US3370013A - Pressure packaged refrigerant leak detector and method of packaging same - Google Patents

Pressure packaged refrigerant leak detector and method of packaging same Download PDF

Info

Publication number
US3370013A
US3370013A US382465A US38246564A US3370013A US 3370013 A US3370013 A US 3370013A US 382465 A US382465 A US 382465A US 38246564 A US38246564 A US 38246564A US 3370013 A US3370013 A US 3370013A
Authority
US
United States
Prior art keywords
oil
refrigerant
dye
pressure
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US382465A
Inventor
Wallace G Labac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jet-Air Products Co
Original Assignee
Jet-Air Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jet-Air Products Co filed Critical Jet-Air Products Co
Priority to US382465A priority Critical patent/US3370013A/en
Application granted granted Critical
Publication of US3370013A publication Critical patent/US3370013A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/06Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by observing bubbles in a liquid pool
    • G01M3/10Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by observing bubbles in a liquid pool for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3227Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators for radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S252/00Compositions
    • Y10S252/964Leak detection

Definitions

  • This invention is concerned with a pressure packaged refrigerant leak detector and solution for detecting leaks in an air conditioning system and a method of packaging said solution, and is particularly concerned with a pressure packaged refrigerant leak detector solution containing a dye which is deposited on the surface about the leak to visually indicate the location of the leak, and a method of mixing the dye with the refrigerant and compressor oil and packaging same, so that the dye is suspended in the refrigerant within the package, and is so injected into the refrigerant system, where it is carried through the system, and is emitted from any leak point in the system and deposited on the surface about the leak.
  • a compressor type air conditioner system is made up of a compressor to compress and liquify the refrigerant, an expansion valve to allow the refrigerant to expand into a gaseous state and a coil to cool the surrounding air resulting from the absorption of heat by the expanding refrigerant.
  • a refrigerated air conditioning system is a closed circuit consisting of the compressor, expansion valve and coil,
  • the refrigerant is passed through the system by being compressed to liquid form in the compressor, allowing same to expand into gaseous form through the expansion valve, where it absorbs heat, and passes through the coil where it cools the surrounding air by reason of absorption of heat therefrom.
  • a compressor used in an air conditioning system includes a cylinder, a piston, and a crankcase, and like an engine it requires oil for lubrication. However, since it is in a closed system and requires no exhaust to the air, the lubricating oil from the crankcase may go past the piston into the system and travel through the system with the refrigerant. It is customary practice and desirable to allow the compressor oil to circulate through the system with the refrigerant to provide proper lubrication throughout the system.
  • the compressor oil may be utilized as a carrier for a dye dissolved therein, and the dye may be carried throughout the system suspended in the oil and refrigerant, and may pass through any leak opening in the system to be deposited as a residue on the surface about the hole, to give a visual indication of a leak.
  • Mineral oil is not compatible for high temperature operation due to emulsication.
  • An oil and dye used in a compressor type of refrigerating system must withstand heat ranges of up to and above 300 F. without decomposition and emulsication.
  • composition and method proposed by Williams was unstable and not adaptable as a permanent type leak detector as proposed herein.
  • Another object of the invention is to provide a packaged refrigerant, compressor oil, and leak indicator dye solution which is stable and remains in solution at and above temperatures encountered in an air conditioning system.
  • Another object of the invention is to provide a method of packaging a solution of refrigerant, an oil soluble dye dissolved in oil packaged under pressure so that it may be injected as a solution into the air conditioning system to become a permanent part of the air conditioning refrigerant-oil solution circulating through the system to provide a permanent visual leak detector medium as an integral part of the refrigerant-oil mixture in the system.
  • the drawing shows diagrammatically the equipment and arrangement of equipment for packaging the refrigerant leak detection solution.
  • FIGURE I is a schematic drawing of the equipment and arrangement thereof employed in packaging the refrigerant-oil-dye mixture in liquid form under pressure;
  • FIGURE II is a schematic view of the equipment and the arrangement thereof for packaging the refrigerantoil-dye mixture in semi-solid state while under refrigeration.
  • refrigerants are employed in compressor type air conditioning systems. Such refrigerants usually consist of those which are generally classified as fluorinated hydrocarbons, suchas fluoromethanes and fluoroethanes.
  • Compressor oil employed in air conditioning systems is a highly refined wax-free petroleum oil generally of the napththenic type falling within the API gravity range of 22.5-26-5 degrees API, with a viscosity of 40f60 Saybolt seconds, at 210 F. Thus, it is of relatively low viscosity.
  • a typical oil is that which is known as Texaco Capella Oils. This oil is highly stable and provides lubrication at all expected operating temperatures without emulsitication. Such oil is compatible with the refrigerants mentioned above and is free from excess moisture.
  • Such oil is customarily placed in the compressor crankcase prior to charging the system with refrigerant and upon the System being charged with refrigerant, some of the oil Will be circulated through the system with the refrigerant.
  • an oil soluble dye is provided.
  • the dye employed is an organic dye compound, typical of which are as follows:
  • numeral 1 indicates a bulk refrigerant storage container wherein the refrigerant of the type indicated above is stored under a pressure of from 75 p.s.i. to 250 p.s.i., depending on the type of refrigerant, to maintain the refrigerant in liquid state.
  • the refrigerant is drawn from the container 1 by a feed pump 2 and is passed through a pressure fill-pump 3 to the filling machine, which includes filling heads 5 of conventional construction through which the refrigerant under pressure is injected into the pressure containers 8.
  • a vacuum pump 4 is alternately operated to withdraw air from the containers 8 prior to filling in the manner ⁇ which will be hereinafter described in connection with the operation of the apparatus.
  • the pressure ⁇ container 8 is moved on a conveyor 9 Where it is deposited on the rotating table 10.
  • the head 5 is moved downwardly in timed sequence over the container 8, a vacuum is drawn on the can 4 sufficient to remove the air therefrom but not sufficient to remove the oil-dye mixture from the container.
  • the pressure fill pump injects refrigerant in liquid form into the container 8, and the lid is sealed thereon to close the refrigerant and oil-dye mixture within the can at a pressure of about p.s.i. Due to the fact that it is sealed under pressure, the refrigerant, oil and dye become mixed and integrated in the can.
  • the mixture may be injected into a refrigerating system through a suitable fitting as is customary in the art, and when injected, the refrigerant, oil and dye mixture is mixed with the lubricating oil and refrigerant in the system so that the integrated solution is carried throughout the system.
  • the mixture will force its way through the opening causing the leak and the oil dye mixture is deposited on the surface thereof, to indicate visually the position of the leak.
  • the proportion of refrigerant to oil-dye mixture injected into the pressure can 8 is in the ratio of l2 oz. of refrigerant to 3 oz. of oil-dye mixture. Enough of the dye is dissolved in the oil placed in the container 8 to color the refrigerant-oil mixture in the air conditioning system sufficiently to give visual indication of a leak when the oil-dye mixture is deposited on the surface about the leak. f
  • the dye In the mixture indicated above the dye would be in the order of four percent of the mixture. A considerable range of proportions of refrigerant, oil and dye may be provided in the mixture and still accomplish the desired results. For instance the range may be as follows:
  • FIGURE II An alternate method of packaging the refrigerant, oil, dye mixture is shown in FIGURE II wherein the refrigerant is passed through a low temperature cooling system 13 including a cooling coil 14 where it is cooled to a suitable temperature (depending upon the grade of refrigerant) sufiicient to cause it to maintain a liquid state at atmospheric pressure for a temporary period.
  • the liquid may be flowed by gravity through the filling nozzle 16 of the filling machine 15 into the pressure cans 8 and the cans are sealed under pressure, as indicated above, by a sealing unit 17, which places caps thereon.
  • the oil-dye mixture is placed in the cans 8 from the container 6 in the manner described above prior tovbeing passed on the conveyor 9 to the filling machine 10.
  • the expansion of the chilled refrigerant in the can 8 will cause the mixture of the oil-dye solution and the refrigerant to provide a product substantially the same as that described with reference to FIGURE I.
  • the filled and sealed containers 8 are passed through a test tank 11 where they are immersed in a liquid to detect leaks, if any.
  • a packaged leak detector mixture which is injected with the refrigerant into the refrigerating system, which may be injected simultaneously with the refrigerant, and there is provided a stable solution of leak detector which remains stable and does not emulsify or decompose at temperatures within the expected range encountered in an air conditioning refrigeratin g system.
  • a packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can and a mixture of 5 to 99% uorinated hydrocarbon refrigerant, 1 to 50% of a highly refined refrigerant cornpressor oil comprising a substantially wax-free petroleum oil having a viscosity of 40 to 60 at 210 F., and a coloreifective quantity of oil-soluble dye sealed under pressure in said can, said dye being an azo dye which is stable over the temperature range from 65 F. to 300 F., and which remains soluble in the said oil without emulsication.
  • a packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, highly rened refrigerant compression oil and .01 to 10% of an oil-soluble dye sealed under pressure in said cam, said dye being an azo dye which is stable over the temperature range from -65 F. to 300 F., and which remains soluble in the said oil without emulsication, said oil being a highly-refined, wax-free petroleum oil of the naphthenic type within the API gravity range of 22.5 to 26.5 degrees API, and with a viscosity of from about 40 to about 60 Saybolt seconds at 210 F.
  • a packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, oil, and oil-soluble azo dye dissolved in said oil and stable over a temperature range from 65 F. to 300 F., Without emulsification, sealed under pressure in said can, said oil being a naphthenic oil having an API gravity in the range of 22.5 to 26.5 degrees API, and a viscosity of from about 40 to 60 Saybolt seconds at 210 F., the range 6 of proportion of refrigerant, oil and dye being as follows:
  • the packaged leak detector solution of claim 3 wherein said dye is phenyl-azo2naphthoL 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

W. G. L ABAC: 3,370,013 PRESSURE PACKAGED REFRIGERANT LEAK DETECTOR AND Feb. 20, 1968 niza 2254 ASDA BY MS'M ATTORNEY United States ate'nt l 3,370,013 PRESSURE PACKAGED REFRIGERANT LEAK gETECTOR AND METHOD F PACKAGING AME Wallace G. Labac, Dallas, Tex., assignor to Jet-Air Products Company, Dallas, Tex., a corporation of Texas Filed July 14, 1964, Ser. No. 382,465 8 Claims. (Cl. 252-68) ABSTRACT 0F THE DISCLOSURE A leak detecting solution. The solution is packaged under pressure to provide a means to introduce the solution into a refrigerating system, The solution is composed of refrigerant, oil and dye, which constituents remain soluble and stable at temperatures encountered in such a refrigerating system.
This invention is concerned with a pressure packaged refrigerant leak detector and solution for detecting leaks in an air conditioning system and a method of packaging said solution, and is particularly concerned with a pressure packaged refrigerant leak detector solution containing a dye which is deposited on the surface about the leak to visually indicate the location of the leak, and a method of mixing the dye with the refrigerant and compressor oil and packaging same, so that the dye is suspended in the refrigerant within the package, and is so injected into the refrigerant system, where it is carried through the system, and is emitted from any leak point in the system and deposited on the surface about the leak.
A compressor type air conditioner system is made up of a compressor to compress and liquify the refrigerant, an expansion valve to allow the refrigerant to expand into a gaseous state and a coil to cool the surrounding air resulting from the absorption of heat by the expanding refrigerant.
A refrigerated air conditioning system is a closed circuit consisting of the compressor, expansion valve and coil, The refrigerant is passed through the system by being compressed to liquid form in the compressor, allowing same to expand into gaseous form through the expansion valve, where it absorbs heat, and passes through the coil where it cools the surrounding air by reason of absorption of heat therefrom.
A compressor used in an air conditioning system includes a cylinder, a piston, and a crankcase, and like an engine it requires oil for lubrication. However, since it is in a closed system and requires no exhaust to the air, the lubricating oil from the crankcase may go past the piston into the system and travel through the system with the refrigerant. It is customary practice and desirable to allow the compressor oil to circulate through the system with the refrigerant to provide proper lubrication throughout the system.
Therefore, the compressor oil may be utilized as a carrier for a dye dissolved therein, and the dye may be carried throughout the system suspended in the oil and refrigerant, and may pass through any leak opening in the system to be deposited as a residue on the surface about the hole, to give a visual indication of a leak.
It has been proposed in Williams Patent No. 1,915,965 to mix methyl violet, crystal violet, aucomine B, rhodamine B with mineral Oil, which was used as lubricant for the compressor, and to inject the mineral oil with the dye indicated into the system with the refrigerant. The refrigerating apparatus was then painted with a paint containing titanium oxide, silica or other substance stainable by methyl violet base so that any leak which would occur 3,370,0l3 Patented Feb. 20, 1968 in the system would permit a small amount of the mineral oil in the methyl violet base to escape with the refrigerant and permanently stain the special paint at the place of leakage.
Such composition and method was unsatisfactory and unusable for several reasons including:
(l) The dyes indicated are not completely soluble in oil and decompose at a lower temperature of about F.
(2) Mineral oil is not compatible for high temperature operation due to emulsication. An oil and dye used in a compressor type of refrigerating system must withstand heat ranges of up to and above 300 F. without decomposition and emulsication.
(3) The dyes indicated due to improper solubility, remain suspended and discrete from the proposed mixture and,
(4) The proposal to mix alcohol with the solution to obtain solubility of the dye before adding same to mineral oil still permitted emulsication because the heat encountered boiled off the alcohol, allowing decomposition to set in.
(5 Decomposition and emulsication of the dye in oils in a compressor type air conditioning system renders the system inoperative due to the clogging of expansion valves and coils.
In short, the composition and method proposed by Williams was unstable and not adaptable as a permanent type leak detector as proposed herein.
It is therefore a primary object of the invention to provide a mixture of refrigerant, compressor oil, and dye, which is packaged in the desired proportions under pressure so that it may be injected into the refrigerating system simultaneously and as a unit to become permanently integrated into the refrigerating system to provide a leak indicator solution within the refrigerating system. j
Another object of the invention is to provide a packaged refrigerant, compressor oil, and leak indicator dye solution which is stable and remains in solution at and above temperatures encountered in an air conditioning system.
Another object of the invention is to provide a method of packaging a solution of refrigerant, an oil soluble dye dissolved in oil packaged under pressure so that it may be injected as a solution into the air conditioning system to become a permanent part of the air conditioning refrigerant-oil solution circulating through the system to provide a permanent visual leak detector medium as an integral part of the refrigerant-oil mixture in the system.
Other and further objects of the invention will become apparent upon reading the detailed specification hereinafter following and by referring to the drawing annexed hereto.
The drawing shows diagrammatically the equipment and arrangement of equipment for packaging the refrigerant leak detection solution.
In the drawing,
FIGURE I is a schematic drawing of the equipment and arrangement thereof employed in packaging the refrigerant-oil-dye mixture in liquid form under pressure;
FIGURE II is a schematic view of the equipment and the arrangement thereof for packaging the refrigerantoil-dye mixture in semi-solid state while under refrigeration.
In referring to the drawings numeral references are employed to indicate the elements and parts thereof, and like numerals indicate like elements and parts throughout the various figures of the drawings.
Several types of refrigerants are employed in compressor type air conditioning systems. Such refrigerants usually consist of those which are generally classified as fluorinated hydrocarbons, suchas fluoromethanes and fluoroethanes.
The types most commonly used are dichlorodifluoromethane (sold unde-r the trademark of Freon-12); monochlorodifluoromethane (sold under the trademark of Freon-22) and dichlorotetrafiuoroethane (sold under the trademark of Freon-114). These refrigerants have a boiling point of from -42 F. to +70 F. and are maintained in a liquid state at a pressure of from 75 p.s.i. to 250 p.s.i., depending upon the grade. Therefore, it has been the custom to ship and package such refrigerants in pressure containers sufiicient to maintain same in liquid state.
Compressor oil employed in air conditioning systems is a highly refined wax-free petroleum oil generally of the napththenic type falling within the API gravity range of 22.5-26-5 degrees API, with a viscosity of 40f60 Saybolt seconds, at 210 F. Thus, it is of relatively low viscosity. A typical oil is that which is known as Texaco Capella Oils. This oil is highly stable and provides lubrication at all expected operating temperatures without emulsitication. Such oil is compatible with the refrigerants mentioned above and is free from excess moisture.
Such oil is customarily placed in the compressor crankcase prior to charging the system with refrigerant and upon the System being charged with refrigerant, some of the oil Will be circulated through the system with the refrigerant.
in providing the solution and practicing the method disclosed herein an oil soluble dye is provided.
The dye employed is an organic dye compound, typical of which are as follows:
(l) Methyl derivatives of azobenzene-4-azo-2-naphthol (2) Phenyl-azo-Z-naphthol and methyl derivatives of azobenzene-4-azo-2-naphthol (3) Phenyl-aZo-Z-naphthol (4) Para-diethylamino-azobenzene.
These dyes maintain their stability at temperature ranges of from 65 F. to above 300 F. which is well Within the range of the temperatures normally encountered in an air conditioning system. They are completely soluble in oil of the type mentioned above without emulsication.
In carrying out the method of packaging the refrigerant, oil, dye solution under pressure reference will be made to the drawing annexed hereto.
In the drawing, numeral 1 indicates a bulk refrigerant storage container wherein the refrigerant of the type indicated above is stored under a pressure of from 75 p.s.i. to 250 p.s.i., depending on the type of refrigerant, to maintain the refrigerant in liquid state. The refrigerant is drawn from the container 1 by a feed pump 2 and is passed through a pressure fill-pump 3 to the filling machine, which includes filling heads 5 of conventional construction through which the refrigerant under pressure is injected into the pressure containers 8.
A vacuum pump 4 is alternately operated to withdraw air from the containers 8 prior to filling in the manner `which will be hereinafter described in connection with the operation of the apparatus.
Prior to lling the pressure containers 8 with refrigerant 'in the manner hereinafter described, a small quantity of -oil of the type described above in which has been dissolved .a small quantity of dye of the type described above is injected from the oil dye mixture container 6 through a metered filling valve 7 into the container 8. At this point the oil-dye mixture is in liquid state at the bottom of the pressure container 8.
The pressure `container 8 is moved on a conveyor 9 Where it is deposited on the rotating table 10.
The head 5 is moved downwardly in timed sequence over the container 8, a vacuum is drawn on the can 4 sufficient to remove the air therefrom but not sufficient to remove the oil-dye mixture from the container. With the container 8 evacuated, the pressure fill pump injects refrigerant in liquid form into the container 8, and the lid is sealed thereon to close the refrigerant and oil-dye mixture within the can at a pressure of about p.s.i. Due to the fact that it is sealed under pressure, the refrigerant, oil and dye become mixed and integrated in the can.
The mixture may be injected into a refrigerating system through a suitable fitting as is customary in the art, and when injected, the refrigerant, oil and dye mixture is mixed with the lubricating oil and refrigerant in the system so that the integrated solution is carried throughout the system. When a leak occurs, the mixture will force its way through the opening causing the leak and the oil dye mixture is deposited on the surface thereof, to indicate visually the position of the leak.
Preferably the proportion of refrigerant to oil-dye mixture injected into the pressure can 8 is in the ratio of l2 oz. of refrigerant to 3 oz. of oil-dye mixture. Enough of the dye is dissolved in the oil placed in the container 8 to color the refrigerant-oil mixture in the air conditioning system sufficiently to give visual indication of a leak when the oil-dye mixture is deposited on the surface about the leak. f
In the mixture indicated above the dye would be in the order of four percent of the mixture. A considerable range of proportions of refrigerant, oil and dye may be provided in the mixture and still accomplish the desired results. For instance the range may be as follows:
Percent Refrigerant 50-99 Oil 1-50 Dye .O1-l0 A typical mixture might be as follows:
Percent Refrigerant 76 Oil 2O Dye 4 An alternate method of packaging the refrigerant, oil, dye mixture is shown in FIGURE II wherein the refrigerant is passed through a low temperature cooling system 13 including a cooling coil 14 where it is cooled to a suitable temperature (depending upon the grade of refrigerant) sufiicient to cause it to maintain a liquid state at atmospheric pressure for a temporary period. The liquid may be flowed by gravity through the filling nozzle 16 of the filling machine 15 into the pressure cans 8 and the cans are sealed under pressure, as indicated above, by a sealing unit 17, which places caps thereon. The oil-dye mixture is placed in the cans 8 from the container 6 in the manner described above prior tovbeing passed on the conveyor 9 to the filling machine 10. The expansion of the chilled refrigerant in the can 8 will cause the mixture of the oil-dye solution and the refrigerant to provide a product substantially the same as that described with reference to FIGURE I.
In both methods the filled and sealed containers 8 are passed through a test tank 11 where they are immersed in a liquid to detect leaks, if any.
It may be desirable in some instances to mix the dye with the refrigerant prior to placing it in the containers 8 and sealing it under pressure as described above; in such event the dye in the refrigerant would mix with the oil in the compressor crankcase and be circulated through the system.
Thus, there is provided a packaged leak detector mixture which is injected with the refrigerant into the refrigerating system, which may be injected simultaneously with the refrigerant, and there is provided a stable solution of leak detector which remains stable and does not emulsify or decompose at temperatures within the expected range encountered in an air conditioning refrigeratin g system.
Having described my invention I claim:
1. A packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can and a mixture of 5 to 99% uorinated hydrocarbon refrigerant, 1 to 50% of a highly refined refrigerant cornpressor oil comprising a substantially wax-free petroleum oil having a viscosity of 40 to 60 at 210 F., and a coloreifective quantity of oil-soluble dye sealed under pressure in said can, said dye being an azo dye which is stable over the temperature range from 65 F. to 300 F., and which remains soluble in the said oil without emulsication.
2. A packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, highly rened refrigerant compression oil and .01 to 10% of an oil-soluble dye sealed under pressure in said cam, said dye being an azo dye which is stable over the temperature range from -65 F. to 300 F., and which remains soluble in the said oil without emulsication, said oil being a highly-refined, wax-free petroleum oil of the naphthenic type within the API gravity range of 22.5 to 26.5 degrees API, and with a viscosity of from about 40 to about 60 Saybolt seconds at 210 F.
3. A packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, oil, and oil-soluble azo dye dissolved in said oil and stable over a temperature range from 65 F. to 300 F., Without emulsification, sealed under pressure in said can, said oil being a naphthenic oil having an API gravity in the range of 22.5 to 26.5 degrees API, and a viscosity of from about 40 to 60 Saybolt seconds at 210 F., the range 6 of proportion of refrigerant, oil and dye being as follows:
Percent Refrigerant 5-99 Oil 1-50 Dye .0l-10 4. The packaged leak detector solution of claim 3 wherein said dye is azobenzene-4.
5. The packaged leak detector solution of claim 3 wherein said dye is azo-2-naphthol.
6. The packaged leak detector solution of claim 3 wherein said dye is phenyl-azo2naphthoL 7. The packaged leak detector solution of claim 3 wherein said dye is a methyl derivative of azobenzene-4- azoa2-naphthol.
S. The packaged leak detector solution of claim 3 wherein said dye is para-diethylarnine-azobenzene.
References Cited UNITED STATES PATENTS 1,915,965 6/1933 Williams 252-68 X 2,070,167 2/ 1937 Iddings. 2,524,590 10/1950 Boe.
OTHER REFERENCES Lubs: The Chemistry of Synthetic Dyes and Pigments, Reinhold Publishing Corp., New York, 1955, pp. 174-75.
LEON D. ROSDOL, Primary Examiner.
S. D. SCHWARTZ, Assistant Examiner.
US382465A 1964-07-14 1964-07-14 Pressure packaged refrigerant leak detector and method of packaging same Expired - Lifetime US3370013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US382465A US3370013A (en) 1964-07-14 1964-07-14 Pressure packaged refrigerant leak detector and method of packaging same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US382465A US3370013A (en) 1964-07-14 1964-07-14 Pressure packaged refrigerant leak detector and method of packaging same

Publications (1)

Publication Number Publication Date
US3370013A true US3370013A (en) 1968-02-20

Family

ID=23509068

Family Applications (1)

Application Number Title Priority Date Filing Date
US382465A Expired - Lifetime US3370013A (en) 1964-07-14 1964-07-14 Pressure packaged refrigerant leak detector and method of packaging same

Country Status (1)

Country Link
US (1) US3370013A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615828A (en) * 1984-05-07 1986-10-07 Lockheed Corporation Method and apparatus for detecting hydrocarbon fuel leaks
US4756854A (en) * 1984-05-07 1988-07-12 Lockheed Corporation Method and apparatus for detecting hydrocarbon fuel leaks
US4758366A (en) * 1985-02-25 1988-07-19 Widger Chemical Corporation Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
US5440919A (en) * 1994-08-29 1995-08-15 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system
US5574213A (en) * 1995-03-13 1996-11-12 Shanley; Alfred W. Apparatus and method for detecting leaks
US5783110A (en) * 1997-04-17 1998-07-21 R-Tect, Inc. Composition for the detection of electrophilic gases and methods of use thereof
WO1999040395A1 (en) * 1998-02-05 1999-08-12 Bright Solutions, Inc. Leak detection additives for fluid systems
US6070455A (en) * 1995-07-21 2000-06-06 Bright Solutions, Inc. Leak detection additives
US6070454A (en) * 1995-07-21 2000-06-06 Bright Solutions, Inc. Leak detection additives for use in heating, ventilating, refrigeration, and air conditioning systems
USRE36951E (en) * 1994-08-29 2000-11-14 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system including solid or semi-solid fluorescent dyes
US20020096643A1 (en) * 1996-02-08 2002-07-25 Bright Solutions, Inc., A Michigan Corporation Portable light source and system for use in leak detection
US20050272844A1 (en) * 2004-06-02 2005-12-08 Westman Morton A Leak detection materials and methods
US20110146801A1 (en) * 2008-06-20 2011-06-23 Bright Solutions International Llc Injection additives into closed systems
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1915965A (en) * 1931-05-29 1933-06-27 Frigidaire Corp Method and composition for detecting leaks in refrigerating systems
US2070167A (en) * 1932-09-23 1937-02-09 Iddings Carl Method of making liquid sprays
US2524590A (en) * 1946-04-22 1950-10-03 Carsten F Boe Emulsion containing a liquefied propellant gas under pressure and method of spraying same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1915965A (en) * 1931-05-29 1933-06-27 Frigidaire Corp Method and composition for detecting leaks in refrigerating systems
US2070167A (en) * 1932-09-23 1937-02-09 Iddings Carl Method of making liquid sprays
US2524590A (en) * 1946-04-22 1950-10-03 Carsten F Boe Emulsion containing a liquefied propellant gas under pressure and method of spraying same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756854A (en) * 1984-05-07 1988-07-12 Lockheed Corporation Method and apparatus for detecting hydrocarbon fuel leaks
US4615828A (en) * 1984-05-07 1986-10-07 Lockheed Corporation Method and apparatus for detecting hydrocarbon fuel leaks
US4758366A (en) * 1985-02-25 1988-07-19 Widger Chemical Corporation Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
USRE36951E (en) * 1994-08-29 2000-11-14 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system including solid or semi-solid fluorescent dyes
US5440919A (en) * 1994-08-29 1995-08-15 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system
US5650563A (en) * 1994-08-29 1997-07-22 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system including solid or semi-solid fluorescent dyes
US5574213A (en) * 1995-03-13 1996-11-12 Shanley; Alfred W. Apparatus and method for detecting leaks
US6070455A (en) * 1995-07-21 2000-06-06 Bright Solutions, Inc. Leak detection additives
US6070454A (en) * 1995-07-21 2000-06-06 Bright Solutions, Inc. Leak detection additives for use in heating, ventilating, refrigeration, and air conditioning systems
US20020096643A1 (en) * 1996-02-08 2002-07-25 Bright Solutions, Inc., A Michigan Corporation Portable light source and system for use in leak detection
US5951909A (en) * 1997-04-17 1999-09-14 R-Tec Technologies, Inc. Composition for the detection of electrophilic gases and methods of use thereof
US5783110A (en) * 1997-04-17 1998-07-21 R-Tect, Inc. Composition for the detection of electrophilic gases and methods of use thereof
WO1999040395A1 (en) * 1998-02-05 1999-08-12 Bright Solutions, Inc. Leak detection additives for fluid systems
US6101867A (en) * 1998-02-05 2000-08-15 Bright Solutions, Inc. Dye concentrate
US20050272844A1 (en) * 2004-06-02 2005-12-08 Westman Morton A Leak detection materials and methods
US7943380B2 (en) 2004-06-02 2011-05-17 Bright Solutions, Inc. Leak detection materials and methods
US20110146801A1 (en) * 2008-06-20 2011-06-23 Bright Solutions International Llc Injection additives into closed systems
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants

Similar Documents

Publication Publication Date Title
US3370013A (en) Pressure packaged refrigerant leak detector and method of packaging same
US6183663B1 (en) Leak detection dye delivery system
US4758366A (en) Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
JP3340469B2 (en) Method for injecting liquid material in spray form into a closed pressurized loop during operation and a disposable spray mist injector for injecting mixed material in spray form into a closed closed loop system during operation according to the method
US8065884B2 (en) Composition and methods for injection of sealants into air conditioning and refrigeration systems
JP3400817B2 (en) Refrigerant composition
US20200332165A1 (en) Refrigerant with lubricating oil for replacement of r22 refrigerant
US6132636A (en) Leak-detecting refrigerant compositions containing oxazolyl-coumarin dyes
WO2005121236A2 (en) Leak detection materials and methods
US2621022A (en) Method of drilling overburden, unconsolidated rock formation or placer ground with low-temperature freezing fluids
JP2001294886A (en) Lubricant composition for refrigeration unit using carbon dioxide refrigerant, working fluid, refrigeration cycle or heat pump cycle, and refrigeration unit
US5942149A (en) Environmentally safer replacement refrigerant for freon 12-based refrigeration systems
JP2000309789A (en) Mixed working fluid which does not ignite and explode and refrigerating equipment using same
US5492643A (en) Environmentally safer replacement refrigerant for freon 12-based refrigeration systems
US2780899A (en) Apparatus for filling a fire extinguisher
CN104212415B (en) A kind of car air conditioner refrigerant mixture and its charging method
US6274062B1 (en) Halocarbon/hydrocarbon refrigerant blend
US7332102B2 (en) Refrigerant with lubricating oil
US6557358B2 (en) Non-hydrocarbon ultra-low temperature system for a refrigeration system
JP2002528712A (en) Compositions and methods for leak detection in closed refrigerant systems
US2434448A (en) Method of detection of small leaks in receptacles
WO2006071965A2 (en) Refrigerant for low temperature applications
US20050133756A1 (en) Refrigerant with lubricating oil
WO2007102815A1 (en) Replacement refrigerant for r22-based refrigeration systems
RU2093548C1 (en) Testing and conservation liquid for hydraulic systems