US3397780A - Classification apparatus - Google Patents

Classification apparatus Download PDF

Info

Publication number
US3397780A
US3397780A US545098A US54509866A US3397780A US 3397780 A US3397780 A US 3397780A US 545098 A US545098 A US 545098A US 54509866 A US54509866 A US 54509866A US 3397780 A US3397780 A US 3397780A
Authority
US
United States
Prior art keywords
chamber
vanes
cascade
grid
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US545098A
Inventor
Douglas R Beuzeval
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Environmental Services Inc
Buell Engineering Co Inc
Original Assignee
Buell Engineering Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buell Engineering Co Inc filed Critical Buell Engineering Co Inc
Application granted granted Critical
Publication of US3397780A publication Critical patent/US3397780A/en
Assigned to GENERAL ELECTRIC COMPANY, A CORP. OF NY. reassignment GENERAL ELECTRIC COMPANY, A CORP. OF NY. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ENVIROTECH CORPORATION
Assigned to GENERAL ELECTRIC ENVIRONMENTAL SERVICES, INCORPORATED reassignment GENERAL ELECTRIC ENVIRONMENTAL SERVICES, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GENERAL ELECTRIC COMPANY A NY CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/02Selective separation of solid materials carried by, or dispersed in, gas currents by reversal of direction of flow

Definitions

  • classification apparatus comprises a chamber, an exhaust duct leading from the top of the chamber, a cascade of vanes or the like extending across the duct and defining spaces afiording outlet paths from the chamber into the exhaust duct, a lateral inlet for the delivery of particulate material in a fluid stream into the chamber in a direction transversely to the cascade of vanes, whereby fluid flowing from the stream into the exhaust duct makes a rapid change of direction thereby to subject the entrained particulate material to inertial separation, a grid-like floor at the bottom of the chamber below the cascade of varies and providing access to a closed collector space, and a concave lateral wall extending from the side of the cascade remote from the lateral inlet towards the adjacent side of the grid for causing a circulation of fluid flowing beyond the cascade of vanes whereby particulate material in the circulatory flow is frictionally retarded by contact with the wall prior to flow of fluid across the grid and whereby any particulate material falling under gravity directly
  • the rapid change of direction of the first part of the stream is followed by particles of material, which have low settling velocities and which for convenience may be referred to as lighter particles, whilst other particles do not change direction, so that thereby a separation of particles occurs although this separation is not necessarily absolute in that some lighter particles may be carried with heavier particles which do not follow the rapid directional change, that is particles which have high settling velocities.
  • the frictional retarding efiect of the concave wall is greatest on the heaviest particles in the flow turned by the wall so that these particles have a greater tendency to fall through the floor into the collector space, and thereby classification is further assisted.
  • the scrubbing action causes separation of lighter particles which may be adhering to or drawn along by heavy particles tending to fall directly to the grid.
  • the classification apparatus of this invention clearly can be of simple construction, and it will preferably have a second concave lateral wall facing the first concave wall and extending from the opposite side of the floor to the lateral inlet so that the latter is at the top of the second concave lateral wall.
  • the closed collector space may conveniently be in the nature of a hopper which has a valve-controlled bottom outlet and is separated from the circulation chamber by the grid-like floor, the interstices of which are such as to permit the passage of the heavier particles.
  • the classification apparatus of this invention is also preferably provided with a secondary inlet through which a stream of fluid, preferably substantially clean air, may be directed into the chamber to assist maintenance of the circulation, For instance the secondary stream may be directed along the chamber floor.
  • a stream of fluid preferably substantially clean air
  • the secondary stream may be directed along the chamber floor.
  • the vanes or equivalent may be made adjustable to vary their angle of incidence to the line of travel of the fluid from the lateral inlet so that the apparatus may be adjusted to give an optimum efficiency of separation for any particular mix.
  • FIG. 1 is a diagrammatic sectional view of the apparatus
  • FIG. 2 is an elevation in the direction of arrow 2 on FIG. 1, and
  • FIG. 3 is a diagrammatic illustration of one form of plant using the classification apparatus.
  • the classification apparatus comprises a chamber 10 having a pair of concavely-curved lateral walls 11, 12, the radius of curvature of the wall 11 being less than that of the wall 12.
  • a lateral horizontal duct 13 forming an inlet for a stream of air carrying in it particulate material to be separated.
  • the duct 13 directs the stream towards the upper edge of the wall 12 and thus there is a tendency for air to follow a circulatory path as shown by the arrows 14.
  • vanes 15 At the top of the chamber and along the upper boundary of the stream entering the chamber from the upper duct 13, there is a cascade of vanes 15, the spaces between which form outlet paths to an outlet duct 16 through which the air leaves the apparatus.
  • the angle at which the vanes 15 are set to the line of travel of the stream from inlet duct 13 causes the outflowing air to partake of a sharp change of direction.
  • This angle may be varied by pivotally supporting the vanes 15 and varying their set angle by an interconnecting linkage.
  • the vanes are flat strips of metal pivoted at their ends to swing about axes extending along the edges of the strips nearer the chamber 10, their pivots extending externally of the chamber and there carrying radius arms which are interconnected by a common operating bar.
  • the floor of the chamber is a grid, for instance formed by a series of parallel spaced rods 17, which is below the cascade of vanes 15 and is inclined downwardly from the lower edge of the wall 11 to pass below and in spaced relation to the lower edge of the wall 12.
  • the grid separates the chamber 10 from a collector hopper 18 which is below the chamber.
  • the hopper has a discharge 21 which is controlled by say a rotary seal valve allowing discharge of the material without a continuous flow of air through the discharge.
  • a secondary air inlet 19 directs the stream of air over the floor of the chamber 10 towards wall 11 and the volume and velocity of the stream are controlled by a butterfly valve 20 in a supply connection 22 of the secondary inlet and by a wall 23 of the portion of the inlet nearest the chamber being formed as a flap pivoted at 24 so as to be swingable towards and away from the opposite wall of the inlet thereby to vary the convergence of the final portion of the inlet.
  • the heaviest particles fall to the floor and pass through it into the hopper 18 whilst any light particles or particles of intermediate settling velocity are carried around in the circulating air until they leave the chamber through the vane cascade 15, or the grid of rods 17. Also larger particles in the circulatory flow tend to be retarded by frictional contact with the wall 12 whereby classification is assisted.
  • the particle size at which separation occurs can be varied.
  • the strength of the secondary stream is increased, the average settling velocity of particle entering the hopper 18 will be increased as will also be the average settling velocity of particle leaving the apparatus through outlet 16.
  • the efficiency of separation is determined by the angle of the vanes which may be adjusted to an optimum setting according to the nature of the material being classified and of the desired products.
  • the classification apparatus as just described may be employed in plant additionally comprising a. main fan which delivers air through ducting 26 to the hopper inlet 28 of a grinding mill 27 so as to entrain the ground particles and carry them along duct 29 to the inlet 13 of the classification apparatus.
  • the outlet duct 16 of this apparatus is connected by ducting 30 to the inlet of a cyclone separator 31 wherein the lighter particles of material are deposited and the cleaned carrier air stream leaves the cyclone 31 through ducting 32 leading to the suction side of the main fan 25 to be recirculated.
  • a branch duct 33 leads from the delivery side of the fan 25 to the secondary air supply connection 22.
  • Classification apparatus comprising a chamber, an exhaust duct leading from the top of the chamber, a cascade of vanes extending across the duct and defining spaces afiording outlet paths from the chamber into the exhaust duct, a lateral inlet for the delivery of particulate material in a fluid stream into the chamber in a direction transversely to the cascade of vanes, whereby fluid flowing from the stream into the exhaust duct makes a rapid change of direction thereby to subject the entrained particulate material to inertial separation, a grid-like floor at the bottom of the chamber below the cascade of vanes and providing access to a closed collector space, and a concave lateral wall extending from the side of the cascade of vanes remote from the lateral inlet towards the adjacent side of the grid for causing a circulation of fluid flowing beyond the cascade of vanes whereby particulate material in the circulatory flow is fractionally retarded by contact with the wall prior to flow of fluid across the grid and whereby any particulate material fal l ing under
  • Apparatus according to claim 1 wherein there is an oppositely-facing concave wall extending from the opposite side of the grid-like floor to the lateral inlet.
  • Apparatus according to claim 1 comprising a sec ondary inlet for directing a stream of fluid into the chamber in a direction to assist maintenance of the said circulation.
  • Apparatus according to claim 4 comprising means to vary the flow through said secondary inlet.
  • said means comprising a flap adjustable to vary the convergence of the final portion of the passage of said secondary inlet.
  • vanes being adjustable to vary their angle of incidence to the line of travel of the fluid from the lateral inlet.

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

Aug. 20, 1968 Filed April 25. 1966 FIG! D. R. BEUZEVAL 3,397,780
CLASS IFICATION APPARATUS 2 Sheets-Sheet l INVENTOR DOUGLAS ROY BEUZEVAL 4 TI 051E51 1968 D. R. BEUZEVAL 3,397,780
CLASSIFICATION APPARATUS 2 Sheets-Sheet 2 Filed April 25, 1966 INVENTOR DOUGLAS ROY BEUZEVAL FwWJM his ATTORNEYS United States Patent 3,397,780 CLASSIFICATION APPARATUS Douglas R. Beuzeval, Burgess Hill, England, assignor to Buell Engineering Company, Inc., Lebanon, Pa., a corporation of Delaware Filed Apr. 25, 1966, Ser. No. 545,098 Claims priority, application Great Britain, Apr. 27, 1965, 17,723/ 65 8 Claims. (Cl. 209-137) This invention comprises improvements in or relating to classification apparatus by which particulate solid materials are separated according to particle settling velocities.
According to the present invention classification apparatus comprises a chamber, an exhaust duct leading from the top of the chamber, a cascade of vanes or the like extending across the duct and defining spaces afiording outlet paths from the chamber into the exhaust duct, a lateral inlet for the delivery of particulate material in a fluid stream into the chamber in a direction transversely to the cascade of vanes, whereby fluid flowing from the stream into the exhaust duct makes a rapid change of direction thereby to subject the entrained particulate material to inertial separation, a grid-like floor at the bottom of the chamber below the cascade of varies and providing access to a closed collector space, and a concave lateral wall extending from the side of the cascade remote from the lateral inlet towards the adjacent side of the grid for causing a circulation of fluid flowing beyond the cascade of vanes whereby particulate material in the circulatory flow is frictionally retarded by contact with the wall prior to flow of fluid across the grid and whereby any particulate material falling under gravity directly towards the grid is subjected to scrubbing action by the circulatory flow.
The rapid change of direction of the first part of the stream is followed by particles of material, which have low settling velocities and which for convenience may be referred to as lighter particles, whilst other particles do not change direction, so that thereby a separation of particles occurs although this separation is not necessarily absolute in that some lighter particles may be carried with heavier particles which do not follow the rapid directional change, that is particles which have high settling velocities. The frictional retarding efiect of the concave wall is greatest on the heaviest particles in the flow turned by the wall so that these particles have a greater tendency to fall through the floor into the collector space, and thereby classification is further assisted. The scrubbing action causes separation of lighter particles which may be adhering to or drawn along by heavy particles tending to fall directly to the grid.
The classification apparatus of this invention clearly can be of simple construction, and it will preferably have a second concave lateral wall facing the first concave wall and extending from the opposite side of the floor to the lateral inlet so that the latter is at the top of the second concave lateral wall.
The closed collector space may conveniently be in the nature of a hopper which has a valve-controlled bottom outlet and is separated from the circulation chamber by the grid-like floor, the interstices of which are such as to permit the passage of the heavier particles.
The classification apparatus of this invention is also preferably provided with a secondary inlet through which a stream of fluid, preferably substantially clean air, may be directed into the chamber to assist maintenance of the circulation, For instance the secondary stream may be directed along the chamber floor. By varying the strength of the secondary stream, which depends on the volume and velocity of the secondary stream, the average settling velocity of the particles in the heavier particle collector 3,397,780 Patented Aug. 20, 1968 may be varied, an increase in the strength of the secondary stream being accompanied by an increase in the average settling velocity of particles in the heavier particle collector. The stream volume may be controlled by means of, say, a butterfly valve in the secondary inlet, and the velocity may be varied by a flap which may be adjusted to vary the convergence of the final portion of the passage of the secondary inlet.
The vanes or equivalent may be made adjustable to vary their angle of incidence to the line of travel of the fluid from the lateral inlet so that the apparatus may be adjusted to give an optimum efficiency of separation for any particular mix.
One construction of classification apparatus embodying the above features of the invention will now be described with reference to the accompanying drawings, in which:
FIG. 1 is a diagrammatic sectional view of the apparatus,
FIG. 2 is an elevation in the direction of arrow 2 on FIG. 1, and
FIG. 3 is a diagrammatic illustration of one form of plant using the classification apparatus.
The classification apparatus comprises a chamber 10 having a pair of concavely-curved lateral walls 11, 12, the radius of curvature of the wall 11 being less than that of the wall 12.
At the upper edge of the wall 11, there is a lateral horizontal duct 13 forming an inlet for a stream of air carrying in it particulate material to be separated. The duct 13 directs the stream towards the upper edge of the wall 12 and thus there is a tendency for air to follow a circulatory path as shown by the arrows 14.
At the top of the chamber and along the upper boundary of the stream entering the chamber from the upper duct 13, there is a cascade of vanes 15, the spaces between which form outlet paths to an outlet duct 16 through which the air leaves the apparatus. The angle at which the vanes 15 are set to the line of travel of the stream from inlet duct 13 causes the outflowing air to partake of a sharp change of direction. This angle may be varied by pivotally supporting the vanes 15 and varying their set angle by an interconnecting linkage. In one form, the vanes are flat strips of metal pivoted at their ends to swing about axes extending along the edges of the strips nearer the chamber 10, their pivots extending externally of the chamber and there carrying radius arms which are interconnected by a common operating bar.
The floor of the chamber is a grid, for instance formed by a series of parallel spaced rods 17, which is below the cascade of vanes 15 and is inclined downwardly from the lower edge of the wall 11 to pass below and in spaced relation to the lower edge of the wall 12. The grid separates the chamber 10 from a collector hopper 18 which is below the chamber. The hopper has a discharge 21 which is controlled by say a rotary seal valve allowing discharge of the material without a continuous flow of air through the discharge.
A secondary air inlet 19 directs the stream of air over the floor of the chamber 10 towards wall 11 and the volume and velocity of the stream are controlled by a butterfly valve 20 in a supply connection 22 of the secondary inlet and by a wall 23 of the portion of the inlet nearest the chamber being formed as a flap pivoted at 24 so as to be swingable towards and away from the opposite wall of the inlet thereby to vary the convergence of the final portion of the inlet.
As the main stream of air carrying the mixed particles enters the chamber from inlet 13, the larger proportion of air is subjected to a rapid change of direction to flow directly to the outlet 16. This subjects the material to inertial separation in that the lighter particles tend to follow the major air flow into the outlet 16, whilst the heavier particles continue in a minor air stream towards wall 12 or fall under gravity towards the floor 17 of the chamber. This minor stream partakes of a circulatory motion in the chamber causing any heavy particles falling towards the floor 17 to be scrubbed by the circulating air and the circulation-borne particles so that adhering lighter particles are detached from the heavier particles and a clean heavy product is obtained. The heaviest particles fall to the floor and pass through it into the hopper 18 whilst any light particles or particles of intermediate settling velocity are carried around in the circulating air until they leave the chamber through the vane cascade 15, or the grid of rods 17. Also larger particles in the circulatory flow tend to be retarded by frictional contact with the wall 12 whereby classification is assisted.
By injecting a controlled secondary stream of air through the inlet 19, the particle size at which separation occurs can be varied. Thus if the strength of the secondary stream is increased, the average settling velocity of particle entering the hopper 18 will be increased as will also be the average settling velocity of particle leaving the apparatus through outlet 16.
The efficiency of separation is determined by the angle of the vanes which may be adjusted to an optimum setting according to the nature of the material being classified and of the desired products.
It will be clear that separation is achieved without moving parts so that the power required for operation depends on the power absorbed by the air blowers. The apparatus is therefore economical.
Referring now to FIG. 3, the classification apparatus as just described may be employed in plant additionally comprising a. main fan which delivers air through ducting 26 to the hopper inlet 28 of a grinding mill 27 so as to entrain the ground particles and carry them along duct 29 to the inlet 13 of the classification apparatus. The outlet duct 16 of this apparatus is connected by ducting 30 to the inlet of a cyclone separator 31 wherein the lighter particles of material are deposited and the cleaned carrier air stream leaves the cyclone 31 through ducting 32 leading to the suction side of the main fan 25 to be recirculated. A branch duct 33 leads from the delivery side of the fan 25 to the secondary air supply connection 22.
I claim:
1. Classification apparatus comprising a chamber, an exhaust duct leading from the top of the chamber, a cascade of vanes extending across the duct and defining spaces afiording outlet paths from the chamber into the exhaust duct, a lateral inlet for the delivery of particulate material in a fluid stream into the chamber in a direction transversely to the cascade of vanes, whereby fluid flowing from the stream into the exhaust duct makes a rapid change of direction thereby to subject the entrained particulate material to inertial separation, a grid-like floor at the bottom of the chamber below the cascade of vanes and providing access to a closed collector space, and a concave lateral wall extending from the side of the cascade of vanes remote from the lateral inlet towards the adjacent side of the grid for causing a circulation of fluid flowing beyond the cascade of vanes whereby particulate material in the circulatory flow is fractionally retarded by contact with the wall prior to flow of fluid across the grid and whereby any particulate material fal l ing under gravity directly towards the grid is subjected to a scrubbing action by the circulatory flow.
2. Apparatus according to claim 1, wherein there is an oppositely-facing concave wall extending from the opposite side of the grid-like floor to the lateral inlet.
3. Apparatus according to claim 1, comprising a sec ondary inlet for directing a stream of fluid into the chamber in a direction to assist maintenance of the said circulation.
4. Apparatus according to claim 3, said secondary inlet directing the fluid along said grid-like floor in the direction of flow of the circulating fluid over it.
5. Apparatus according to claim 4, comprising means to vary the flow through said secondary inlet.
6. Apparatus according to claim 5, said means comprising a butterfly valve in said secondary inlet.
7. Apparatus according to claim 5, said means comprising a flap adjustable to vary the convergence of the final portion of the passage of said secondary inlet.
8. Apparatus according to claim 1, said vanes being adjustable to vary their angle of incidence to the line of travel of the fluid from the lateral inlet.
References Cited UNITED STATES PATENTS 1,484,208 2/ 1924 Davis 209-443 X 3,006,470 10/ 1961 Franken 209132 3,240,335 3/ 1966 Vandenhoeck 209-136 FOREIGN PATENTS 828,125 2/1938 France.
HARRY B. THORNTON, Primary Examiner.
TIM R. MILES, Assistant Examiner.

Claims (1)

1. CLASSIFICATION APPARATUS COMPRISING A CHAMBER, AN EXHAUST DUCT LEADING FROM THE TOP OF THE CHAMBER, A CASCADE OF VANES EXTENDING ACROSS THE DUCT AND DEFINING SPACES AFFORDING OUTLET PATHS FROM THE CHAMBER INTO THE EXHAUST DUCT, A LATERAL INLET FOR THE DELIVERY OF PARTICULATE MATERIAL IN A FLUID STREAM INTO THE CHAMBER IN A DIRECTION TRANSVERSELY TO THE CASCADE OF VANES, WHEREBY FLUID FLOWING FROM THE STREAM INTO THE EXHAUST DUCT MAKES A RAPID CHAMBE OF DIRECTION THEREBY TO SUBJECT THE ENTRAINED PARTICULATE MATERIAL TO INERTIAL SEPARATION, A GRID-LIKE FLOOR AT THE BOTTOM OF THE CHAMBER BELOW THE CASCADE OF VANES AND PROVIDING ACCESS TO A CLOSED COLLECTOR SPACE, AND A CONCAVE LATERAL WALL EXTENDING FROM THE SIDE OF THE CASCADE OF VANES REMOTE FROM THE LATERAL INLET TOWARDS THE ADJACENT SIDE OF THE GRID FOR CAUSING A CIRCULATION OF FLUID FLOWING BEYOND THE CASCADE OF VANES WHEREBY PARTICOF ULATE MATERIAL IN THE CIRCULATORY FLOW IS FRACTIONALLY RETARDED BY CONTACT WITH THE WALL PRIOR TO FLOW OF FLUID ACROSS THE GRID AND WHEREBY ANY PARTICULATE MATERIAL FALLING UNDER GRAVITY DIRECTLY TOWARDS THE GRID IS SUBJECTED TO A SCRUBBING ACTION BY THE CIRCULATORY FLOW.
US545098A 1965-04-27 1966-04-25 Classification apparatus Expired - Lifetime US3397780A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB17723/65A GB1068778A (en) 1965-04-27 1965-04-27 Improvements in or relating to classification apparatus

Publications (1)

Publication Number Publication Date
US3397780A true US3397780A (en) 1968-08-20

Family

ID=10100098

Family Applications (1)

Application Number Title Priority Date Filing Date
US545098A Expired - Lifetime US3397780A (en) 1965-04-27 1966-04-25 Classification apparatus

Country Status (2)

Country Link
US (1) US3397780A (en)
GB (1) GB1068778A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709359A (en) * 1970-01-26 1973-01-09 C Johnson Ore classifier
US4222859A (en) * 1979-01-17 1980-09-16 Charles Medlock Particle separator devices
US4450071A (en) * 1982-07-09 1984-05-22 Foster Wheeler Energy Corporation Adjustable particle classifier
US4486300A (en) * 1981-09-01 1984-12-04 William Prieb Specific gravity grain grader
US5348163A (en) * 1993-01-19 1994-09-20 Cabot Corporation Method and apparatus for separating fine particles
US5409118A (en) * 1994-09-15 1995-04-25 Beloit Technologies, Inc. Open air density separator and method
US6910585B1 (en) 2000-08-31 2005-06-28 Fisher-Klosterman, Inc. Dynamic centrifugal gas classifier and method of classifying performed therewith
WO2005068079A1 (en) * 2004-01-16 2005-07-28 Bühler AG Husk separator
US20070023328A1 (en) * 2005-07-29 2007-02-01 Flora Jonathan J Recycling horizontal cyclonic segregator for processing harvested nuts and fruits
US20100064953A1 (en) * 2008-09-15 2010-03-18 Alstom Technology Ltd Exhauster bypass system
US20120085067A1 (en) * 2009-06-12 2012-04-12 Ake Ottoson Apparatus for adding a gas to a liquid-filled bottle
WO2013102451A1 (en) * 2012-01-07 2013-07-11 Dirk Barnstedt Cyclone-like separator, in particular for waste management

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926331B (en) * 2019-04-19 2021-06-15 哈尔滨工业大学 Automatic sorting mechanism for spherical materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484208A (en) * 1924-02-19 Method of treating fiber-bearing material
FR828125A (en) * 1937-01-21 1938-05-11 Separator sorter
US3006470A (en) * 1958-06-20 1961-10-31 Tongeren N V Bureau Van Apparatus for classifying particulate material
US3240335A (en) * 1961-12-11 1966-03-15 Buell Engineering Company Inc Classifier with gas flow distributor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484208A (en) * 1924-02-19 Method of treating fiber-bearing material
FR828125A (en) * 1937-01-21 1938-05-11 Separator sorter
US3006470A (en) * 1958-06-20 1961-10-31 Tongeren N V Bureau Van Apparatus for classifying particulate material
US3240335A (en) * 1961-12-11 1966-03-15 Buell Engineering Company Inc Classifier with gas flow distributor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709359A (en) * 1970-01-26 1973-01-09 C Johnson Ore classifier
US4222859A (en) * 1979-01-17 1980-09-16 Charles Medlock Particle separator devices
US4486300A (en) * 1981-09-01 1984-12-04 William Prieb Specific gravity grain grader
US4450071A (en) * 1982-07-09 1984-05-22 Foster Wheeler Energy Corporation Adjustable particle classifier
US5348163A (en) * 1993-01-19 1994-09-20 Cabot Corporation Method and apparatus for separating fine particles
US5409118A (en) * 1994-09-15 1995-04-25 Beloit Technologies, Inc. Open air density separator and method
US6910585B1 (en) 2000-08-31 2005-06-28 Fisher-Klosterman, Inc. Dynamic centrifugal gas classifier and method of classifying performed therewith
WO2005068079A1 (en) * 2004-01-16 2005-07-28 Bühler AG Husk separator
US20070023328A1 (en) * 2005-07-29 2007-02-01 Flora Jonathan J Recycling horizontal cyclonic segregator for processing harvested nuts and fruits
US20100064953A1 (en) * 2008-09-15 2010-03-18 Alstom Technology Ltd Exhauster bypass system
US8097059B2 (en) * 2008-09-15 2012-01-17 Alstom Technology Ltd Exhauster bypass system
US20120085067A1 (en) * 2009-06-12 2012-04-12 Ake Ottoson Apparatus for adding a gas to a liquid-filled bottle
US9101889B2 (en) * 2009-06-12 2015-08-11 Ake Ottoson Apparatus for adding a gas to a liquid-filled bottle
WO2013102451A1 (en) * 2012-01-07 2013-07-11 Dirk Barnstedt Cyclone-like separator, in particular for waste management

Also Published As

Publication number Publication date
GB1068778A (en) 1967-05-17

Similar Documents

Publication Publication Date Title
US3397780A (en) Classification apparatus
US3710561A (en) Apparatus for separating solid particles suspended in a gaseous stream
US4504292A (en) Powder spray booth
US1928702A (en) Apparatus for collecting dust
RU2652808C2 (en) Aerodynamic recirculating separator of bulk materials
US3409131A (en) Inertial type pneumatic separator
CN1264613C (en) Dry grading method of powdered coal and its equipment
US4230559A (en) Apparatus for pneumatically separating fractions of a particulate material
US3767045A (en) Closed circuit multi-stage air classifier
US4166027A (en) Apparatus and method for pneumatically separating fractions of a particulate material
US6311411B1 (en) Vertical dryer with vertical particle removal plenum and method of use
US3074219A (en) Mechanical dust collector
US3034646A (en) Tobacco classifying apparatus
US2059673A (en) Separator
US3383774A (en) Apparatus and method for treating pulverulent or granular material
GB987671A (en) Particle classifier and method of classifying particles
US3119605A (en) Process and device for preheating pulverulent material
US2219711A (en) Cyclone separator
US2724904A (en) Coal drying system with trap
US4222859A (en) Particle separator devices
US3342024A (en) Dust collector apparatus
US2878893A (en) Dust collector
SU797115A1 (en) Apparatus for screening loose polydisperse materials in fluidized bed
GB2123715A (en) Adjustable particle classifier
CA2229853A1 (en) Separation apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, A CORP. OF NY., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ENVIROTECH CORPORATION;REEL/FRAME:003933/0138

Effective date: 19810425

AS Assignment

Owner name: GENERAL ELECTRIC ENVIRONMENTAL SERVICES, INCORPORA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GENERAL ELECTRIC COMPANY A NY CORP.;REEL/FRAME:004118/0578

Effective date: 19830217