US3393070A - Xerographic plate with electric field regulating layer - Google Patents
Xerographic plate with electric field regulating layer Download PDFInfo
- Publication number
- US3393070A US3393070A US436171A US43617165A US3393070A US 3393070 A US3393070 A US 3393070A US 436171 A US436171 A US 436171A US 43617165 A US43617165 A US 43617165A US 3393070 A US3393070 A US 3393070A
- Authority
- US
- United States
- Prior art keywords
- plate
- voltage
- charging
- xerographic
- xerographic plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 title description 18
- 230000005684 electric field Effects 0.000 title description 8
- 239000000463 material Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- 239000002245 particle Substances 0.000 description 11
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 7
- 229910052711 selenium Inorganic materials 0.000 description 7
- 239000011669 selenium Substances 0.000 description 7
- 229910052797 bismuth Inorganic materials 0.000 description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- IRPLSAGFWHCJIQ-UHFFFAOYSA-N selanylidenecopper Chemical compound [Se]=[Cu] IRPLSAGFWHCJIQ-UHFFFAOYSA-N 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- -1 etc. Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- YTGSYRVSBPFKMQ-UHFFFAOYSA-N 2,2,2-tribromoacetaldehyde Chemical compound BrC(Br)(Br)C=O YTGSYRVSBPFKMQ-UHFFFAOYSA-N 0.000 description 1
- VHQGURIJMFPBKS-UHFFFAOYSA-N 2,4,7-trinitrofluoren-9-one Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C2C3=CC=C([N+](=O)[O-])C=C3C(=O)C2=C1 VHQGURIJMFPBKS-UHFFFAOYSA-N 0.000 description 1
- BXRFQSNOROATLV-UHFFFAOYSA-N 4-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=C(C=O)C=C1 BXRFQSNOROATLV-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-M 4-nitrophenolate Chemical compound [O-]C1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-M 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229910001370 Se alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L Zinc chloride Inorganic materials [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- 239000004110 Zinc silicate Substances 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- BRHJUILQKFBMTL-UHFFFAOYSA-N [4,4-bis(dimethylamino)cyclohexa-1,5-dien-1-yl]-phenylmethanone Chemical compound C1=CC(N(C)C)(N(C)C)CC=C1C(=O)C1=CC=CC=C1 BRHJUILQKFBMTL-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- JLATXDOZXBEBJX-UHFFFAOYSA-N cadmium(2+);selenium(2-);sulfide Chemical compound [S-2].[Se-2].[Cd+2].[Cd+2] JLATXDOZXBEBJX-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 1
- 235000019352 zinc silicate Nutrition 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- UQMZPFKLYHOJDL-UHFFFAOYSA-N zinc;cadmium(2+);disulfide Chemical compound [S-2].[S-2].[Zn+2].[Cd+2] UQMZPFKLYHOJDL-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/28—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which projection is obtained by line scanning
- G03G15/30—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which projection is obtained by line scanning in which projection is formed on a drum
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/142—Inert intermediate layers
- G03G5/144—Inert intermediate layers comprising inorganic material
Definitions
- ABSTRACT OF THE DISCLOSURE This invention relates to xerography and, more specifically, to -a xerographic plate, method and apparatus.
- Xerographic ofi'ice copying has undergone an extreme- 1y large growth in the past few years.
- This copying technique as originally disclosed by Carlson in US Patent 2,297,691, and as further amplified by many related patents in the field, a photoconductive insulating layer making up part of a xerographic plate is first given a uniform electrostatic charge over its entire surface to sensitize it and is then exposed to an image of actinic electromagnetic radiation such as light, X-ray or the like, which selectively drains away the charge in illuminated areas of the photoconductive insulator leaving behind charge in the nonilluminated areas to form a latent electrostatic image.
- actinic electromagnetic radiation such as light, X-ray or the like
- This latent image is then made visible (developed) by the deposition of finely divided, electroscopic, marking material on the surface of the photoconductive insulating layer as a result of which the marking material conforms to the pattern of the latent image rendering it visible.
- the marking material is generally made up of a powdered mixture of a thermoplastic and a colorant and is known in the art as toner.
- this visible toner image is then transferred to a second surface such as a sheet of paper and fixed in place thereon to form a permanent, visible reproduction of the original.
- a cheap nonreusable photoconductive insulating material is employed, the toner particles are fixed in place directly on its surface with the consequent elimination of the transfer step from the process.
- corona charging in order to sensitize it, a number of techniques have been developed and the technique which has gained widest commercial acceptance is corona charging, as more fully described in US. Patents 2,588,699 to Carlson and 2,777,957 to Walkup.
- this corona discharge technique consists of spacing a filament or a plurality of filaments slightly from the surface of a xerographic plate having its conductive base grounded and applying a high potential to the filament so that an electrical corona discharge occurs between the filament and the plate, thus serving to deposit charged ions or electrons on the plate surface to raise its level of electrostatic charge with respect to ground potential.
- the conditions of the atmosphere between the corona electrode and the xerographic plate to be sensitized can, in certain instances, make important differences in how effectively the plate is sensitized.
- Reduced air pressure, wide changes in relative humidity, large amounts of impurities in the air and other factors may have relatively important effects upon the level of charge which is deposited upon the plate with the charging voltage held constant.
- it is frequently necessary to adjust the power supply or use specialized charging devices such as screen-controlled corona discharge electrodes, as described for example in US. Patent 2,778,946 to Mayo, and even these techniques are not always entirely satisfactory.
- Another instance in which corona voltage controls are required is a variable speed copier using a photoconductive plate which moves past the corona charging unit at two or more different speeds.
- a still further object of this invention is to provide a xerographic plate which is self-limiting in its charge acceptance characteristics.
- An additional object of this invention is to provide an improved xerographic process.
- Yet another object of this invention is to provide a novel xerographic apparatus requiring no charging power supply adjustments or controls.
- FIG. 1 is a side view of the improved xerographic plate according to this invention.
- FIG. 2 is a graph of the current-voltage characteristics during corona charging of a conventional xerographic plate as compared with the improved xerographic plate of this invention.
- FIG. 3 is a side sectional view of an exemplary xerographic processing apparatus employing the improved plate of this invention.
- a xerographic plate generally indicated as 10 made up of supporting substrate 11, an interface layer 12 and a photoconductive insulating layer 13.
- the substrate layer 11 may consist of any one of a number of materials including conductive materials such as aluminum, magnesium brass, steel, chrome, etc., or non-conductive materials such as glass, paper, plastic sheeting or the like impregnated with materials such as metals or carbon black which raise their conductivity or coated with conductive layers such as thin layers of gold, copper iodide, or the like.
- conductive materials such as aluminum, magnesium brass, steel, chrome, etc.
- non-conductive materials such as glass, paper, plastic sheeting or the like impregnated with materials such as metals or carbon black which raise their conductivity or coated with conductive layers such as thin layers of gold, copper iodide, or the like.
- a conductive substrate not only provides additional structural strength to the plate, but also provides for an electrical ground plane immediately beneath the surface of the other plate layers so that the plate may be easily charged from a corona discharge electrode in accordance with the teachings of the aforementioned US. Patent 2,588,699.
- the conductive material need not necessarily be a material which is ordinarily thought of as an electrical conductor. Any substrate having an electrical resistance at least several orders of magnitude lower than the resistance of the illuminated photoconductor will serve this function even without a metallic coating. If on the other hand, certain other corona charging techniques such as the two-sided corona charging technique, described in U.S. Patent 2,922,883 are employed, the conductivity of the supporting substrate may be largely ignored and it may be selected based mainly on its structural properties or omitted altogether.
- Interface layer 12 is a thin layer of a material which is selected primarily for its electrical properties, as described hereinafter in connection with FIG. 2. In essence, it is a material which is selected so as to impart to the plate a voltage or field regulating electrical characteristic similar to that of a voltage-regulating gas discharge tube. Any suitable voltage regulating material may be employed for this purpose. Typical materials which have been found to provide this voltage regulating characteristic include: bismuth, oxidized bismuth, tin, copper selenide, and extremely thin layers of tin oxide or aluminum oxide, etc. The tin oxide and aluminum oxide layers must be very thin in order to achieve this characteristic I.V. curve.
- a photoconductive insulating layer 13 Overlying interface layer 12 is a photoconductive insulating layer 13. Any suitable photoconductive insulating material may be employed as layer 13. Typical photoconductive insulators include: vitreous selenium, alloys of selenium with arsenic or tellurium in the vitreous form, sintered or evaporated layers of other materials such as cadmium sulfide, cadmium selenide, etc., photoconductive insulating materials in particulate form suspended in an insulating film-forming binder material as, for example, zinc sulfide, zinc cadmium sulfide, French process zinc oxide, metal-free phthalocyanine, cadmium sulfide, cadmium selenide, zinc silicate, cadmium sulpho-selenide, etc., dispersed in an insulating film-forming binder such as an epoxy resin, a silicone resin, an alkyd resin or the like.
- Typical organic photoconductive materials of this type include: polyvinylcarbazole, anthracene, polyvinylanthracene, anthraquinone, oxidiazole derivatives such as 2,5-bis-(p-aminophenyl-l), 1,3,4 oxidiazole; Z-phenylbenzoxazole; and charge transfer complexes made by complexing resins such as phenolaldehydes, epoxies, phenoxies, polycarbonates, melamines, etc.
- Lewis acids such as phthalic anhydride, 2,4,7-trinitrofluorenone, metallic chlorides such as aluminum, zinc or ferric chloride; 4,4-bis(dimethylamino)benzophenone; chloranil; picric acid; 1,3,5-trinitrobenzene; l-chloroanthraquinone; bromal; 4-nitrobenzaldehyde; 4-nitr-ophenol; acetic anhydride; maleic anhydride; borontrichloride; maleic acid; cinnamic acid; benzoic acid; tartaric acid; malonic acid and mixtures thereof.
- Lewis acids such as phthalic anhydride, 2,4,7-trinitrofluorenone, metallic chlorides such as aluminum, zinc or ferric chloride; 4,4-bis(dimethylamino)benzophenone; chloranil; picric acid; 1,3,5-trinitrobenzene; l-chloroanthraquinone; bromal; 4-nitrobenzaldehyde; 4-
- selenium in its amorphous form and alloys of the amorphous form of selenium constitute a preferred material for photoconductive insulating layer 13, because of their extremely high quality image-making capability and relatively high light response.
- FIG. 2 there is shown a graph of'the amount of current flow I through a xerographic plate versus the voltage on that plate V as corona charging proceeds.
- Curve 16 represents a current-voltage characteristic of a conventional selenium xerographic plate on an aluminum substrate while curve 17 represents the current-voltage characteristic curve of the improved plate of this invention.
- the selfregulating plate of this invention has a lower leg which very closely corresponds to that of the conventional xerographic plate until the voltage on the plate reaches a certain level where the curve turns up very sharply, rising to an almost straight vertical configuration so that increasing .plate current during charging results in little or no additional voltage being built up on the surface of the plate.
- this curve 17 begins its steep rise depends upon the particular material selected for the interface 12, the thickness of the material and the particular overlying photoconductor.
- the curve becomes vertical at about 30 volts per micron of selenium while it becomes vertical at about 40 volts per micron of selenium with the other interface materials listed supra.
- FIG. 3 An exemplary xerographic copying apparatus adapted to employ the xerographic plate of this invention in the form of a cylindrical drum is shown in FIG. 3.
- the drum when in operation, is generally rotated at a uniform velocity in the direction indicated by the arrow in FIG. 3 so after portions of the drum periphery pass the charging unit 18 and have been uniformly charged, they come beneath a projector 19 or other means for exposing the charged plate to the image to be reproduced. Subsequent to charging and exposure, sections of the drum surface move past the developing unit, generally designated 21.
- This developing unit is of the gatorde type which includes an outer container or cover 22 with a trough at its bottom containing a supply of developing material 23.
- the developing material is picked up from the bottom of the container and dumped or cascaded over the drum surface by a number of "buckets 24 on an endless driven conveyor belt 26.
- This development technique which is more fully described in US. Patent 2,618,552 to Wise and 2,618,551 to Walkup, utilizes a two-element development mixture including finely divided, colored marking particles or toner and larger carrier beads.
- the carrier beads serve both to deagglomerate the fine toner particles for easier feeding and charge them by virtue of the relative positions of the toner and carrier material in the triboelectric series.
- the carrier beads with toner particles clinging to them are cascaded over the drum surface.
- the electrostatic field from the charge pattern on the drum pulls toner particles off the carrier beads serving to develop the image.
- the toner in the developing mixture is periodically replenished from a toner dispenser not shown.
- a transfer unit 29 is placed behind the web and spaced slightly from it between rollers 28. This unit is similar in nature to the plate charging mechanism 18 in that both operate on the corona discharge principle.
- Both the charging device 18 and the transfer unit 29 are connected to a source of high DC potential (of the same polarity) identified as 31 and 32, respectively, and include a corona discharge Wire 33 and 34, respectively, surrounded by a conductive metal shield.
- a source of high DC potential identified as 31 and 32, respectively, and include a corona discharge Wire 33 and 34, respectively, surrounded by a conductive metal shield.
- voltage ource 31 is preselected to be of such a magnitude that it will produce a corona discharge on the drum under almost any conditions of relative humidity and atmospheric pressure normally encountered which would tend to charge a conventional xerographic plate well above the desired voltage.
- This excessively high potential source is pre-set and need not be adjusted because the retained voltage on the plate is controlled by the electrical characteristics of the plate itself in such a way that any excessive current which flows through the plate during the corona discharge is drained away by the voltage regulating characteristics of the plate.
- this voltage is generally set at from about 8,000 volts to about 10,000 volts, whereas with a conventional plate, it would be set at about 7,000 volts.
- charge is deposited on the back of web 27 and this charge is of the same polarity as the charge initially deposited on the drum and also opposite of polarity to the toner particles utilized in developing the drum.
- the discharge deposit on the back of web 27 pulls the toner particles away from the drum by overcoming the force of attraction between the particles and the charge on the drum.
- a roller connected to a high potential source opposite in polarity to the toner particles may be placed immediately behind the copy web or the copy web itself may be adhesive to the toner particles.
- the web moves beneath a fixing unit 36 which serves to fuse or permanently fix the toner image to web 27.
- a resistance heating-type fixer is illustrated.
- this apparatus may also be operated at varying speeds by setting the corona discharge unit at a high enough voltage so the plate will be charged fully at the highest speed. Then, overcharging will not occur at the lower speeds because of self regulation by the plate.
- a xerographic plate comprising an electrically c0n ductive substrate, an electrical field regulating layer on said substrate consisting essentially of bismuth, and a photoconductive insulating layer overlaying said voltage regulating layer.
- a xerographic plate comprising an electrically conductive substrate, an electrical field regulating layer on said substrate consisting essentially of oxidized bismuth, and a photoconductive insulating layer overlaying said voltage regulating layer.
- a xerographic plate comprising an electrically conductive substrate, an electrical field regulating layer on said substrate consisting essentially of tin, and a photoconductive insulating layer overlaying said voltage regulating layer.
- a xerographic plate comprising an electrically conductive substrate, an electrical field regulating layer on said substrate consisting essentially of copper selenide, and a photoconductive insulating layer overlaying said voltage regulating layer.
- a method of uniformly charging a xerographic plate having a voltage regulating layer comprising an electrically conductive support, an electrical field regulating layer comprising a material selected from the group consisting of bismuth, oxidized bismuth, tin, and copper selenide contained on said substrate, and a photoconductive insulating layer overlaying said voltage regulating layer, said method comprising uniformly charging said plate to a charging potential in excess of a preselected voltage determined by said voltage regulating layer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US436171A US3393070A (en) | 1965-03-01 | 1965-03-01 | Xerographic plate with electric field regulating layer |
GB8540/66A GB1141452A (en) | 1965-03-01 | 1966-02-25 | Xerographic plate |
JP41011136A JPS499377B1 (enrdf_load_stackoverflow) | 1965-03-01 | 1966-02-25 | |
DE19661522682 DE1522682A1 (de) | 1965-03-01 | 1966-03-01 | Xerographische Platte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US436171A US3393070A (en) | 1965-03-01 | 1965-03-01 | Xerographic plate with electric field regulating layer |
Publications (1)
Publication Number | Publication Date |
---|---|
US3393070A true US3393070A (en) | 1968-07-16 |
Family
ID=23731402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US436171A Expired - Lifetime US3393070A (en) | 1965-03-01 | 1965-03-01 | Xerographic plate with electric field regulating layer |
Country Status (4)
Country | Link |
---|---|
US (1) | US3393070A (enrdf_load_stackoverflow) |
JP (1) | JPS499377B1 (enrdf_load_stackoverflow) |
DE (1) | DE1522682A1 (enrdf_load_stackoverflow) |
GB (1) | GB1141452A (enrdf_load_stackoverflow) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3864132A (en) * | 1972-05-22 | 1975-02-04 | Eastman Kodak Co | Article having a hydrophilic colloid layer adhesively bonded to a hydrophobic polymer support |
US3920453A (en) * | 1972-01-28 | 1975-11-18 | Addressograph Multigraph | Method of electrostatic duplicating by image transfer |
US4094675A (en) * | 1973-07-23 | 1978-06-13 | Licentia Patent-Verwaltungs-G.M.B.H. | Vapor deposition of photoconductive selenium onto a metallic substrate having a molten metal coating as bonding layer |
US4138262A (en) * | 1976-09-20 | 1979-02-06 | Energy Conversion Devices, Inc. | Imaging film comprising bismuth image-forming layer |
US4271257A (en) * | 1976-09-20 | 1981-06-02 | Energy Conversion Devices, Inc. | Imaging film of bismuth or bismuth alloy |
US4403026A (en) * | 1980-10-14 | 1983-09-06 | Canon Kabushiki Kaisha | Photoconductive member having an electrically insulating oxide layer |
US4518669A (en) * | 1982-11-06 | 1985-05-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member |
US4705696A (en) * | 1984-09-27 | 1987-11-10 | Olin Hunt Specialty Products Inc. | Method of making a lithographic printing plate, printing plates made by the method, and the use of such printing plates to make lithographic prints |
US5085959A (en) * | 1988-08-11 | 1992-02-04 | Fuji Electric Co., Ltd. | Se or se alloy electrophotographic photoreceptor |
US5468584A (en) * | 1992-12-01 | 1995-11-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member having intermediate layer containing fine powder particles of tin oxide containing phosphorous and apparatus employing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52108169U (enrdf_load_stackoverflow) * | 1976-02-12 | 1977-08-17 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB748340A (en) * | 1952-07-23 | 1956-04-25 | Haloid Co | Xerographic plate and the process for production thereof |
US2863768A (en) * | 1955-07-05 | 1958-12-09 | Haloid Xerox Inc | Xerographic plate |
US3041166A (en) * | 1958-02-12 | 1962-06-26 | Xerox Corp | Xerographic plate and method |
US3148057A (en) * | 1961-03-23 | 1964-09-08 | Azoplate Corp | Material for electrophotographic purposes |
US3210194A (en) * | 1961-08-21 | 1965-10-05 | Univ Iowa State Res Found Inc | Administration of 2-mercaptoimidazole compounds to meat-producing ruminants |
US3243293A (en) * | 1965-03-26 | 1966-03-29 | Xerox Corp | Plate for electrostatic electro-photography |
-
1965
- 1965-03-01 US US436171A patent/US3393070A/en not_active Expired - Lifetime
-
1966
- 1966-02-25 GB GB8540/66A patent/GB1141452A/en not_active Expired
- 1966-02-25 JP JP41011136A patent/JPS499377B1/ja active Pending
- 1966-03-01 DE DE19661522682 patent/DE1522682A1/de active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB748340A (en) * | 1952-07-23 | 1956-04-25 | Haloid Co | Xerographic plate and the process for production thereof |
US2863768A (en) * | 1955-07-05 | 1958-12-09 | Haloid Xerox Inc | Xerographic plate |
US3041166A (en) * | 1958-02-12 | 1962-06-26 | Xerox Corp | Xerographic plate and method |
US3148057A (en) * | 1961-03-23 | 1964-09-08 | Azoplate Corp | Material for electrophotographic purposes |
US3210194A (en) * | 1961-08-21 | 1965-10-05 | Univ Iowa State Res Found Inc | Administration of 2-mercaptoimidazole compounds to meat-producing ruminants |
US3243293A (en) * | 1965-03-26 | 1966-03-29 | Xerox Corp | Plate for electrostatic electro-photography |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920453A (en) * | 1972-01-28 | 1975-11-18 | Addressograph Multigraph | Method of electrostatic duplicating by image transfer |
US3864132A (en) * | 1972-05-22 | 1975-02-04 | Eastman Kodak Co | Article having a hydrophilic colloid layer adhesively bonded to a hydrophobic polymer support |
US4094675A (en) * | 1973-07-23 | 1978-06-13 | Licentia Patent-Verwaltungs-G.M.B.H. | Vapor deposition of photoconductive selenium onto a metallic substrate having a molten metal coating as bonding layer |
US4138262A (en) * | 1976-09-20 | 1979-02-06 | Energy Conversion Devices, Inc. | Imaging film comprising bismuth image-forming layer |
US4271257A (en) * | 1976-09-20 | 1981-06-02 | Energy Conversion Devices, Inc. | Imaging film of bismuth or bismuth alloy |
US4403026A (en) * | 1980-10-14 | 1983-09-06 | Canon Kabushiki Kaisha | Photoconductive member having an electrically insulating oxide layer |
US4518669A (en) * | 1982-11-06 | 1985-05-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member |
US4705696A (en) * | 1984-09-27 | 1987-11-10 | Olin Hunt Specialty Products Inc. | Method of making a lithographic printing plate, printing plates made by the method, and the use of such printing plates to make lithographic prints |
US5085959A (en) * | 1988-08-11 | 1992-02-04 | Fuji Electric Co., Ltd. | Se or se alloy electrophotographic photoreceptor |
US5468584A (en) * | 1992-12-01 | 1995-11-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member having intermediate layer containing fine powder particles of tin oxide containing phosphorous and apparatus employing same |
Also Published As
Publication number | Publication date |
---|---|
JPS499377B1 (enrdf_load_stackoverflow) | 1974-03-04 |
GB1141452A (en) | 1969-01-29 |
DE1522682A1 (de) | 1969-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0010375B1 (en) | Electrostatographic processing system | |
US4338387A (en) | Overcoated photoreceptor containing inorganic electron trapping and hole trapping layers | |
Pai et al. | Physics of electrophotography | |
US3041167A (en) | Xerographic process | |
US2982647A (en) | Electrostatic image reproduction | |
US2976144A (en) | Electrophotography | |
US3393070A (en) | Xerographic plate with electric field regulating layer | |
US2970906A (en) | Xerographic plate and a process of copy-making | |
US3719481A (en) | Electrostatographic imaging process | |
US3011473A (en) | Xerographic apparatus | |
US3166418A (en) | Image development | |
US3271146A (en) | Xeroprinting with photoconductors exhibiting charge-storage asymmetry | |
US3481669A (en) | Photo-charging of xerographic plates | |
US3997688A (en) | Developing an electrical image | |
US3543022A (en) | Method and apparatus for charging discrete small areas of xerographic plates to different potentials in continuous tone printing | |
US3772010A (en) | Electrophotographic apparatus and method for imagewise charge generation and transfer | |
US3589290A (en) | Relief imaging plates made by repetitive xerographic processes | |
US3492476A (en) | Electrostatic charging device utilizing both a.c. and d.c. fields | |
US3653891A (en) | Forms overlay technique using tesi | |
US3795513A (en) | Method of storing an electrostatic image in a multilayered photoreceptor | |
US3166420A (en) | Simultaneous image formation | |
US3285740A (en) | Electrophotographic process | |
US3794418A (en) | Imaging system | |
GB2054414A (en) | Developing electrostatic images | |
US3650622A (en) | Apparatus for control of bias potential in an electrophotographic copier |