US3396449A - Method of calibrating vacuum advance mechanisms for ignition distributors - Google Patents
Method of calibrating vacuum advance mechanisms for ignition distributors Download PDFInfo
- Publication number
- US3396449A US3396449A US518608A US51860866A US3396449A US 3396449 A US3396449 A US 3396449A US 518608 A US518608 A US 518608A US 51860866 A US51860866 A US 51860866A US 3396449 A US3396449 A US 3396449A
- Authority
- US
- United States
- Prior art keywords
- spring
- diaphragm
- housing
- vacuum
- vacuum advance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007246 mechanism Effects 0.000 title description 28
- 238000000034 method Methods 0.000 title description 22
- 239000012080 ambient air Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000003570 air Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/05—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means
- F02P5/10—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on fluid pressure in engine, e.g. combustion-air pressure
- F02P5/103—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on fluid pressure in engine, e.g. combustion-air pressure dependent on the combustion-air pressure in engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/005—Advancing or retarding ignition; Control therefor with combination of automatic and non- automatic means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49004—Electrical device making including measuring or testing of device or component part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49609—Spring making
- Y10T29/49611—Spring making for vehicle or clutch
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
Definitions
- ABSTRACT OF THE DISCLOSURE A method of adjusting the bias of a return spring in the chamber of a vacuum advance mechanism for ignition distributors, wherein the spring is first placed in the vacuum chamber so that opposite ends of the spring engage respectively a housing and a diaphragm defining the chamber, whereafter the housing is deformed to stress the spring in axial direction to thereby adjust the spring bias.
- the present invention relates to internal combustion engines in general, and more particularly to ignition distributors for internal combustion engines. Still more particularly, the invention relates to a method of calibrating the vacuum advance mechanism for an ignition distributor.
- the housing of the vacuum advance mechanism is usually mounted on or close to the ignition distributor.
- the vacuum advance mechanism normally comprises a vacuum diaphragm which is coupled to the breaker plate of the ignition distributor to change the angular position of the breaker plate in response to a change in pressure differential at the opposite sides of the diaphragm.
- the latter forms a seal at one side of a vacuum chamber which is in communication with the intake manifold of the internal combustion engine, and the vacuum chamber accommodates a return spring which opposes the pressure of ambient air against the exposed side of the diaphragm.
- the return spring of a mass-produced vacuum advance mechanism is calibrated after the mechanism is mounted on the ignition distributor.
- Such calibration is necessary to compensate for inaccuracies in manufacture of the vacuum advance mechanism and/ or ignition distributor, and also to insure that the adjustment carried out by the mechanism in actual operation will invariably result in turning of the breaker plate through a desired angle, i.e., that the vacuum advance mechanism can actually fulfill its intended purpose of advancing the spark as a function of the vacuum prevailing in the intake manifold.
- manufacturers of vacuum advance mechanisms resort to adjusting screws, bolts and similar rotary elements which can change the bias of the spring in the vacuum chamber and which must be fixed in final position of adjustment to prevent uncontrolled changes in the spring bias.
- Such calibrating operation is time-consuming and requires much skill as well as precision-finished tools and other accessories.
- Another object of the invention is to provide a method of the just outlined characteristics according to which the calibrating operation requires less skill than all such heretofore known calibrating operations which are known to me at this time.
- a further object of the invention is to provide a method of calibrating the return spring of a vacuum advance mechanism in such a way that the bias of the spring thereupon remains unchanged for any desired length of time.
- a concomitant object of the invention is to provide a method of calibrating the return spring of a vacuum advance mechanism in such a way that, in order to change its bias, the spring need not be accessible at all.
- Still another object of the invention is to provide a method of the above outlined characteristics which may be resorted to in connection with all such types of vacuum advance mechanisms wherein the pressure of atmospheric air against a deformable portion of the housing for a vacuum chamber is opposed by a prestressed spring.
- one feature of my present invention resides in the provision of a method of adjusting the bias of a return spring in the chamber of a vacuum advance mechanism for ignition distributors of internal combustion engines wherein the chamber is defined by a vacuum diaphragm and a housing and wherein the spring opposes the pressure of ambient air against the exposed side of the diaphragm.
- the method comprises a first step of introducing into the vacuum chamber a spring whose bias is less than necessary to offer satisfactory resistance to the pressure of ambient air, and a second step of thereupon changing the configuration of the chamber to thereby store energy in the spring until the latter offers a requisite resistance to the pressure of ambient air.
- the change in the configuration of the vacuum chamber is brought about by deforming the housing of the vacuum advance mechanism with a view to reduce the volume of the vacuum chamber and to thereby compress the spring between the housing and the diaphragm.
- the spring is preferably a helical spring one end convolution of which bears against the central zone of a substantially disk shaped diaphragm and the other end convolution of which bears against the bottom portion of a cup-shaped housing whose open end is sealed by the diaphragm.
- FIG. 1 is an axial section through a vacuum advance 3 mechanism whose return spring is about to be calibrated in accordance with my method
- FIG. 2 is a similar axial section through the vacuum advance mechanism, further showing the calibrating apparatus and a portion of the ignition distributor whose breaker plate is controlled by the diaphragm of the vacuum advance mechanism, the return spring being shown in calibrated condition.
- FIG. 1 shows a vacuum advance mechanism which comprises a cupped housing 12 having a bottom portion 15 provided with an annular depression 16 which accommodates one end convolution of a helical return spring 22.
- the open end of the housing 12 is sealed by a flexible disk-shaped vacuum diaphragm 13 whose marginal portion is sealingly clamped to the housing by upsetting an annular flange 14 on the periphery of a cover or lid 11.
- the central portion of the diaphragm 13 is disposed between two stiffening washers 18, 19 and is connected to a link 20 serving to transmit motion to the breaker plate of an ignition distributor shown in FIG. 2.
- the housing 12 and the diaphragm 13 define between themselves a vacuum chamber 21 which accommodates the return spring 22, and the lower end convolution of this spring bears against the central portion of the diaphragm, i.'e., against the washer 18.
- the latter is provided with an annular peripheral flange to serve as a retainer for the spring 22 whereby the latter is properly located between the bottom portion 15 and the diaphragm 13.
- a conduit 17 connects the housing 12 with the intake manifold of an internal combustion engine, not shown, so that the conduit 17 can admit vacuum manifold to the chamber 21.
- the underside of the diaphragm 13 is subjected to the pressure of ambient air so that the spring 22 opposes such pressure by tending to prevent flexing of the diaphragm toward the bottom portion 15 of the housing 12. It will be noted that the end of the conduit 17 communicates with the central zone of the depression 16 in the bottom portion 15.
- the cover 11 is welded or otherwise secured to a mounting bracket 23 which is attached to the ignition distributor 25 by screws 24 shown in FIG. 2.
- the vacuum advance mechanism 10 is tested with a view to adjust the bias of the return spring 22, the open end of the housing 12 is propped by a matrix 26 and the bottom portion 15 of the housing 12 is deformed by a ram 27 which is moved in the direction indicated in FIG. 2 by an arrow 28.
- the deformation of an annular part of the bottom portion 15 which surrounds the depression 16 results in a change in the configuration and volume of the vacuum chamber 21 by simultaneous compression of the spring 22.
- the pressure differential at the opposite sides of the diaphragm 13 remains unchanged.
- the spring 22 is inserted into the chamber 21 while the volume and configuration of the chamber are such that the spring is subjected to less than requisite compression, and the deformation of the housing 12 and resultant reduction in the volume of the chamber 21 are terminated when the spring 22 has stored sufficient energy to insure that the vacuum advance mechanism 10 can regulate the position of the breaker plate as a function of manifold vacuum.
- the function of the matrix 26 and ram 27 can be reversed, i.e., that the ram can remain stationary and the matrix can move in a direction counter to that indicated by the arrow 28.
- each of the parts 26, 27 can be moved in a sense to deform the housing 12 and to reduce the axial length of the return spring 22.
- re turn spring is a helical spring whose end convolutions respectively bear against the diaphragm and against the housing, and wherein said second step comprises deforming the housing in a direction to reduce the axial length of the spring.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Measuring Fluid Pressure (AREA)
- Diaphragms And Bellows (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEB80223A DE1242411B (de) | 1965-01-22 | 1965-01-22 | Verfahren zum Einstellen der Federvorspannung bei Unterdruckzuendverstellern fuer Brennkraftmaschinen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3396449A true US3396449A (en) | 1968-08-13 |
Family
ID=6980620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US518608A Expired - Lifetime US3396449A (en) | 1965-01-22 | 1966-01-04 | Method of calibrating vacuum advance mechanisms for ignition distributors |
Country Status (5)
Country | Link |
---|---|
US (1) | US3396449A (enrdf_load_stackoverflow) |
DE (1) | DE1242411B (enrdf_load_stackoverflow) |
FR (1) | FR1465818A (enrdf_load_stackoverflow) |
GB (1) | GB1125729A (enrdf_load_stackoverflow) |
SE (1) | SE218861C1 (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3554223A (en) * | 1969-05-01 | 1971-01-12 | Gen Motors Corp | Pressure control valve assembly and method of calibration |
US3800393A (en) * | 1971-07-14 | 1974-04-02 | Robertshaw Controls Co | Method of calibrating dual lever mechanism |
US3880605A (en) * | 1973-07-16 | 1975-04-29 | Gillette Co | Manufacture gas propelled dispensers |
US3959866A (en) * | 1974-08-19 | 1976-06-01 | Athens Stove Works, Inc. | Method of making a gas range top burner |
US4078722A (en) * | 1976-10-28 | 1978-03-14 | A. W. Cash Valve Manufacturing Corporation | Relief valve |
US4361952A (en) * | 1981-02-23 | 1982-12-07 | Sparton Corporation | Method of adjusting air gap of an electric horn |
US4646975A (en) * | 1984-12-06 | 1987-03-03 | Vdo Adolf Schindling Ag | Electromagnetically actuatable fuel-injection valve |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1776023B1 (de) * | 1968-09-05 | 1971-12-09 | Ford Werke Ag | Membrangehaeuse fuer unterdruckzuendversteller von brenn kraftmaschinen und verfahren zum einstellen der vorspannung der rueckstellfeder |
GB1409919A (en) * | 1972-01-15 | 1975-10-15 | Lucas Electrical Co Ltd | Vacuum units for ignition distributors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2216878A (en) * | 1938-04-04 | 1940-10-08 | Snap On Tools Inc | Method of forming detents |
US2714759A (en) * | 1949-09-29 | 1955-08-09 | Detroit Controls Corp | Apparatus for closing and standardizing thermostatic power elements |
US2904876A (en) * | 1954-05-12 | 1959-09-22 | Acf Ind Inc | Shaft end mounting for sealing and loop forming a pump diaphragm |
US3107417A (en) * | 1959-08-24 | 1963-10-22 | Gen Motors Corp | Method for adjusting setting of a pressure relief valve |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB463463A (en) * | 1936-05-27 | 1937-03-31 | Alfred Amos Melcher | Ignition interrupter |
GB501360A (en) * | 1937-08-27 | 1939-02-27 | Lucas Ltd Joseph | Improvements relating to ignition apparatus for internal combustion engines |
FR982571A (fr) * | 1943-07-20 | 1951-06-12 | Ducellier Sa Des Ets | Perfectionnements aux distributeurs rotatifs pour l'allumage des moteurs |
-
1965
- 1965-01-22 DE DEB80223A patent/DE1242411B/de not_active Withdrawn
- 1965-12-16 GB GB53364/65A patent/GB1125729A/en not_active Expired
-
1966
- 1966-01-04 US US518608A patent/US3396449A/en not_active Expired - Lifetime
- 1966-01-05 FR FR44851A patent/FR1465818A/fr not_active Expired
- 1966-01-21 SE SE82966A patent/SE218861C1/sv unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2216878A (en) * | 1938-04-04 | 1940-10-08 | Snap On Tools Inc | Method of forming detents |
US2714759A (en) * | 1949-09-29 | 1955-08-09 | Detroit Controls Corp | Apparatus for closing and standardizing thermostatic power elements |
US2904876A (en) * | 1954-05-12 | 1959-09-22 | Acf Ind Inc | Shaft end mounting for sealing and loop forming a pump diaphragm |
US3107417A (en) * | 1959-08-24 | 1963-10-22 | Gen Motors Corp | Method for adjusting setting of a pressure relief valve |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3554223A (en) * | 1969-05-01 | 1971-01-12 | Gen Motors Corp | Pressure control valve assembly and method of calibration |
US3800393A (en) * | 1971-07-14 | 1974-04-02 | Robertshaw Controls Co | Method of calibrating dual lever mechanism |
US3880605A (en) * | 1973-07-16 | 1975-04-29 | Gillette Co | Manufacture gas propelled dispensers |
US3959866A (en) * | 1974-08-19 | 1976-06-01 | Athens Stove Works, Inc. | Method of making a gas range top burner |
US4078722A (en) * | 1976-10-28 | 1978-03-14 | A. W. Cash Valve Manufacturing Corporation | Relief valve |
US4361952A (en) * | 1981-02-23 | 1982-12-07 | Sparton Corporation | Method of adjusting air gap of an electric horn |
US4646975A (en) * | 1984-12-06 | 1987-03-03 | Vdo Adolf Schindling Ag | Electromagnetically actuatable fuel-injection valve |
Also Published As
Publication number | Publication date |
---|---|
FR1465818A (enrdf_load_stackoverflow) | 1967-01-13 |
DE1242411B (de) | 1967-06-15 |
GB1125729A (en) | 1968-08-28 |
SE218861C1 (enrdf_load_stackoverflow) | 1968-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4198030A (en) | Fluid operated valve positioner | |
US3396449A (en) | Method of calibrating vacuum advance mechanisms for ignition distributors | |
US4608957A (en) | Aggregate for supplying fuel, particularly from a supply container to an internal combustion engine of a motor vehicle | |
US4221204A (en) | Thermal timer valve | |
US4284261A (en) | Stroke adjustment for vacuum motor | |
US3459163A (en) | Thermostatic control | |
US4161964A (en) | Reservoir for fuel injection system | |
US4286559A (en) | Pneumatic diaphragm control member for a fuel injection device for internal combustion engines | |
US3572301A (en) | Vacuum advance mechanism for ignition distributors of internal combustion engines | |
US2680610A (en) | Throttle dashpot | |
US5018500A (en) | Pressure regulator device for the fuel circuit of an internal combustion engine supply system | |
US2738808A (en) | Spring biased diaphragm device | |
US1464307A (en) | Ignition device | |
US4278407A (en) | Device for controlling an amount of fuel injection in a diesel engine | |
US2594132A (en) | Intake type unloader for compressors and the like | |
US2859055A (en) | Seal for a pneumatic servo motor | |
US3062929A (en) | Ignition distributor advance mechanism | |
US4042899A (en) | Vacuum servo actuated variable inductance transducer | |
US4181065A (en) | Two stage vacuum break | |
US4182291A (en) | Dashpot with fast idle device for carburetor throttle | |
US3135218A (en) | Pump with lost motion structure about diaphragm plunger | |
US2219480A (en) | Centrifugal control for ignition timer | |
US3572218A (en) | Connecting means between diaphragm and actuator rod | |
US2859951A (en) | Idling needle with vacuum attachment | |
GB1290647A (enrdf_load_stackoverflow) |