US3402184A - Process of aromatic hydrocarbon oxidation - Google Patents
Process of aromatic hydrocarbon oxidation Download PDFInfo
- Publication number
- US3402184A US3402184A US504833A US50483365A US3402184A US 3402184 A US3402184 A US 3402184A US 504833 A US504833 A US 504833A US 50483365 A US50483365 A US 50483365A US 3402184 A US3402184 A US 3402184A
- Authority
- US
- United States
- Prior art keywords
- reactor
- oxidation
- reactors
- xylene
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007254 oxidation reaction Methods 0.000 title description 37
- 238000000034 method Methods 0.000 title description 36
- 230000003647 oxidation Effects 0.000 title description 33
- 230000008569 process Effects 0.000 title description 31
- 150000004945 aromatic hydrocarbons Chemical class 0.000 title description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 45
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 36
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 15
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 12
- 239000008096 xylene Substances 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- 150000008064 anhydrides Chemical class 0.000 description 10
- 230000001590 oxidative effect Effects 0.000 description 10
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 8
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 8
- 238000004064 recycling Methods 0.000 description 8
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 7
- 238000010533 azeotropic distillation Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000004821 distillation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 4
- -1 alkyl aromatic hydrocarbons Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 4
- 229910001620 barium bromide Inorganic materials 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 159000000032 aromatic acids Chemical class 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 150000002696 manganese Chemical class 0.000 description 2
- 229940099607 manganese chloride Drugs 0.000 description 2
- 235000002867 manganese chloride Nutrition 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000003022 phthalic acids Chemical class 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical class [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 150000001559 benzoic acids Chemical class 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052748 manganese Chemical class 0.000 description 1
- 239000011572 manganese Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 150000005199 trimethylbenzenes Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/255—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
- C07C51/265—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- ABSTRACT OF THE DISCLOSURE A process is described for the continuous liquid phase counter-current oxidation of aromatic hydrocarbons containing oxidizable side chains, especially the oxidizing of xylenes to various phthalic acids and/0r anhydrides.
- the process is carried out in a series of reactors in which the reaction fluids are maintained at approximately constant pressures and without condensation between reactors. Off gases are dehydrated by azeotropic distillation in such a manner that the dehydrating agent is recovered and unreacted aromatics and solvents are recovered in a dehydrated state suitable for recycling into the oxidation process. 7
- the present invention relates to an improved process for liquid phase oxidation of aromatic hydrocarbons containing one or more aliphatic side chains.
- ortho-xylene can be oxidized in the presence of an inert solvent.
- This ortho-xylene oxidation reaction is usually. conducted using temperatures ranging from 100 to 200 C., and using atmospheric or higher pressures in an aromatic hydrocarbon solvent, such as benzene or an aromatic carboxylic acid such as benzoic acid, or in an aliphatic acid solvent such as acetic acid, propionic acid, etc.
- This reaction has already been conducted either in a discontinuous manneror in a continuous one in a single reactor, or, preferably, in several reactors put in series.
- This last kind of process is a countercurrent xylene oxidation process conducted in 2 or 3 reactors maintained at pressures and temperatures which increase in each successive reactor, with vapor condensation between every oxidation zone. and recycling of the mother-liquors from one reactor to another.
- a particular object of this invention is to provide a simpler, improved process for the oxidation of aromatic hydrocarbons with an oxidizing gas, and a more specific object of the invention isto provide a simpler, less expensive continuous process for the production of phthalic anhydride of great purity from ortho-xylene.
- the new process of this invention uses relatively simple equipment, reactive conditions that are easier to control and provides a continuous process which produces very high yields of aromatic monoor polycarboxylic acids and/ or their corresponding anhydrides.
- reaction mass In cases in which a hydrocarbon starting material is used which is able to form an anhydride or a mixture of anhydride and acid, the reaction mass should be hydrolyzed with water.
- the reaction medium used in accordance with the invention essentially contains an oxidizing gas such as air, an aromatic hydrocarbon such as xylene, an inert solvent such as an aliphatic carboxylic acid like acetic acid, and a catalyst.
- an oxidizing gas such as air
- an aromatic hydrocarbon such as xylene
- an inert solvent such as an aliphatic carboxylic acid like acetic acid
- the disclosure specifically illustrates the use of ortho-, metaor para-xylene and mixtures of ortho-, metaand para-xylene starting materials; however, it should be understood that other alkylaromatic hydrocarbons could be oxidized in a similar manner.
- alkylaromatic hydrocarbon (xylene) and acetic acid are preferably, but not necessarily, maintained between narrow limits, 5 to 30% by weight of hydrocarbon to 95 to 70% of acid being preferred without taking into account the amount of the catalytic system present in the reaction mixture.
- the preferred catalysts used in this process are a mixture of hydrated heavy metal salts and/or halides, such as halides and/or other salts of cobalt and manganese.
- the most preferred catalyst mixture is one containing equal or different molar proportions of cobalt acetate, manganese chloride and barium bromide, but other heavy metal salts could be used effectively.
- the molar ratio of each of the three catalyst constituents is preferably between 1 and of moles per mole of ortho-xylene, which corresponds to 0.003 to 0.036 mole of catalyst per mole of hydrocarbon to be oxidized, but other ratios can be used.
- the oxidation step of the process of this invention is carried out in a series of several reactors, for example, a series of three reactors may be used, the reaction liquid flowing from one reactor to another while the liquid is continually stirred with the help of recirculating pumps placed on the supply-circuits or with some other type of mechanical agitators.
- Each of the reactors should be built or lined with a corrosion resisting material suitable for the operational conditions incurred in actual use.
- the oxidation rates in every reactor should be maintained between optimum limits. Optimum oxidation rates will vary with the number and position in the series of the reactors employed. For example, when three reactors are used, it is best to maintain the oxidation 3 rate to less than 65% in the first reactor and less than in the third reactor.
- the oxidation temperature may be between U0 and 230 C., and is preferably maintained between 140 and 200 C.
- the pressure is maintained approximately constant in the oxidation system and the preferred pressures employed are between 3 and kg./cm. or more preferably between 4 and 10 kg./cm. in the temperature range indicated above.
- the air required for oxidation is fed under suitable pressure through parallel conduits into the two last reactors so that the air or oxidizing gas runs countercurrently to the liquid aromatic hydrocarbon reaction mass.
- This division of the oxidation air flow in the two last reactors creates a thermic balance favorable to maximum recuperation of heat produced in the reaction.
- the excess hot gas which escapes from these last two reactors is sent as a whole to the first reactor through which it again passes countercurrently with respect to the liquid reaction mass. At the first reactor outlet, this hot gas is low in oxygen.
- the gas passes from the first reactor through an azeotropic column in which it is dehydrated with the help of a hydrocarbon, such as benzene or similar dehydrating material, and the unreacted xylene and acetic acid vapors are removed.
- a hydrocarbon such as benzene or similar dehydrating material
- the xylene and acetic acid recovered at the foot of the distillation column are recycled to the first oxidation reactor while the benzene/ water mixture obtained at the top of the column is sent to a condenser where it is removed as an aqueous phase separation.
- This process may be further modified by using a series of three reactors and distributing the total amount of air required for oxidation into each of the reactors; the hot gas coming out of the third reactor (in which the oxidation proportion is the lowest) is led into the first reactor (the one where the oxidation ratio is the highest) while the heat passing out of the second reactor is directly conducted into the azeotropic distillation column. The latter also received the hot gas from the first reactor.
- Such distribution of air while producing a favorable thermic balance, offers the advantage of reducing notably the quantity of hot gas which gOes through the first reactor.
- the reaction mass coming from the oxidation reactors contains essentially a mixture of ortho-phthalic acid and phthalic anhydride.
- the reaction mass is hydrolyzed while still at boiling point temperature and atmospheric pressure using known processes.
- the phthalic acid precipitate produced is removed by filtration, then, after a washing and centrifuging step, it is continuously dehydrated by heat at a temperature between 220 and 260 C. at atmospheric pressure.
- the recovered crude phthalic anhydride is then rectified continuously at reduced pressure, without previous chemical and/ or thermal treatment.
- reaction mas will contain isoand/or terephthalic acid, which is separated by filtration, then washed and centrifuged.
- the mother liquors from the phthalic acid filtration and the precipitate washing liquors are preferably recycled continuously to the first oxidation reactor, after adjustments of the concentrations to desired levels of orthoxylene, acetic acid and catalyst.
- This recycle procedure it is possible to send a portion of the mother- 4 liquors to the other reactors to vary'in each the effective residence time of the reactive medium.
- FIGURE I shows a diagram of a preferred embodiment of the oxidation process of this invention.
- the oxidation reaction takes place in each of the three reactors R R and R In the diagram shown in FIG- URE I, these reactors are at different levels with respect to one another, so that the reactive liquid may overflow from one reactor to another, the liquid passing through the overflow vessels 1 and 2 in the manner shown.
- the ortho-xylene, aliphatic carboxylic acid and catalyst are fed into reactor R through conduits 3 and 4, and the liquid flows from reactor R to reactor R to reactor R after passing through overfiow vessels 1 and 2, and conduits 5 and 6.
- the overflow tanks have branched connections with circulating pumps 7, 7 bis, and 8 which help regulate the flow in the manner illustrated.
- the air necessary to complete the oxidation reaction is sent under pressure through pipe 9, through conduits 10 and 11, and the air enters the reactors R and R near the bottom. All of the excess air which escapes from the reactors R and R is sent to the bottom of reactor R through the conduit 12. Then the air passes through conduit 13 into distillation column D, into a condenser C, then into a decanter or settling tank C; from which it escapes through conduit 14.
- Benzene is fed into the distillation column D through conduit 15 to wash and dehydrate the air that is now saturated with aliphatic acid, water and xylene vapors, which entered the column through conduit 13.
- the acid and xylene recovered at the bottom of the distillation column are fed directly through conduit 1.6 to reactor R
- the aqueous fraction removed in condenser C is drawn off through conduit 17 and the benzene fraction is recycled through conduit 18 into distillation column D.
- reaction mass withdrawn from conduit 19, containing a mixture of ortho-phthalic acid and phthalic anhydride is subjected to successive operations of hydrolyzing, filtering of the acid phthalic precipitate, washing of this precipitate with acetic acid, centrifuging, dehydrating continuously, and rectifying the anhydride continuously under reduced pressure in known types of equipment not represented in the diagram.
- the filtration mother-liquors and the acetic acid precipitate wash are mixed together, readjusted to the desired concentrations with added amounts of fresh reagent, then recycled through conduit 20' into the aromatic hydrocarbon feed conduit of primary reactor R
- the mother-liquors can be recycled, entirely or partially, through conduit 21 into column D.
- the catalyst contained a mixture of hydrated barium bromide, hydrated manganese chloride and hydrated cobalt acetate in a quantity of moles of each constituent per mole of xylene to be oxidized.
- the average air flow varied between 1000 and 1500 l./hr. at the inlet of the reactors R and R and 950 to 1200 l./hr. at the outlet which is conduit 14 emerging from the condenser C.
- the pressure was approximately uniform throughout the oxidation apparatus at approximately 6 kg./cm. absolute pressure, and the temperature in the reactors was between 157 to 162 C. in R 152 to 157 C. in R and 147 to 152 C. in R
- the reaction mass drawn off through conduit 19 was continuously hydrolyzed by boiling for 1 hour at atmospheric pressure in the presence of water, filtered, washed with acetic acid, centrifuged to remove phthalic acid precipitate, and dehydrated by heating for 2 hours at 235 to 240 C. at atmospheric pressure.
- the crude phthalic anhydride obtained was then rectified in 2 columns, continuously at sub-atmospheric pressure.
- the chemical yield is defined by the ratio:
- reaction mass drawn off through conduit 19 was continuously filtered; the isophthalic acid precipitate was washed with acetic acid and dried.
- Example III The procedures of Example II were repeated, but paraxylene was substituted for meta-xylene. After 8 recyclings, terephthalic acid having a purity greater than 98% and an average chemical yield of 97% was obtained.
- polyalkylphenyl hydrocarbon is selected from the group consisting of the dimethyl and trimethyl benzenes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR998922A FR1441453A (fr) | 1964-12-14 | 1964-12-14 | Procédé d'oxydation d'hydrocarbures aromatiques |
Publications (1)
Publication Number | Publication Date |
---|---|
US3402184A true US3402184A (en) | 1968-09-17 |
Family
ID=8844961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US504833A Expired - Lifetime US3402184A (en) | 1964-12-14 | 1965-10-24 | Process of aromatic hydrocarbon oxidation |
Country Status (10)
Country | Link |
---|---|
US (1) | US3402184A (enrdf_load_stackoverflow) |
AT (1) | AT267504B (enrdf_load_stackoverflow) |
BE (1) | BE670307A (enrdf_load_stackoverflow) |
CA (1) | CA793870A (enrdf_load_stackoverflow) |
DE (1) | DE1267677B (enrdf_load_stackoverflow) |
ES (1) | ES320472A1 (enrdf_load_stackoverflow) |
FR (1) | FR1441453A (enrdf_load_stackoverflow) |
GB (1) | GB1065469A (enrdf_load_stackoverflow) |
NL (1) | NL6515180A (enrdf_load_stackoverflow) |
SE (1) | SE313047B (enrdf_load_stackoverflow) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215053A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of ortho-phthalic acid and its conversion and recovery of phthalic anhydride |
US4215056A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US4215054A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of liquid ortho-phthalic acid and its conversion to high purity phthalic anhydride |
US4215052A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of liquid ortho-phthalic acid and its conversion to high purity phthalic anhydride |
US4215055A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of liquid ortho-phthalic acid and its conversion to high _purity phthalic anhdyride |
US4215051A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US4233227A (en) * | 1979-10-05 | 1980-11-11 | Standard Oil Company (Indiana) | Phthalic anhydride formation and separation |
US4234494A (en) * | 1979-08-29 | 1980-11-18 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US5510521A (en) * | 1995-03-27 | 1996-04-23 | Eastman Chemical Company | Process for the production of aromatic carboxylic acids |
US6399790B1 (en) | 1999-11-24 | 2002-06-04 | General Electric Company | Method for oxidation of xylene derivatives |
US6465685B1 (en) | 1999-11-24 | 2002-10-15 | General Electric Company | Method for oxidation of xylene derivatives |
US6469205B1 (en) | 1999-11-23 | 2002-10-22 | General Electric Company | Method for oxidation of xylene derivatives |
US6649773B2 (en) | 2002-03-22 | 2003-11-18 | General Electric Company | Method for the manufacture of halophthalic acids and anhydrides |
US6657068B2 (en) | 2002-03-22 | 2003-12-02 | General Electric Company | Liquid phase oxidation of halogenated ortho-xylenes |
US6657067B2 (en) | 2002-03-22 | 2003-12-02 | General Electric Company | Method for the manufacture of chlorophthalic anhydride |
WO2004002933A1 (en) * | 2002-06-27 | 2004-01-08 | Eurotecnica Development & Licensing S.P.A. | Process for the separation of the water produced in the catalytic oxidation of aromatic hydrocarbons to polycarboxylic aromatic acids |
US7541489B2 (en) | 2004-06-30 | 2009-06-02 | Sabic Innovative Plastics Ip B.V. | Method of making halophthalic acids and halophthalic anhydrides |
CN102471210A (zh) * | 2009-08-06 | 2012-05-23 | 鲁奇有限责任公司 | 制备邻苯二甲酸/邻苯二甲酸酐的工艺及设备 |
US20150226011A1 (en) * | 2010-04-27 | 2015-08-13 | Baker Hughes Incorporated | Methods of forming polycrystalline compacts |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5328419B1 (enrdf_load_stackoverflow) * | 1971-04-26 | 1978-08-15 | ||
JPS5328901B2 (enrdf_load_stackoverflow) * | 1973-07-28 | 1978-08-17 | ||
JPS5614101B2 (enrdf_load_stackoverflow) * | 1974-07-31 | 1981-04-02 | ||
JPS523030A (en) * | 1975-06-25 | 1977-01-11 | Mitsubishi Chem Ind Ltd | Process for manufacturing high purity terephthalic acid |
JPS5291835A (en) * | 1976-01-29 | 1977-08-02 | Mitsubishi Chem Ind Ltd | Prepation of terephtalic acid for direct polymerization |
JPS52106833A (en) * | 1976-02-24 | 1977-09-07 | Matsuyama Sekyu Kagaku Kk | Production of telephthalic acid for direct polymerization |
NL188282C (nl) * | 1977-04-04 | 1992-05-18 | Montedison Spa | Werkwijze voor de synthese van tereftaalzuur door oxyderen van p-xyleen in azijnzuuroplossing. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3092658A (en) * | 1957-08-12 | 1963-06-04 | Standard Oil Co | Continuous system for oxidizing substituted aromatic hydrocarbons and producing carboxylic acids |
US3155718A (en) * | 1956-11-21 | 1964-11-03 | Ici Ltd | Process for the oxidation of organic compounds |
-
0
- BE BE670307D patent/BE670307A/xx unknown
- CA CA793870A patent/CA793870A/en not_active Expired
-
1964
- 1964-12-14 FR FR998922A patent/FR1441453A/fr not_active Expired
-
1965
- 1965-10-24 US US504833A patent/US3402184A/en not_active Expired - Lifetime
- 1965-11-23 NL NL6515180A patent/NL6515180A/xx unknown
- 1965-12-01 DE DEP1267A patent/DE1267677B/de active Pending
- 1965-12-07 ES ES0320472A patent/ES320472A1/es not_active Expired
- 1965-12-10 SE SE16026/65A patent/SE313047B/xx unknown
- 1965-12-13 GB GB52890/65A patent/GB1065469A/en not_active Expired
- 1965-12-14 AT AT1125865A patent/AT267504B/de active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155718A (en) * | 1956-11-21 | 1964-11-03 | Ici Ltd | Process for the oxidation of organic compounds |
US3092658A (en) * | 1957-08-12 | 1963-06-04 | Standard Oil Co | Continuous system for oxidizing substituted aromatic hydrocarbons and producing carboxylic acids |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215053A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of ortho-phthalic acid and its conversion and recovery of phthalic anhydride |
US4215056A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US4215054A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of liquid ortho-phthalic acid and its conversion to high purity phthalic anhydride |
US4215052A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of liquid ortho-phthalic acid and its conversion to high purity phthalic anhydride |
US4215055A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Production of liquid ortho-phthalic acid and its conversion to high _purity phthalic anhdyride |
US4215051A (en) * | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US4234494A (en) * | 1979-08-29 | 1980-11-18 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US4233227A (en) * | 1979-10-05 | 1980-11-11 | Standard Oil Company (Indiana) | Phthalic anhydride formation and separation |
US5510521A (en) * | 1995-03-27 | 1996-04-23 | Eastman Chemical Company | Process for the production of aromatic carboxylic acids |
US6469205B1 (en) | 1999-11-23 | 2002-10-22 | General Electric Company | Method for oxidation of xylene derivatives |
US6465685B1 (en) | 1999-11-24 | 2002-10-15 | General Electric Company | Method for oxidation of xylene derivatives |
US6399790B1 (en) | 1999-11-24 | 2002-06-04 | General Electric Company | Method for oxidation of xylene derivatives |
US6649773B2 (en) | 2002-03-22 | 2003-11-18 | General Electric Company | Method for the manufacture of halophthalic acids and anhydrides |
US6657068B2 (en) | 2002-03-22 | 2003-12-02 | General Electric Company | Liquid phase oxidation of halogenated ortho-xylenes |
US6657067B2 (en) | 2002-03-22 | 2003-12-02 | General Electric Company | Method for the manufacture of chlorophthalic anhydride |
WO2004002933A1 (en) * | 2002-06-27 | 2004-01-08 | Eurotecnica Development & Licensing S.P.A. | Process for the separation of the water produced in the catalytic oxidation of aromatic hydrocarbons to polycarboxylic aromatic acids |
US20050272951A1 (en) * | 2002-06-27 | 2005-12-08 | Noe Sergio | Process for the separation of the water produced in the catalytic oxidation of aromatic hydrocarbons to polycarboxylic aromatic acids |
US7541489B2 (en) | 2004-06-30 | 2009-06-02 | Sabic Innovative Plastics Ip B.V. | Method of making halophthalic acids and halophthalic anhydrides |
US7732559B2 (en) | 2004-06-30 | 2010-06-08 | Sabic Innovative Plastics Ip B.V. | Method of making halophthalic acids and halophthalic anhydrides |
CN102471210A (zh) * | 2009-08-06 | 2012-05-23 | 鲁奇有限责任公司 | 制备邻苯二甲酸/邻苯二甲酸酐的工艺及设备 |
US20150226011A1 (en) * | 2010-04-27 | 2015-08-13 | Baker Hughes Incorporated | Methods of forming polycrystalline compacts |
US9500039B2 (en) * | 2010-04-27 | 2016-11-22 | Baker Hughes Incorporated | Methods of forming polycrystalline compacts |
Also Published As
Publication number | Publication date |
---|---|
DE1267677B (de) | 1968-05-09 |
NL6515180A (enrdf_load_stackoverflow) | 1966-06-15 |
CA793870A (en) | 1968-09-03 |
FR1441453A (fr) | 1966-06-10 |
SE313047B (enrdf_load_stackoverflow) | 1969-08-04 |
BE670307A (enrdf_load_stackoverflow) | 1900-01-01 |
GB1065469A (en) | 1967-04-12 |
AT267504B (de) | 1969-01-10 |
ES320472A1 (es) | 1966-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3402184A (en) | Process of aromatic hydrocarbon oxidation | |
US5004830A (en) | Process for oxidation of alkyl aromatic compounds | |
US3626001A (en) | Method for the production of high-purity isophthalic or terephthalic acid | |
US3064044A (en) | Multistage oxidation system for preparing dicarboxylic acid | |
JP4184948B2 (ja) | 精製テレフタル酸の製造方法 | |
US4243636A (en) | Apparatus for the continuous liquid-phase catalytic oxidation of alkyl-substituted aromatic compounds | |
US5359133A (en) | Process for producing highly purified benzenedicarboxylic acid isomers | |
US3240803A (en) | Preparation of benzenecarboxylic acid | |
US3089906A (en) | Oxidation chemical process | |
US3859344A (en) | Process for continuous production of highly pure terephthalic acid | |
US9422219B2 (en) | Pressurized crude aromatic carboxylic acid feed mixes | |
US4302595A (en) | Process for the preparation of terephthalic acid by the hydrolysis of intermediate stage crude dimethyl terephthalate | |
US2673217A (en) | Selective oxidation of substituted aromatic compounds using aldehyde-activated catalysts | |
US2723994A (en) | Oxidation of xylene and toluic acid mixtures to phthalic acids | |
US3484458A (en) | Trimellitic acid production and recovery of intramolecular anhydride | |
US2788367A (en) | Xylene oxidation process | |
US3089907A (en) | Pressure controlled liquid phase oxidation process for aromatic acid production | |
KR20010072217A (ko) | 순수한 카르복실산의 개선된 제조 방법 | |
US9260370B2 (en) | Process for using dehydration tower condensate as a purification makeup solvent | |
US3845100A (en) | Process for conversion of para-xylene to high purity dimethyl terephthalate | |
US4788296A (en) | Process for the production and recovery of trimellitic anhydride | |
US3406196A (en) | Oxidation of polyalkyl aromatics to polycarboxylic acids | |
US3721708A (en) | Process for the preparation of o-phthalic acid | |
US10843995B2 (en) | Processes for manufacturing aromatic carboxylic acids | |
US3064046A (en) | Oxidation of organic compounds |