cooler according to the invention, taken on the line II of FIG. 3;

FIG. 2 is a vertical cross section taken on the line II-II of FIG. 3, and

FIG. 3 is a horizontal cross section taken on the line IIIIII of FIG. 2.

Description of specific embodiment The drawings show a cooler which comprises a plurality of preferably square section tubes 1 of asbestos cement or fibrous cement which are disposed in several,

for example eight superposed rows in a supporting frame consisting of four vertical posts 2 and a plurality of horizontal supporting cross-timbers 3. Each row is formed of a plurality, for example six square section tubes 1 which are inserted in triangular recesses in the supporting cross-timbers 3 by their downwardly directed longitudinal edges, while their longitudinal edges opposite the support are upwardly directed. As shown in FIG. 2, the square section tubes 1 of each row are slightly spaced apart from one another, whereas the spacing of the superposed rows substantially corresponds to the width of the tube wall.

The vertical posts 2 of the supporting frame are embedded in thickened wall portions 4a of a concrete foundation 4 which forms a collecting basin 5 disposed under the cooler for receiving the liquid cooled on its way down between the tubes 1. The cooled liquid is withdrawn from an auxiliary chamber, which is separated from the basin 5, and fed or refed, respectively, to the points of consumption. The liquid to be cooled is contained in a tank 6 arranged on top of the supporting frame and from there it is conveyed into distributing channels 8 through pipe conduits 7 in which shut-off means are incorporated. The distributing channels 8 are secured to the supporting frame above the uppermost row of the square section tubes, the arrangement being such that two adjacent square section tubes at a time have a common distributing channel 8 associated therewith. To achieve this end, the

distributing channels 8 are arranged above the free interval between any two adjacent square section tubes 1 on the supporting frame. When the level of the liquid flowing into the distributing channels 8 has risen adequately high, the liquid will flow over the brim of the distributing channels 8 and conveyed to the upwardly directed longitudinal edges of the upper row of the square section tubes 1 by means of sloping surfaces 9 fixed to the side walls of the distributing channels 8. From each longitudinal edge the liquid divided into two substantially equal parts will flow down the two inclined Walls of the square section tubes 1 and on to the upwardly directed longitudinal edges of the square section tubes 1 disposed in the second and the following rows. The square section of the tubes 1 3 is particularly suitable for uniformly conveying equal amounts of the water to be cooled to the inclined surfaces of the tubes. It is self-evident that for obtaining the desired evaporation effect it is also possible to use tubes of rectangular, circular or profiled cross section of symmetric or asymmetric design.

On one side of the basin 5 the concrete foundation 4 forms a solid footing 4b in which four uprights 10 are anchored that are connected by diagonal members 11 to form the frame of a chimney. The chimney frame is lined or covered with slabs 12 of asbestos cement or another suitable material which define a high draught shaft 13. In the slabs 12 of the draught shaft 13 which face the cooler, square recesses are provided which correspond to the clear cross section of the tubes 1. The ends of the tubes 1 are applied to the recessed slabs so that their clear cross sections are accurately aligned with the corresponding square recesses in the slabs. The air entering the open ends of the square section tubes 1 remote from the chimney in the direction of the arrows x (FIG. 1) absorbs heat from the liquid to be cooled while passing through the tubes 1. The heated air leaving the tubes 1 and entering the draught shaft 13 in the direction indicated by the arrows y will stream upwards in the draught shaft 13, since it has assumed a lower specific weight due to the increase of its temperature, and produce a powerful draught in the draught shaft 13 and the tubes 1. For regulating the draught a control flap 14 capable of being opened as wide as the circumstances may require and of being locked in both the opening and closing positions is provided at the lower end of a wall of the draught shaft which is not facing the cooler, e.g. of the wall opposite the cooler, as shown in FIG. 1.

Due to the fact that the square section tubes 1 used in the cooler proposed by the invention are made of asbestos cement, fibrous cement or another material that is hygroscopic to a certain degree, the air passing through the square section tubes 1 comes into contact with the small amount of liquid advanced as far as to the inner wall surface of the tubes 1 and thus causes this amount of liquid to evaporate within the tubes 1. During this evaporation the above-described additional cooling effect is produced which enables amounts of warm liquid, particularly of condensate, to be cooled down to a relatively low temperature exclusively by the natural draught of the chimney.

It will however be appreciated that it is also possible to incorporate in a known manner one or more fans in the draught shaft 13 which may be actuated if required, i.e. when the natural draught alone is not sufficient to cool the liquid down to a predetermined temperature.

The invention may be embodied in other specific forms -without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes-which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Iclaim:

1. A chimney cooler for the cooling of liquids comprising:

(a) a plurality of horizontal tubes having outer and inner surfaces and constructed of material which absorbs liquid and maintains strength and stability,

(b) means located above said tubes supplying liquid to be cooled over the said outer surfaces to cause liquid to pass downwardly over said tubes and to be absorbed in effective amounts by the said tube material for the liquid to advance to the said inner wall surfaces, and

(0) means passing atmospheric air through said tubes to evaporate the liquid from said inner surfaces thereby cooling the liquid as it passes over the said outer surfaces.

2. A chimney cooler as defined in claim 1 wherein the cooler includes supporting timbers having triangular recesses,

the said material hygroscopic,

said tubes having a square cross-section including a downwardly directed longitudinal edge inserted in said recesses and an oppositely upwardly directed longitudinal edge receiving the liquid to be cooled that is supplied from said supply means.

3. A chimney cooler as defined in claim 1, wherein the material is asbestos cement.

4. A chimney cooler as defined in claim 1, wherein the material is fibrous cement.

5. A chimney cooler as defined in claim 1, wherein tubes manufactured with low compaction are incorporated in the cooler.

References Cited UNITED STATES PATENTS 808,050 12/ 1905 Hauswirth 623 14 927,766 7/1909 Bauer 261109 1,467,436 9/ 1923 Kramer 623 15 1,470,156 10/1923 Evans 62314 1,698,386 1/1929 Batdorf 62314 2,048,694 7/1936 Harris 623 1 5 WILLIAM J. WYE, Primary Examiner.

US3403531A 1966-01-25 1967-01-19 Chimney cooler for the cooling of liquids by means of atmospheric air Expired - Lifetime US3403531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEO0011400 1966-01-25

Publications (1)

Publication Number Publication Date
US3403531A true US3403531A (en) 1968-10-01

Family

ID=7352311

Family Applications (1)

Application Number Title Priority Date Filing Date
US3403531A Expired - Lifetime US3403531A (en) 1966-01-25 1967-01-19 Chimney cooler for the cooling of liquids by means of atmospheric air

Country Status (6)

Country Link
US (1) US3403531A (en)
BE (1) BE692742A (en)
DE (1) DE1501411A1 (en)
ES (1) ES335900A1 (en)
FR (1) FR1509370A (en)
GB (1) GB1136175A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521865A (en) * 1968-05-20 1970-07-28 Du Pont Generation of accurately known vapor concentrations by permeation
US3855372A (en) * 1972-04-04 1974-12-17 Siemens Ag Liquid vaporizer
US3898922A (en) * 1972-08-07 1975-08-12 Burger Boy Red Top Refreshment Deodorisation unit
US4007601A (en) * 1975-10-16 1977-02-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tubular sublimator/evaporator heat sink
US4068625A (en) * 1976-05-12 1978-01-17 Charles Lester Brown Engine intake air moisturizer
US4098852A (en) * 1972-07-04 1978-07-04 Rhone-Poulenc, S.A. Process for carring out a gas/liquid heat-exchange
US4146597A (en) * 1976-04-24 1979-03-27 Dragerwerk Aktiengesellschaft Respiratory air humidifier for respirators
US4155961A (en) * 1977-01-31 1979-05-22 Dragerwerk Aktiengesellschaft Respiratory air humidifier
US4269796A (en) * 1976-08-16 1981-05-26 Massachusetts Institute Of Technology Wet/dry cooling tower and method
US4623494A (en) * 1984-01-25 1986-11-18 Electricite De France Atmospheric cooling tower with reduced vapor cloud
US5996976A (en) * 1993-07-13 1999-12-07 Lynntech, Inc. Gas humidification system using water permeable membranes
US20120273171A1 (en) * 2011-04-27 2012-11-01 Upadhya Girish K Earthen evaporative heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459555B2 (en) * 1982-11-19 1992-09-22 Hitachi Ltd
CN101929820A (en) * 2010-09-29 2010-12-29 浙江金宸三普换热器有限公司 Flat pipe and fin structures of parallel flow heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US808050A (en) * 1903-09-05 1905-12-19 Frederick Hauswirth Water-cooling tower.
US927766A (en) * 1908-02-19 1909-07-13 Ferdinand Bauer Liquid-cooling apparatus.
US1467436A (en) * 1922-09-23 1923-09-11 Kramer Joseph Peter Water cooler
US1470156A (en) * 1922-03-15 1923-10-09 George R Evans Air cooler
US1698386A (en) * 1927-03-04 1929-01-08 Charles S Batdorf Water cooler
US2048694A (en) * 1935-01-14 1936-07-28 Harris Air Conditioner Corp Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US808050A (en) * 1903-09-05 1905-12-19 Frederick Hauswirth Water-cooling tower.
US927766A (en) * 1908-02-19 1909-07-13 Ferdinand Bauer Liquid-cooling apparatus.
US1470156A (en) * 1922-03-15 1923-10-09 George R Evans Air cooler
US1467436A (en) * 1922-09-23 1923-09-11 Kramer Joseph Peter Water cooler
US1698386A (en) * 1927-03-04 1929-01-08 Charles S Batdorf Water cooler
US2048694A (en) * 1935-01-14 1936-07-28 Harris Air Conditioner Corp Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521865A (en) * 1968-05-20 1970-07-28 Du Pont Generation of accurately known vapor concentrations by permeation
US3855372A (en) * 1972-04-04 1974-12-17 Siemens Ag Liquid vaporizer
US4098852A (en) * 1972-07-04 1978-07-04 Rhone-Poulenc, S.A. Process for carring out a gas/liquid heat-exchange
US3898922A (en) * 1972-08-07 1975-08-12 Burger Boy Red Top Refreshment Deodorisation unit
US4007601A (en) * 1975-10-16 1977-02-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tubular sublimator/evaporator heat sink
US4146597A (en) * 1976-04-24 1979-03-27 Dragerwerk Aktiengesellschaft Respiratory air humidifier for respirators
US4068625A (en) * 1976-05-12 1978-01-17 Charles Lester Brown Engine intake air moisturizer
US4269796A (en) * 1976-08-16 1981-05-26 Massachusetts Institute Of Technology Wet/dry cooling tower and method
US4155961A (en) * 1977-01-31 1979-05-22 Dragerwerk Aktiengesellschaft Respiratory air humidifier
US4623494A (en) * 1984-01-25 1986-11-18 Electricite De France Atmospheric cooling tower with reduced vapor cloud
US5996976A (en) * 1993-07-13 1999-12-07 Lynntech, Inc. Gas humidification system using water permeable membranes
US20120273171A1 (en) * 2011-04-27 2012-11-01 Upadhya Girish K Earthen evaporative heat exchanger

Also Published As

Publication number Publication date Type
FR1509370A (en) 1968-01-12 grant
GB1136175A (en) 1968-12-11 application
BE692742A (en) 1967-07-03 grant
DE1501411A1 (en) 1969-12-18 application
ES335900A1 (en) 1967-12-16 application

Similar Documents

Publication Publication Date Title
US3290025A (en) Trough system for evaporative heat exchangers
US3513828A (en) Solar water heater
US3563305A (en) Process and apparatus for modulating temperatures within enclosures
US5944094A (en) Dry-air-surface heat exchanger
US5632329A (en) Air cooled condenser
US4252752A (en) Heat exchange unit in particular for an atmospheric heat exchanger
US7201015B2 (en) Micro-channel tubing evaporator
US7322205B2 (en) Hydronic rooftop cooling systems
US3357898A (en) Floatable solar still for producing potable water from impure water
US3635042A (en) Method and apparatus for withdrawing heat from industrial plants, especially power plants
US6598862B2 (en) Evaporative cooler
US4893669A (en) Synthetic resin heat exchanger unit used for cooling tower and cooling tower utilizing heat exchanger consisting of such heat exchanger unit
US3675442A (en) Atmospheric water collector
US4543218A (en) Cooling tower with concrete support structure, fiberglass panels, and a fan supported by the liquid distribution system
US6463750B2 (en) System for dehumidification of air in an enclosure
US2889763A (en) Building ventilating apparatus
US3482625A (en) Two phase heat exchanger
US4342569A (en) Method and apparatus for abstracting water from air
US5020335A (en) Method and apparatus for simultaneous heat and mass transfer
US4142575A (en) Run-around type energy recovery system
US5123481A (en) Method and apparatus for simultaneous heat and mass transfer
US3214351A (en) Falling film convective distillation unit with direct contact condensation
US4182132A (en) Apparatus for the cooling and dehumidification of ambient air in regions having a hot and humid climate
US3948314A (en) Thermodynamically integrated buildings
US5199486A (en) Coated heat exchanger for humidifier