US3370013A - Pressure packaged refrigerant leak detector and method of packaging same - Google Patents
Pressure packaged refrigerant leak detector and method of packaging same Download PDFInfo
- Publication number
- US3370013A US3370013A US382465A US38246564A US3370013A US 3370013 A US3370013 A US 3370013A US 382465 A US382465 A US 382465A US 38246564 A US38246564 A US 38246564A US 3370013 A US3370013 A US 3370013A
- Authority
- US
- United States
- Prior art keywords
- oil
- refrigerant
- dye
- pressure
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003507 refrigerant Substances 0.000 title description 60
- 238000000034 method Methods 0.000 title description 10
- 238000004806 packaging method and process Methods 0.000 title description 9
- 239000000975 dye Substances 0.000 description 53
- 239000003921 oil Substances 0.000 description 38
- 239000000203 mixture Substances 0.000 description 31
- 238000004378 air conditioning Methods 0.000 description 15
- 239000007788 liquid Substances 0.000 description 10
- 239000010725 compressor oil Substances 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 5
- 235000010446 mineral oil Nutrition 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000010726 refrigerant oil Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000000987 azo dye Substances 0.000 description 3
- 229950011260 betanaphthol Drugs 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 2
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- CKIGNOCMDJFFES-UHFFFAOYSA-N n-naphthalen-2-yl-1-phenylmethanimine Chemical compound C=1C=C2C=CC=CC2=CC=1N=CC1=CC=CC=C1 CKIGNOCMDJFFES-UHFFFAOYSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- MRQIXHXHHPWVIL-UHFFFAOYSA-N chembl1397023 Chemical group OC1=CC=C2C=CC=CC2=C1N=NC1=CC=CC=C1 MRQIXHXHHPWVIL-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical class CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical class FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000979 synthetic dye Substances 0.000 description 1
- 239000001040 synthetic pigment Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/06—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by observing bubbles in a liquid pool
- G01M3/10—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by observing bubbles in a liquid pool for containers, e.g. radiators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/32—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
- G01M3/3227—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators for radiators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S252/00—Compositions
- Y10S252/964—Leak detection
Definitions
- This invention is concerned with a pressure packaged refrigerant leak detector and solution for detecting leaks in an air conditioning system and a method of packaging said solution, and is particularly concerned with a pressure packaged refrigerant leak detector solution containing a dye which is deposited on the surface about the leak to visually indicate the location of the leak, and a method of mixing the dye with the refrigerant and compressor oil and packaging same, so that the dye is suspended in the refrigerant within the package, and is so injected into the refrigerant system, where it is carried through the system, and is emitted from any leak point in the system and deposited on the surface about the leak.
- a compressor type air conditioner system is made up of a compressor to compress and liquify the refrigerant, an expansion valve to allow the refrigerant to expand into a gaseous state and a coil to cool the surrounding air resulting from the absorption of heat by the expanding refrigerant.
- a refrigerated air conditioning system is a closed circuit consisting of the compressor, expansion valve and coil,
- the refrigerant is passed through the system by being compressed to liquid form in the compressor, allowing same to expand into gaseous form through the expansion valve, where it absorbs heat, and passes through the coil where it cools the surrounding air by reason of absorption of heat therefrom.
- a compressor used in an air conditioning system includes a cylinder, a piston, and a crankcase, and like an engine it requires oil for lubrication. However, since it is in a closed system and requires no exhaust to the air, the lubricating oil from the crankcase may go past the piston into the system and travel through the system with the refrigerant. It is customary practice and desirable to allow the compressor oil to circulate through the system with the refrigerant to provide proper lubrication throughout the system.
- the compressor oil may be utilized as a carrier for a dye dissolved therein, and the dye may be carried throughout the system suspended in the oil and refrigerant, and may pass through any leak opening in the system to be deposited as a residue on the surface about the hole, to give a visual indication of a leak.
- Mineral oil is not compatible for high temperature operation due to emulsication.
- An oil and dye used in a compressor type of refrigerating system must withstand heat ranges of up to and above 300 F. without decomposition and emulsication.
- composition and method proposed by Williams was unstable and not adaptable as a permanent type leak detector as proposed herein.
- Another object of the invention is to provide a packaged refrigerant, compressor oil, and leak indicator dye solution which is stable and remains in solution at and above temperatures encountered in an air conditioning system.
- Another object of the invention is to provide a method of packaging a solution of refrigerant, an oil soluble dye dissolved in oil packaged under pressure so that it may be injected as a solution into the air conditioning system to become a permanent part of the air conditioning refrigerant-oil solution circulating through the system to provide a permanent visual leak detector medium as an integral part of the refrigerant-oil mixture in the system.
- the drawing shows diagrammatically the equipment and arrangement of equipment for packaging the refrigerant leak detection solution.
- FIGURE I is a schematic drawing of the equipment and arrangement thereof employed in packaging the refrigerant-oil-dye mixture in liquid form under pressure;
- FIGURE II is a schematic view of the equipment and the arrangement thereof for packaging the refrigerantoil-dye mixture in semi-solid state while under refrigeration.
- refrigerants are employed in compressor type air conditioning systems. Such refrigerants usually consist of those which are generally classified as fluorinated hydrocarbons, suchas fluoromethanes and fluoroethanes.
- Compressor oil employed in air conditioning systems is a highly refined wax-free petroleum oil generally of the napththenic type falling within the API gravity range of 22.5-26-5 degrees API, with a viscosity of 40f60 Saybolt seconds, at 210 F. Thus, it is of relatively low viscosity.
- a typical oil is that which is known as Texaco Capella Oils. This oil is highly stable and provides lubrication at all expected operating temperatures without emulsitication. Such oil is compatible with the refrigerants mentioned above and is free from excess moisture.
- Such oil is customarily placed in the compressor crankcase prior to charging the system with refrigerant and upon the System being charged with refrigerant, some of the oil Will be circulated through the system with the refrigerant.
- an oil soluble dye is provided.
- the dye employed is an organic dye compound, typical of which are as follows:
- numeral 1 indicates a bulk refrigerant storage container wherein the refrigerant of the type indicated above is stored under a pressure of from 75 p.s.i. to 250 p.s.i., depending on the type of refrigerant, to maintain the refrigerant in liquid state.
- the refrigerant is drawn from the container 1 by a feed pump 2 and is passed through a pressure fill-pump 3 to the filling machine, which includes filling heads 5 of conventional construction through which the refrigerant under pressure is injected into the pressure containers 8.
- a vacuum pump 4 is alternately operated to withdraw air from the containers 8 prior to filling in the manner ⁇ which will be hereinafter described in connection with the operation of the apparatus.
- the pressure ⁇ container 8 is moved on a conveyor 9 Where it is deposited on the rotating table 10.
- the head 5 is moved downwardly in timed sequence over the container 8, a vacuum is drawn on the can 4 sufficient to remove the air therefrom but not sufficient to remove the oil-dye mixture from the container.
- the pressure fill pump injects refrigerant in liquid form into the container 8, and the lid is sealed thereon to close the refrigerant and oil-dye mixture within the can at a pressure of about p.s.i. Due to the fact that it is sealed under pressure, the refrigerant, oil and dye become mixed and integrated in the can.
- the mixture may be injected into a refrigerating system through a suitable fitting as is customary in the art, and when injected, the refrigerant, oil and dye mixture is mixed with the lubricating oil and refrigerant in the system so that the integrated solution is carried throughout the system.
- the mixture will force its way through the opening causing the leak and the oil dye mixture is deposited on the surface thereof, to indicate visually the position of the leak.
- the proportion of refrigerant to oil-dye mixture injected into the pressure can 8 is in the ratio of l2 oz. of refrigerant to 3 oz. of oil-dye mixture. Enough of the dye is dissolved in the oil placed in the container 8 to color the refrigerant-oil mixture in the air conditioning system sufficiently to give visual indication of a leak when the oil-dye mixture is deposited on the surface about the leak. f
- the dye In the mixture indicated above the dye would be in the order of four percent of the mixture. A considerable range of proportions of refrigerant, oil and dye may be provided in the mixture and still accomplish the desired results. For instance the range may be as follows:
- FIGURE II An alternate method of packaging the refrigerant, oil, dye mixture is shown in FIGURE II wherein the refrigerant is passed through a low temperature cooling system 13 including a cooling coil 14 where it is cooled to a suitable temperature (depending upon the grade of refrigerant) sufiicient to cause it to maintain a liquid state at atmospheric pressure for a temporary period.
- the liquid may be flowed by gravity through the filling nozzle 16 of the filling machine 15 into the pressure cans 8 and the cans are sealed under pressure, as indicated above, by a sealing unit 17, which places caps thereon.
- the oil-dye mixture is placed in the cans 8 from the container 6 in the manner described above prior tovbeing passed on the conveyor 9 to the filling machine 10.
- the expansion of the chilled refrigerant in the can 8 will cause the mixture of the oil-dye solution and the refrigerant to provide a product substantially the same as that described with reference to FIGURE I.
- the filled and sealed containers 8 are passed through a test tank 11 where they are immersed in a liquid to detect leaks, if any.
- a packaged leak detector mixture which is injected with the refrigerant into the refrigerating system, which may be injected simultaneously with the refrigerant, and there is provided a stable solution of leak detector which remains stable and does not emulsify or decompose at temperatures within the expected range encountered in an air conditioning refrigeratin g system.
- a packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can and a mixture of 5 to 99% uorinated hydrocarbon refrigerant, 1 to 50% of a highly refined refrigerant cornpressor oil comprising a substantially wax-free petroleum oil having a viscosity of 40 to 60 at 210 F., and a coloreifective quantity of oil-soluble dye sealed under pressure in said can, said dye being an azo dye which is stable over the temperature range from 65 F. to 300 F., and which remains soluble in the said oil without emulsication.
- a packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, highly rened refrigerant compression oil and .01 to 10% of an oil-soluble dye sealed under pressure in said cam, said dye being an azo dye which is stable over the temperature range from -65 F. to 300 F., and which remains soluble in the said oil without emulsication, said oil being a highly-refined, wax-free petroleum oil of the naphthenic type within the API gravity range of 22.5 to 26.5 degrees API, and with a viscosity of from about 40 to about 60 Saybolt seconds at 210 F.
- a packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, oil, and oil-soluble azo dye dissolved in said oil and stable over a temperature range from 65 F. to 300 F., Without emulsification, sealed under pressure in said can, said oil being a naphthenic oil having an API gravity in the range of 22.5 to 26.5 degrees API, and a viscosity of from about 40 to 60 Saybolt seconds at 210 F., the range 6 of proportion of refrigerant, oil and dye being as follows:
- the packaged leak detector solution of claim 3 wherein said dye is phenyl-azo2naphthoL 7.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Description
W. G. L ABAC: 3,370,013 PRESSURE PACKAGED REFRIGERANT LEAK DETECTOR AND Feb. 20, 1968 niza 2254 ASDA BY MS'M ATTORNEY United States ate'nt l 3,370,013 PRESSURE PACKAGED REFRIGERANT LEAK gETECTOR AND METHOD F PACKAGING AME Wallace G. Labac, Dallas, Tex., assignor to Jet-Air Products Company, Dallas, Tex., a corporation of Texas Filed July 14, 1964, Ser. No. 382,465 8 Claims. (Cl. 252-68) ABSTRACT 0F THE DISCLOSURE A leak detecting solution. The solution is packaged under pressure to provide a means to introduce the solution into a refrigerating system, The solution is composed of refrigerant, oil and dye, which constituents remain soluble and stable at temperatures encountered in such a refrigerating system.
This invention is concerned with a pressure packaged refrigerant leak detector and solution for detecting leaks in an air conditioning system and a method of packaging said solution, and is particularly concerned with a pressure packaged refrigerant leak detector solution containing a dye which is deposited on the surface about the leak to visually indicate the location of the leak, and a method of mixing the dye with the refrigerant and compressor oil and packaging same, so that the dye is suspended in the refrigerant within the package, and is so injected into the refrigerant system, where it is carried through the system, and is emitted from any leak point in the system and deposited on the surface about the leak.
A compressor type air conditioner system is made up of a compressor to compress and liquify the refrigerant, an expansion valve to allow the refrigerant to expand into a gaseous state and a coil to cool the surrounding air resulting from the absorption of heat by the expanding refrigerant.
A refrigerated air conditioning system is a closed circuit consisting of the compressor, expansion valve and coil, The refrigerant is passed through the system by being compressed to liquid form in the compressor, allowing same to expand into gaseous form through the expansion valve, where it absorbs heat, and passes through the coil where it cools the surrounding air by reason of absorption of heat therefrom.
A compressor used in an air conditioning system includes a cylinder, a piston, and a crankcase, and like an engine it requires oil for lubrication. However, since it is in a closed system and requires no exhaust to the air, the lubricating oil from the crankcase may go past the piston into the system and travel through the system with the refrigerant. It is customary practice and desirable to allow the compressor oil to circulate through the system with the refrigerant to provide proper lubrication throughout the system.
Therefore, the compressor oil may be utilized as a carrier for a dye dissolved therein, and the dye may be carried throughout the system suspended in the oil and refrigerant, and may pass through any leak opening in the system to be deposited as a residue on the surface about the hole, to give a visual indication of a leak.
It has been proposed in Williams Patent No. 1,915,965 to mix methyl violet, crystal violet, aucomine B, rhodamine B with mineral Oil, which was used as lubricant for the compressor, and to inject the mineral oil with the dye indicated into the system with the refrigerant. The refrigerating apparatus was then painted with a paint containing titanium oxide, silica or other substance stainable by methyl violet base so that any leak which would occur 3,370,0l3 Patented Feb. 20, 1968 in the system would permit a small amount of the mineral oil in the methyl violet base to escape with the refrigerant and permanently stain the special paint at the place of leakage.
Such composition and method was unsatisfactory and unusable for several reasons including:
(l) The dyes indicated are not completely soluble in oil and decompose at a lower temperature of about F.
(2) Mineral oil is not compatible for high temperature operation due to emulsication. An oil and dye used in a compressor type of refrigerating system must withstand heat ranges of up to and above 300 F. without decomposition and emulsication.
(3) The dyes indicated due to improper solubility, remain suspended and discrete from the proposed mixture and,
(4) The proposal to mix alcohol with the solution to obtain solubility of the dye before adding same to mineral oil still permitted emulsication because the heat encountered boiled off the alcohol, allowing decomposition to set in.
(5 Decomposition and emulsication of the dye in oils in a compressor type air conditioning system renders the system inoperative due to the clogging of expansion valves and coils.
In short, the composition and method proposed by Williams was unstable and not adaptable as a permanent type leak detector as proposed herein.
It is therefore a primary object of the invention to provide a mixture of refrigerant, compressor oil, and dye, which is packaged in the desired proportions under pressure so that it may be injected into the refrigerating system simultaneously and as a unit to become permanently integrated into the refrigerating system to provide a leak indicator solution within the refrigerating system. j
Another object of the invention is to provide a packaged refrigerant, compressor oil, and leak indicator dye solution which is stable and remains in solution at and above temperatures encountered in an air conditioning system.
Another object of the invention is to provide a method of packaging a solution of refrigerant, an oil soluble dye dissolved in oil packaged under pressure so that it may be injected as a solution into the air conditioning system to become a permanent part of the air conditioning refrigerant-oil solution circulating through the system to provide a permanent visual leak detector medium as an integral part of the refrigerant-oil mixture in the system.
Other and further objects of the invention will become apparent upon reading the detailed specification hereinafter following and by referring to the drawing annexed hereto.
The drawing shows diagrammatically the equipment and arrangement of equipment for packaging the refrigerant leak detection solution.
In the drawing,
FIGURE I is a schematic drawing of the equipment and arrangement thereof employed in packaging the refrigerant-oil-dye mixture in liquid form under pressure;
FIGURE II is a schematic view of the equipment and the arrangement thereof for packaging the refrigerantoil-dye mixture in semi-solid state while under refrigeration.
In referring to the drawings numeral references are employed to indicate the elements and parts thereof, and like numerals indicate like elements and parts throughout the various figures of the drawings.
Several types of refrigerants are employed in compressor type air conditioning systems. Such refrigerants usually consist of those which are generally classified as fluorinated hydrocarbons, suchas fluoromethanes and fluoroethanes.
The types most commonly used are dichlorodifluoromethane (sold unde-r the trademark of Freon-12); monochlorodifluoromethane (sold under the trademark of Freon-22) and dichlorotetrafiuoroethane (sold under the trademark of Freon-114). These refrigerants have a boiling point of from -42 F. to +70 F. and are maintained in a liquid state at a pressure of from 75 p.s.i. to 250 p.s.i., depending upon the grade. Therefore, it has been the custom to ship and package such refrigerants in pressure containers sufiicient to maintain same in liquid state.
Compressor oil employed in air conditioning systems is a highly refined wax-free petroleum oil generally of the napththenic type falling within the API gravity range of 22.5-26-5 degrees API, with a viscosity of 40f60 Saybolt seconds, at 210 F. Thus, it is of relatively low viscosity. A typical oil is that which is known as Texaco Capella Oils. This oil is highly stable and provides lubrication at all expected operating temperatures without emulsitication. Such oil is compatible with the refrigerants mentioned above and is free from excess moisture.
Such oil is customarily placed in the compressor crankcase prior to charging the system with refrigerant and upon the System being charged with refrigerant, some of the oil Will be circulated through the system with the refrigerant.
in providing the solution and practicing the method disclosed herein an oil soluble dye is provided.
The dye employed is an organic dye compound, typical of which are as follows:
(l) Methyl derivatives of azobenzene-4-azo-2-naphthol (2) Phenyl-azo-Z-naphthol and methyl derivatives of azobenzene-4-azo-2-naphthol (3) Phenyl-aZo-Z-naphthol (4) Para-diethylamino-azobenzene.
These dyes maintain their stability at temperature ranges of from 65 F. to above 300 F. which is well Within the range of the temperatures normally encountered in an air conditioning system. They are completely soluble in oil of the type mentioned above without emulsication.
In carrying out the method of packaging the refrigerant, oil, dye solution under pressure reference will be made to the drawing annexed hereto.
In the drawing, numeral 1 indicates a bulk refrigerant storage container wherein the refrigerant of the type indicated above is stored under a pressure of from 75 p.s.i. to 250 p.s.i., depending on the type of refrigerant, to maintain the refrigerant in liquid state. The refrigerant is drawn from the container 1 by a feed pump 2 and is passed through a pressure fill-pump 3 to the filling machine, which includes filling heads 5 of conventional construction through which the refrigerant under pressure is injected into the pressure containers 8.
A vacuum pump 4 is alternately operated to withdraw air from the containers 8 prior to filling in the manner `which will be hereinafter described in connection with the operation of the apparatus.
Prior to lling the pressure containers 8 with refrigerant 'in the manner hereinafter described, a small quantity of -oil of the type described above in which has been dissolved .a small quantity of dye of the type described above is injected from the oil dye mixture container 6 through a metered filling valve 7 into the container 8. At this point the oil-dye mixture is in liquid state at the bottom of the pressure container 8.
The pressure `container 8 is moved on a conveyor 9 Where it is deposited on the rotating table 10.
The head 5 is moved downwardly in timed sequence over the container 8, a vacuum is drawn on the can 4 sufficient to remove the air therefrom but not sufficient to remove the oil-dye mixture from the container. With the container 8 evacuated, the pressure fill pump injects refrigerant in liquid form into the container 8, and the lid is sealed thereon to close the refrigerant and oil-dye mixture within the can at a pressure of about p.s.i. Due to the fact that it is sealed under pressure, the refrigerant, oil and dye become mixed and integrated in the can.
The mixture may be injected into a refrigerating system through a suitable fitting as is customary in the art, and when injected, the refrigerant, oil and dye mixture is mixed with the lubricating oil and refrigerant in the system so that the integrated solution is carried throughout the system. When a leak occurs, the mixture will force its way through the opening causing the leak and the oil dye mixture is deposited on the surface thereof, to indicate visually the position of the leak.
Preferably the proportion of refrigerant to oil-dye mixture injected into the pressure can 8 is in the ratio of l2 oz. of refrigerant to 3 oz. of oil-dye mixture. Enough of the dye is dissolved in the oil placed in the container 8 to color the refrigerant-oil mixture in the air conditioning system sufficiently to give visual indication of a leak when the oil-dye mixture is deposited on the surface about the leak. f
In the mixture indicated above the dye would be in the order of four percent of the mixture. A considerable range of proportions of refrigerant, oil and dye may be provided in the mixture and still accomplish the desired results. For instance the range may be as follows:
Percent Refrigerant 50-99 Oil 1-50 Dye .O1-l0 A typical mixture might be as follows:
Percent Refrigerant 76 Oil 2O Dye 4 An alternate method of packaging the refrigerant, oil, dye mixture is shown in FIGURE II wherein the refrigerant is passed through a low temperature cooling system 13 including a cooling coil 14 where it is cooled to a suitable temperature (depending upon the grade of refrigerant) sufiicient to cause it to maintain a liquid state at atmospheric pressure for a temporary period. The liquid may be flowed by gravity through the filling nozzle 16 of the filling machine 15 into the pressure cans 8 and the cans are sealed under pressure, as indicated above, by a sealing unit 17, which places caps thereon. The oil-dye mixture is placed in the cans 8 from the container 6 in the manner described above prior tovbeing passed on the conveyor 9 to the filling machine 10. The expansion of the chilled refrigerant in the can 8 will cause the mixture of the oil-dye solution and the refrigerant to provide a product substantially the same as that described with reference to FIGURE I.
In both methods the filled and sealed containers 8 are passed through a test tank 11 where they are immersed in a liquid to detect leaks, if any.
It may be desirable in some instances to mix the dye with the refrigerant prior to placing it in the containers 8 and sealing it under pressure as described above; in such event the dye in the refrigerant would mix with the oil in the compressor crankcase and be circulated through the system.
Thus, there is provided a packaged leak detector mixture which is injected with the refrigerant into the refrigerating system, which may be injected simultaneously with the refrigerant, and there is provided a stable solution of leak detector which remains stable and does not emulsify or decompose at temperatures within the expected range encountered in an air conditioning refrigeratin g system.
Having described my invention I claim:
1. A packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can and a mixture of 5 to 99% uorinated hydrocarbon refrigerant, 1 to 50% of a highly refined refrigerant cornpressor oil comprising a substantially wax-free petroleum oil having a viscosity of 40 to 60 at 210 F., and a coloreifective quantity of oil-soluble dye sealed under pressure in said can, said dye being an azo dye which is stable over the temperature range from 65 F. to 300 F., and which remains soluble in the said oil without emulsication.
2. A packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, highly rened refrigerant compression oil and .01 to 10% of an oil-soluble dye sealed under pressure in said cam, said dye being an azo dye which is stable over the temperature range from -65 F. to 300 F., and which remains soluble in the said oil without emulsication, said oil being a highly-refined, wax-free petroleum oil of the naphthenic type within the API gravity range of 22.5 to 26.5 degrees API, and with a viscosity of from about 40 to about 60 Saybolt seconds at 210 F.
3. A packaged leak detector solution for an air-conditioning system consisting essentially of a pressure can, and a mixture of fluorinated hydrocarbon refrigerant, oil, and oil-soluble azo dye dissolved in said oil and stable over a temperature range from 65 F. to 300 F., Without emulsification, sealed under pressure in said can, said oil being a naphthenic oil having an API gravity in the range of 22.5 to 26.5 degrees API, and a viscosity of from about 40 to 60 Saybolt seconds at 210 F., the range 6 of proportion of refrigerant, oil and dye being as follows:
Percent Refrigerant 5-99 Oil 1-50 Dye .0l-10 4. The packaged leak detector solution of claim 3 wherein said dye is azobenzene-4.
5. The packaged leak detector solution of claim 3 wherein said dye is azo-2-naphthol.
6. The packaged leak detector solution of claim 3 wherein said dye is phenyl-azo2naphthoL 7. The packaged leak detector solution of claim 3 wherein said dye is a methyl derivative of azobenzene-4- azoa2-naphthol.
S. The packaged leak detector solution of claim 3 wherein said dye is para-diethylarnine-azobenzene.
References Cited UNITED STATES PATENTS 1,915,965 6/1933 Williams 252-68 X 2,070,167 2/ 1937 Iddings. 2,524,590 10/1950 Boe.
OTHER REFERENCES Lubs: The Chemistry of Synthetic Dyes and Pigments, Reinhold Publishing Corp., New York, 1955, pp. 174-75.
LEON D. ROSDOL, Primary Examiner.
S. D. SCHWARTZ, Assistant Examiner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US382465A US3370013A (en) | 1964-07-14 | 1964-07-14 | Pressure packaged refrigerant leak detector and method of packaging same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US382465A US3370013A (en) | 1964-07-14 | 1964-07-14 | Pressure packaged refrigerant leak detector and method of packaging same |
Publications (1)
Publication Number | Publication Date |
---|---|
US3370013A true US3370013A (en) | 1968-02-20 |
Family
ID=23509068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US382465A Expired - Lifetime US3370013A (en) | 1964-07-14 | 1964-07-14 | Pressure packaged refrigerant leak detector and method of packaging same |
Country Status (1)
Country | Link |
---|---|
US (1) | US3370013A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4615828A (en) * | 1984-05-07 | 1986-10-07 | Lockheed Corporation | Method and apparatus for detecting hydrocarbon fuel leaks |
US4756854A (en) * | 1984-05-07 | 1988-07-12 | Lockheed Corporation | Method and apparatus for detecting hydrocarbon fuel leaks |
US4758366A (en) * | 1985-02-25 | 1988-07-19 | Widger Chemical Corporation | Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors |
US5440919A (en) * | 1994-08-29 | 1995-08-15 | Spectronics Corporation | Method of introducing leak detection dye into an air conditioning or refrigeration system |
US5574213A (en) * | 1995-03-13 | 1996-11-12 | Shanley; Alfred W. | Apparatus and method for detecting leaks |
US5783110A (en) * | 1997-04-17 | 1998-07-21 | R-Tect, Inc. | Composition for the detection of electrophilic gases and methods of use thereof |
WO1999040395A1 (en) * | 1998-02-05 | 1999-08-12 | Bright Solutions, Inc. | Leak detection additives for fluid systems |
US6070455A (en) * | 1995-07-21 | 2000-06-06 | Bright Solutions, Inc. | Leak detection additives |
US6070454A (en) * | 1995-07-21 | 2000-06-06 | Bright Solutions, Inc. | Leak detection additives for use in heating, ventilating, refrigeration, and air conditioning systems |
USRE36951E (en) * | 1994-08-29 | 2000-11-14 | Spectronics Corporation | Method of introducing leak detection dye into an air conditioning or refrigeration system including solid or semi-solid fluorescent dyes |
US20020096643A1 (en) * | 1996-02-08 | 2002-07-25 | Bright Solutions, Inc., A Michigan Corporation | Portable light source and system for use in leak detection |
US20050272844A1 (en) * | 2004-06-02 | 2005-12-08 | Westman Morton A | Leak detection materials and methods |
US20110146801A1 (en) * | 2008-06-20 | 2011-06-23 | Bright Solutions International Llc | Injection additives into closed systems |
US10151663B2 (en) | 2015-09-15 | 2018-12-11 | Emerson Climate Technologies, Inc. | Leak detector sensor systems using tag-sensitized refrigerants |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1915965A (en) * | 1931-05-29 | 1933-06-27 | Frigidaire Corp | Method and composition for detecting leaks in refrigerating systems |
US2070167A (en) * | 1932-09-23 | 1937-02-09 | Iddings Carl | Method of making liquid sprays |
US2524590A (en) * | 1946-04-22 | 1950-10-03 | Carsten F Boe | Emulsion containing a liquefied propellant gas under pressure and method of spraying same |
-
1964
- 1964-07-14 US US382465A patent/US3370013A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1915965A (en) * | 1931-05-29 | 1933-06-27 | Frigidaire Corp | Method and composition for detecting leaks in refrigerating systems |
US2070167A (en) * | 1932-09-23 | 1937-02-09 | Iddings Carl | Method of making liquid sprays |
US2524590A (en) * | 1946-04-22 | 1950-10-03 | Carsten F Boe | Emulsion containing a liquefied propellant gas under pressure and method of spraying same |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756854A (en) * | 1984-05-07 | 1988-07-12 | Lockheed Corporation | Method and apparatus for detecting hydrocarbon fuel leaks |
US4615828A (en) * | 1984-05-07 | 1986-10-07 | Lockheed Corporation | Method and apparatus for detecting hydrocarbon fuel leaks |
US4758366A (en) * | 1985-02-25 | 1988-07-19 | Widger Chemical Corporation | Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors |
USRE36951E (en) * | 1994-08-29 | 2000-11-14 | Spectronics Corporation | Method of introducing leak detection dye into an air conditioning or refrigeration system including solid or semi-solid fluorescent dyes |
US5440919A (en) * | 1994-08-29 | 1995-08-15 | Spectronics Corporation | Method of introducing leak detection dye into an air conditioning or refrigeration system |
US5650563A (en) * | 1994-08-29 | 1997-07-22 | Spectronics Corporation | Method of introducing leak detection dye into an air conditioning or refrigeration system including solid or semi-solid fluorescent dyes |
US5574213A (en) * | 1995-03-13 | 1996-11-12 | Shanley; Alfred W. | Apparatus and method for detecting leaks |
US6070455A (en) * | 1995-07-21 | 2000-06-06 | Bright Solutions, Inc. | Leak detection additives |
US6070454A (en) * | 1995-07-21 | 2000-06-06 | Bright Solutions, Inc. | Leak detection additives for use in heating, ventilating, refrigeration, and air conditioning systems |
US20020096643A1 (en) * | 1996-02-08 | 2002-07-25 | Bright Solutions, Inc., A Michigan Corporation | Portable light source and system for use in leak detection |
US5951909A (en) * | 1997-04-17 | 1999-09-14 | R-Tec Technologies, Inc. | Composition for the detection of electrophilic gases and methods of use thereof |
US5783110A (en) * | 1997-04-17 | 1998-07-21 | R-Tect, Inc. | Composition for the detection of electrophilic gases and methods of use thereof |
WO1999040395A1 (en) * | 1998-02-05 | 1999-08-12 | Bright Solutions, Inc. | Leak detection additives for fluid systems |
US6101867A (en) * | 1998-02-05 | 2000-08-15 | Bright Solutions, Inc. | Dye concentrate |
US20050272844A1 (en) * | 2004-06-02 | 2005-12-08 | Westman Morton A | Leak detection materials and methods |
US7943380B2 (en) | 2004-06-02 | 2011-05-17 | Bright Solutions, Inc. | Leak detection materials and methods |
US20110146801A1 (en) * | 2008-06-20 | 2011-06-23 | Bright Solutions International Llc | Injection additives into closed systems |
US10151663B2 (en) | 2015-09-15 | 2018-12-11 | Emerson Climate Technologies, Inc. | Leak detector sensor systems using tag-sensitized refrigerants |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3370013A (en) | Pressure packaged refrigerant leak detector and method of packaging same | |
US6183663B1 (en) | Leak detection dye delivery system | |
US4758366A (en) | Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors | |
JP3340469B2 (en) | Method for injecting liquid material in spray form into a closed pressurized loop during operation and a disposable spray mist injector for injecting mixed material in spray form into a closed closed loop system during operation according to the method | |
US8065884B2 (en) | Composition and methods for injection of sealants into air conditioning and refrigeration systems | |
JP3400817B2 (en) | Refrigerant composition | |
US20200332165A1 (en) | Refrigerant with lubricating oil for replacement of r22 refrigerant | |
US6132636A (en) | Leak-detecting refrigerant compositions containing oxazolyl-coumarin dyes | |
WO2005121236A2 (en) | Leak detection materials and methods | |
US2621022A (en) | Method of drilling overburden, unconsolidated rock formation or placer ground with low-temperature freezing fluids | |
JP2001294886A (en) | Lubricant composition for refrigeration unit using carbon dioxide refrigerant, working fluid, refrigeration cycle or heat pump cycle, and refrigeration unit | |
US5942149A (en) | Environmentally safer replacement refrigerant for freon 12-based refrigeration systems | |
JP2000309789A (en) | Mixed working fluid which does not ignite and explode and refrigerating equipment using same | |
US5492643A (en) | Environmentally safer replacement refrigerant for freon 12-based refrigeration systems | |
US2780899A (en) | Apparatus for filling a fire extinguisher | |
CN104212415B (en) | A kind of car air conditioner refrigerant mixture and its charging method | |
US6274062B1 (en) | Halocarbon/hydrocarbon refrigerant blend | |
US7332102B2 (en) | Refrigerant with lubricating oil | |
US6557358B2 (en) | Non-hydrocarbon ultra-low temperature system for a refrigeration system | |
JP2002528712A (en) | Compositions and methods for leak detection in closed refrigerant systems | |
US2434448A (en) | Method of detection of small leaks in receptacles | |
WO2006071965A2 (en) | Refrigerant for low temperature applications | |
US20050133756A1 (en) | Refrigerant with lubricating oil | |
WO2007102815A1 (en) | Replacement refrigerant for r22-based refrigeration systems | |
RU2093548C1 (en) | Testing and conservation liquid for hydraulic systems |