US3366051A - Inking mechanism for printing machines - Google Patents

Inking mechanism for printing machines Download PDF

Info

Publication number
US3366051A
US3366051A US431130A US43113065A US3366051A US 3366051 A US3366051 A US 3366051A US 431130 A US431130 A US 431130A US 43113065 A US43113065 A US 43113065A US 3366051 A US3366051 A US 3366051A
Authority
US
United States
Prior art keywords
ink
plunger
pumping
stroke
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US431130A
Inventor
Ralph L Fusco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R Hoe and Co Inc
Original Assignee
R Hoe and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R Hoe and Co Inc filed Critical R Hoe and Co Inc
Priority to US431130A priority Critical patent/US3366051A/en
Priority to DE19651436509 priority patent/DE1436509A1/en
Priority to CH173866A priority patent/CH443354A/en
Priority to GB5527/66A priority patent/GB1102873A/en
Priority to SE01564/66A priority patent/SE330894B/xx
Priority to DK64266AA priority patent/DK121240B/en
Application granted granted Critical
Publication of US3366051A publication Critical patent/US3366051A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F31/00Inking arrangements or devices
    • B41F31/02Ducts, containers, supply or metering devices
    • B41F31/08Ducts, containers, supply or metering devices with ink ejecting means, e.g. pumps, nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F31/00Inking arrangements or devices
    • B41F31/02Ducts, containers, supply or metering devices
    • B41F31/027Ink rail devices for inking ink rollers

Definitions

  • This invention relates to inking mechanism for printing machines, and more particularly to such mechanisms in which ink is supplied by means of measuring pumps to an ink rail which applies it to the first drum of an ink motion for inking a plate or printing cylinder.
  • Typical ink pumping mechanisms of this character as heretofore used are shown, for example, in prior United States Patents 1,214,856; 1,311,198; 1,589,148, the pumping mechanisms being contained within an ink reservoir equipped with a sliding plate valve mechanism operating in the reservoir, and the rate of ink supply being varied by adjustably limiting the stroke of the pumps. While such pumps have operated very satisfactorily, the valving mechanism is subject to a certain amount of wear and there is a tendency for the rate of pumping to vary objectionably from proportionality to speed of operation of the press. With thicker inks, difi'iculty may also be encountered due to failure of the pump cylinders to fill completely at each stroke of the pumps.
  • the constructions are also not adapted to remote control in a simple manner, and the location of the pumping mechanism at the end of the ink rail and beyond the frame has required excessively long conduits to more remote nozzles of the ink rail and has required a great variation in the length of the various conduits.
  • the conduits and other elements have also been comparatively inaccessible for inspection and repairs.
  • Neal and Pilitz Patent 3,065,693 by separating the pumping units from the reservoir, circulating the ink and pressurizing the pump inlets.
  • Another object of the invention is to provide an ink pumping mechanism with remote control for the various pumping elements.
  • Another object of the invention is to provide an ink pumping mechanism having an improved and simplified drive mechanism.
  • Still another object of the invention is to provide an ink pumping mechanism in which the various ink conduits are short and of approximately the same length and in which they are readily accessible for inspection and replacement.
  • Another object of the invention is to provide an ink pumping mechanism in which the mechanism may be divided into separable units, as for the various page widths, which can be removed and replaced individually for servicing and repairs.
  • Another object is to provide an ink pumping mechanism in which the individual pumps, their drive mechanisms, and their stroke regulating mechanisms may all be individually inspected and removed and replaced when necessary.
  • Another object of the invention is to provide a mechanism of the type indicated,in which the individual pumps may be not only remotely adjusted but also adjusted manually.
  • a further object of the invention is to provide an ink pump having an improved ink distribution.
  • the individual pumping elements comprise piston plungers and ported cylinders, operable without movable valve mechanisms, the plungers being driven in convenient groups, as, for example, the eight or nine columns of a page, by a drive mechanism in which the length of stroke of the plunger is adjusted for regulating the ink supply, while leaving the time interval during which the ink is pumped unaffected.
  • Remote and manual adjusting means are provided for each pumping element, and the pumping elements are distributed along the ink rail and connected to the nozzles thereof by comparatively short flexible connections which are accessible for inspection and replacement, while not interfering with the necessary movements of the ink rail.
  • FIG. 1 is a somewhat schematic side elevational end view of a unit provided with an inking mechanism of the present invention
  • FIG. 2 is an elevational view of the ink pumping mechanismof the unitof FIG. 1;
  • FIG. 3 is a plan view of the mechanism of FIG. 2;
  • FIG. 4 is an elevation View, on an enlarged scale, with parts broken away, ofthe mechanism shown in FIGS. 1 and 3;
  • FIG. 5 is a section on the line 5-5 of FIG. 3;
  • FIG. 6 is a plan view of the mechanism of FIG. 4, with parts broken away.
  • the inking mechanism of the invention may be applied to printing mechanisms having any of various arrangements of ink motion elements.
  • a printing unit of the general type shown in Harless Patent No. 2,900,900 The unit is of the familiar arch type, in which the frame 1 accommodates two printing arrangements which may be identical apart from being, respectively, right and left hand.
  • the printing or plate cylinder 2 for one mechanism cooperates with an impression cylinder 3 and is inked by form rollers 4 from an ink drum 5 which is, in turn, inked by a train of transfer rollers 6-78 from the initial ink drum 9 which is supplied with ink by an ink rail 1'3.
  • the ink rail 10 is mounted for pivotal movement about a pivot point 10a, so that it may be moved up and down for adjusting its inking position with relation to the first drum 9 of the ink motion or for moving it into and out of operative position.
  • the mounting means for the ink rail form, in themselves, no part of the present invention and may be as shown in the above mentioned Harless patent.
  • the drums 5 and 9 may have an axial reciprocating motion for distributing the ink, as is usual.
  • the ink pumping mechanism indicated generally at 11 in FIGS. 1 and 2 is supported by a girder element from the frames 1 and runs parallel to and comparatively close to the ink rail 10.
  • the inking mechanism (FIG. 2) is preferably divided into a number of units A, B, C, D, there being one such unit for each page width of the printing mechanism.
  • Each unit contains a number of measuring pump elements, there being, typically, one such element for each column width of the printing mechanism, and each pumping element communicates through a flexible tubing 12 to the ink rail, for supplying ink to one of the nozzles thereof.
  • the units A and C may be right hand, while the units B and D are left hand, so as to simplify the drive connections somewhat as later mentioned. Apart from this, the various units are identical.
  • the girder element 13 which supports the ink pump units A, B, C and D is shown in FIGS. 2 and 3. It is generally of an L-section, comprising vertical plate 13a and horizontal plate 13b. Transverse walls 13c support the ink pump units A, B, C and D, and horizontal transverse elements l3d provide for mounting the girder to the frame 1, as by means of bolting to brackets or ledges 15, as indicated.
  • the shafting 15 for driving the pump units is mounted on the vertical girder element 13a, by means of gear boxes 17 and bearing brackets 18, the drive to the pumping units A, etc., being taken off the shafting 16 by means of bevel gearing and transverse shafts 19.
  • Shafting 16 may be driven through its own motor mechanism 2%, suitably synchronized with the press operation, or directly from the press drive itself through gear 21.
  • FIGS. 4 and 5 The pumping unit mechanisms are shown in detail in FIGS. 4 and 5. Each one comprises an upper section or sub-unit, carried in a housing and frame structure 25, and which contains the pumping elements and their drive, together with a lower section or sub-unit, carried in a frame structure 26, and which contains the pump adjusting mechanism.
  • the housing forms a space 28 which contains the pump plunger drive mechanisms, together with oil at a convenient level for lubricating the parts.
  • Bores 29 in the side wall 30 of member 25 receive the pump cylinder sleeves 31, which have an ink-tight, oil-tight, fit to the bores and are held in place by flanges 32 and screws 33, securing the same to the housing wall 30.
  • Cylinder sleeve 31 is closed off at its outer end by a screw plug 34 and is cross bored to form an intake port 35 and outlet port 36.
  • the outlet port 36 communicates with a tapped bore 37 to which the flexible connection 12 (FIG. 2) attaches for connecting to the ink rail.
  • the intake port 35 communicates with a bore 38 and thus with channel 39 of a manifold block 40 which fits into and is brazed or otherwise sealed to the wall 30, as shown.
  • Tapped bore 41' takes the hose connection 41 for supplying ink to the conduit 39.
  • the piston plunger 42 is rotatively and reciprocably carried in the cylinder bore 43 of the sleeve 31, and is driven by means of a spur gear 44 which is secured to the plunger 42, as by press-fitting.
  • the gears 44 of adjacent plungers mesh with each other, and the gear at one end of the line is driven by a spur gear 45, carried on a drive shaft element 19 (FIG. 3).
  • Each plunger 42 is also provided with a cross arm 46, which fits in a bore near the plunger end and is held in place by a set screw 47, for the purpose of imparting a suitable reciprocation to the plunger, as it rotates.
  • the outer end of arm 46 carries a ball bearing 48 which fits in the socket 49 of a slidable block carried in a radial guideway 50 in a crank member 51 which is rotatably mounted, by means of its shaft 52 and antifriction bearings 53 in a yoke 54.
  • Yoke 54 is mounted for rotary or angular adjustment about the axis of a pair of trunnions 55, 56.
  • the upper trunnion 55 is rotatable in bar 57 and held in place vertically by snap ring 58.
  • the lower trunnion 56 is fixed to the yoke 54 and rotatably mounted in the bottom of housing 25 for angular adjustment, as below described.
  • the plunger 42 is shown in the mid-position of its stroke, and the yoke 54 in a neutral or nonpumping position, in which the axis of shaft 52 is parallel to the cylinder bore, so that plunger arm 46 merely rotates in a plane at right angles to the plunger axis.
  • the cylinder (and plunger) diameter and the plunger maximum stroke are equal, so that the plunger moves to the right and left of the position of FIG. 5 by a distance equal to about half the plunger diameter.
  • the plunger diameter and total stroke may be /8", with other dimensions in proportion.
  • An angular adjustment of yoke 54 of about 15 will produce the required maximum plunger reciprocation, while adjustments to lesser angles will vary the stroke and, hence, pumping rate, as desired.
  • the plunger 42 is formed with a cutout portion 59 by means of which communication is alternately established between the inlet port 35 and cylinder space 6% and between outlet port 36 and cylinder space 60.
  • the cutout 59 may be former by a simple fiat and the port openings 35, 36 may be circular bores, the port opening being substantially proportional to the sine of the angle of rotation of the plunger.
  • the pumping action is extremely simple: starting in the mid-position (FIG. 5), rotation of gear 44 and plunger 42 will complete the suction stroke and also bring the fiat 59 to a position where both ports 35 and 36 are blocked off; the next 90 of rotation will bring the flat over the outlet port and discharge ink therethrough, until we again have the position of FIG.
  • the plungers 42 with their gears 44 and cross arms 46, may all be the same, and may be set in different angular positions in assembling the unit.
  • gears 44 with 24 teeth permits setting each plunger ahead of the preceding by three teeth (45), so that the eight plungers are operating at any given time in eight different phase positions, and the power consumption is practically steady.
  • the speed of operation of the mechanism is sufficiently low so that the forces due to mass accelerations may be neglected.
  • the discharge pressure of the ink is moderate, in a range such as 10 to 20 pounds per square inch.
  • the cylinder area is only about one-tenth square inch, and the hydraulic pressure force on the plunger is between one and two pounds.
  • Each plunger 42 is selectively fitted to its cylinder sleeve bore 43 and is otherwise unconstrained in its movements.
  • the gears 44 are preferably involute, being capable of meshing with true gear action of slightly different center distances, do not subject the plunger to any further re quirement of alignment, other than that imposed by he cylinder bores 43.
  • the forces on each gear consist of a tooth pressure on the driven side of the gear and a somewhat less tooth pressure on the driving side of the gear, which forces resolve into a fluctuating couple and small resultant lateral force.
  • the length of plunger 42 within the cylinder bore 43 is sufficient to maintain alignment, without any tendency toward scuffing action, and with a factor of safety, far in excess of the lateral forces produced by the gearing 44 and idle crank drive 46-51. It will be noted that small displacements of the yoke 54 and of the crank mechanism carried thereby will not appreciably afiect the action of the pump. It is, therefore, possible in the pump construction of the present invention, to fit the plunger and cylinder sleeve selectively and to permit interchange and replacement of the parts without requiring high precision in the remainder of the mechanisrn.
  • the adjusting mechanism for the stroke of plungers 42 comprises, for each plunger, a coupling member 65 secured to trunnion 56 and interfitting with coupling member 66 carried on the plate 27 and rotatably mounted therein by shaft section 67, the lower end of which carries a slotted arm 68 receiving a slidable bushing member 69 which holds a crank pin 70, the axis of which is spaced from the axis of shaft section 67.
  • Crank pin 70 fits into a cross slot 71 formed in the top of a nut 72 which fits on the threaded section 73 of shaft 74, being moved axially of the shaft 74 as the latter is rotated and thus accomplishing the adjusting movement for controlling the reciprocation of plunger 42, by adjusting the angle of the idler crank mechanism carried in the yoke 54 between parallelism (actually, substantial coincidence) to the plunger axis 42 at about inclination with respect to the said axis, so as to adjust between zero and full stroke of the plunger.
  • the shaft 74 is fixed to and carried by an inner shaft element 75 journaled in the plates 26 and having an extension 76 at one end. Extension 76 has a square end 77 and may be used for manual adjustment of the stroke of plunger 42.
  • Shaft 74 carries a gear 78 meshing with and driven by pinnion 79 which is carried on and driven by the shaft 80 of indexing motor 81.
  • Indexing motor 81 is of the known commercially available type utilizing a permanent magnet rotor, for moving in substantially a uniform increment upon each actuation and permitting stalling or overpowering by the manual adjustment.
  • Shaft 74 carries a second gear 82 meshing with gear wheel 83 rotatably mounted on a side plate 26 by the bolt and shaft arrangement 84.
  • Gear wheel 83 has a slot 85 accommodating the stop pin 86 for limiting the rotary movement of wheel 83 and, hence, of shaft 74 and thus setting the stroke adjustment range for the plunger 42.
  • the arrangement of the adjustment mechanism is the same for all plungers, with the exception that the motors 81 for alternating plungers are positioned oppositely to the motors 81, so as to economize space, the shaft 74, gears carried thereby and meshing gears also being reversed.
  • the entire inking arrangement may be controlled page by page and column by column from a control panel at each unit and also by a master control panel at the folder or other desired location.
  • Ink pumping mechanism for supplying ink to the ink rail of a printing machine ink motion, comprising the combination of a housing accommodating a plurality of measuring pump elements, each having a cylinder bore with a discharge port and intake port in its wall and a plunger rotatably and reciprocably carried in the bore, the plunger having a recess in one side for communicating alternately with the intake and discharge port, means for supplying ink to the intake ports and means for connecting the discharges of the said elements to the ink rail at spaced points therealong for supplying ink thereto, with drive means for the said pump elements comprising a train of meshing gears rotatively fixed to the said plungers for rotating the said plungers and axially moveable therewith, means for reciprocating the plungers, comprising, for each plunger, an idle crank mechanism operable to reciprocate the plunger as it rotates comprising a yoke mounted on said housing for angular rotation, a crank member rotatably mounted in said yoke and
  • Ink pumping mechanism in which the said means for adjusting the crank mechanism comprises a step by step electric motor for each measuring pump element, means operable thereby for angularly adjusting the said crank mechanism.
  • Ink pumping mechanism comprising a screw and nut connection, the screw being rotatively adjustable by the said motor and manual means and the nut being coupled to the said crank mechanism for adjusting the same by means of interfitting coupling members.

Landscapes

  • Reciprocating Pumps (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

Jan. 30, 1968 R. L. FUSCO INKING MECHANISM FOR PRINTING MACHINES 5 Sheets-Sheet Filed Feb. 8, 1965 mvE TOR 7 oz: BY; r
ATTO R N EY Jan. 30, 1968 R. 1.. H1560 INKING MECHANISM FOR PRINTING MACHINES 5 Sheets-$heet 5 Filed Feb. 8, 1965 lNgENTOR BY r I W W ATTORNEXY Jan. 30, 1968 I R. L. FUSCO 3,365,051
INKING MECHANISM FOR PRINTING MACHINES Filed Feb. 8, 1965 5 Sheets-Sheet 4 INVENTOR flefd Z' M B A ORNEYJ' Jan. 30, 1968 R. L. Fusco 3,366.
INKING MECHANISM FOR PRINTING MACHINES Filed Feb. 8, 1965 5 Sheets-Sheet 5 ATTO R N EY- United States Patent Ot'fice 3,366,051 Patented Jan. 30, 1968 3,366,051 INlflNG METIHANHSM FQR PRINTING MACHINES Ralph L. Frisco, Commack, N.Y., assignor to R. Hoe & Co. Inc., New York, N.Y., a corporation of New York Filed Feb. 8, 1965, Ser. No. 431,130 4 Claims. (Cl. 101--365) AtifiTRACT OF THE DISCLOSURE This invention relates to inking mechanism for printing machines, and more particularly to such mechanisms in which ink is supplied by means of measuring pumps to an ink rail which applies it to the first drum of an ink motion for inking a plate or printing cylinder.
Typical ink pumping mechanisms of this character as heretofore used are shown, for example, in prior United States Patents 1,214,856; 1,311,198; 1,589,148, the pumping mechanisms being contained within an ink reservoir equipped with a sliding plate valve mechanism operating in the reservoir, and the rate of ink supply being varied by adjustably limiting the stroke of the pumps. While such pumps have operated very satisfactorily, the valving mechanism is subject to a certain amount of wear and there is a tendency for the rate of pumping to vary objectionably from proportionality to speed of operation of the press. With thicker inks, difi'iculty may also be encountered due to failure of the pump cylinders to fill completely at each stroke of the pumps. The constructions are also not adapted to remote control in a simple manner, and the location of the pumping mechanism at the end of the ink rail and beyond the frame has required excessively long conduits to more remote nozzles of the ink rail and has required a great variation in the length of the various conduits. The conduits and other elements have also been comparatively inaccessible for inspection and repairs.
A variety of improvements on such pumping mechanisms have been proposed, as, for example, in Huck Pat ent 2,695,561, in which the pumping elements have been incorporated in the ink rail itself and distributed along its length. Such mechanisms have, however, been comparatively complicated and difficult to service and have i also presented difiiculties in changing from one color of ink to another.
More recently, considerable improvement has been made, as shown in Neal and Pilitz Patent 3,065,693, by separating the pumping units from the reservoir, circulating the ink and pressurizing the pump inlets. These constructions are still subject to some of the diificulties above mentioned, and the complication and precision of parts required is to some extent a drawback in pumps of this character.
It is the general object of the present invention to provide an improved ink measuring pump, which eliminates the foregoing difficulties.
It is an object of the invention to provide an ink pumping mechanism without separate valving and in which proportionality of ink delivery to speed of press operation is maintained to the greatest degree possible.
Another object of the invention is to provide an ink pumping mechanism with remote control for the various pumping elements.
Another object of the invention is to provide an ink pumping mechanism having an improved and simplified drive mechanism.
Still another object of the invention is to provide an ink pumping mechanism in which the various ink conduits are short and of approximately the same length and in which they are readily accessible for inspection and replacement.
Another object of the invention is to provide an ink pumping mechanism in which the mechanism may be divided into separable units, as for the various page widths, which can be removed and replaced individually for servicing and repairs.
Another object is to provide an ink pumping mechanism in which the individual pumps, their drive mechanisms, and their stroke regulating mechanisms may all be individually inspected and removed and replaced when necessary.
Another object of the invention is to provide a mechanism of the type indicated,in which the individual pumps may be not only remotely adjusted but also adjusted manually.
A further object of the invention is to provide an ink pump having an improved ink distribution.
In the ink pumping mechanism of the present invention, the individual pumping elements comprise piston plungers and ported cylinders, operable without movable valve mechanisms, the plungers being driven in convenient groups, as, for example, the eight or nine columns of a page, by a drive mechanism in which the length of stroke of the plunger is adjusted for regulating the ink supply, while leaving the time interval during which the ink is pumped unaffected. Remote and manual adjusting means are provided for each pumping element, and the pumping elements are distributed along the ink rail and connected to the nozzles thereof by comparatively short flexible connections which are accessible for inspection and replacement, while not interfering with the necessary movements of the ink rail.
An ink pumping mechanism embodying the invention in a prefered form will now first be described with reference to the accompanying drawing, and the features forming the invention will then be pointed out more particularly in the appended claims.
In the drawing:
FIG. 1 is a somewhat schematic side elevational end view of a unit provided with an inking mechanism of the present invention;
FIG. 2 is an elevational view of the ink pumping mechanismof the unitof FIG. 1;
FIG. 3 is a plan view of the mechanism of FIG. 2;
FIG. 4 is an elevation View, on an enlarged scale, with parts broken away, ofthe mechanism shown in FIGS. 1 and 3;
FIG. 5 is a section on the line 5-5 of FIG. 3;
FIG. 6 is a plan view of the mechanism of FIG. 4, with parts broken away.
The inking mechanism of the invention may be applied to printing mechanisms having any of various arrangements of ink motion elements. For definiteness of illustration, it is shown herein, by way of example, as applied to a printing unit of the general type shown in Harless Patent No. 2,900,900. The unit is of the familiar arch type, in which the frame 1 accommodates two printing arrangements which may be identical apart from being, respectively, right and left hand. The printing or plate cylinder 2 for one mechanism cooperates with an impression cylinder 3 and is inked by form rollers 4 from an ink drum 5 which is, in turn, inked by a train of transfer rollers 6-78 from the initial ink drum 9 which is supplied with ink by an ink rail 1'3. The ink rail 10 is mounted for pivotal movement about a pivot point 10a, so that it may be moved up and down for adjusting its inking position with relation to the first drum 9 of the ink motion or for moving it into and out of operative position. The mounting means for the ink rail form, in themselves, no part of the present invention and may be as shown in the above mentioned Harless patent. The drums 5 and 9 may have an axial reciprocating motion for distributing the ink, as is usual. The ink pumping mechanism indicated generally at 11 in FIGS. 1 and 2, is supported by a girder element from the frames 1 and runs parallel to and comparatively close to the ink rail 10.
The inking mechanism (FIG. 2) is preferably divided into a number of units A, B, C, D, there being one such unit for each page width of the printing mechanism. Each unit contains a number of measuring pump elements, there being, typically, one such element for each column width of the printing mechanism, and each pumping element communicates through a flexible tubing 12 to the ink rail, for supplying ink to one of the nozzles thereof.
The units A and C may be right hand, while the units B and D are left hand, so as to simplify the drive connections somewhat as later mentioned. Apart from this, the various units are identical.
The girder element 13 which supports the ink pump units A, B, C and D is shown in FIGS. 2 and 3. It is generally of an L-section, comprising vertical plate 13a and horizontal plate 13b. Transverse walls 13c support the ink pump units A, B, C and D, and horizontal transverse elements l3d provide for mounting the girder to the frame 1, as by means of bolting to brackets or ledges 15, as indicated.
The shafting 15 for driving the pump units is mounted on the vertical girder element 13a, by means of gear boxes 17 and bearing brackets 18, the drive to the pumping units A, etc., being taken off the shafting 16 by means of bevel gearing and transverse shafts 19. Shafting 16 may be driven through its own motor mechanism 2%, suitably synchronized with the press operation, or directly from the press drive itself through gear 21.
The pumping unit mechanisms are shown in detail in FIGS. 4 and 5. Each one comprises an upper section or sub-unit, carried in a housing and frame structure 25, and which contains the pumping elements and their drive, together with a lower section or sub-unit, carried in a frame structure 26, and which contains the pump adjusting mechanism. A bar or plate 27, supported at its ends in the walls 13c (FIG. 2) supports the frame elements 26 of the lower sub-units and carries the means for operatively connecting the upper and lower sub-units together.
The construction and operation of the upper sub-unit, which contains the pumping mechanism, will now be considered in detail, the lower sub-unit being described later.
The housing forms a space 28 which contains the pump plunger drive mechanisms, together with oil at a convenient level for lubricating the parts. Bores 29 in the side wall 30 of member 25 receive the pump cylinder sleeves 31, which have an ink-tight, oil-tight, fit to the bores and are held in place by flanges 32 and screws 33, securing the same to the housing wall 30.
Cylinder sleeve 31 is closed off at its outer end by a screw plug 34 and is cross bored to form an intake port 35 and outlet port 36. The outlet port 36 communicates with a tapped bore 37 to which the flexible connection 12 (FIG. 2) attaches for connecting to the ink rail. The intake port 35 communicates with a bore 38 and thus with channel 39 of a manifold block 40 which fits into and is brazed or otherwise sealed to the wall 30, as shown. Tapped bore 41' takes the hose connection 41 for supplying ink to the conduit 39.
The piston plunger 42 is rotatively and reciprocably carried in the cylinder bore 43 of the sleeve 31, and is driven by means of a spur gear 44 which is secured to the plunger 42, as by press-fitting. The gears 44 of adjacent plungers mesh with each other, and the gear at one end of the line is driven by a spur gear 45, carried on a drive shaft element 19 (FIG. 3). Each plunger 42 is also provided with a cross arm 46, which fits in a bore near the plunger end and is held in place by a set screw 47, for the purpose of imparting a suitable reciprocation to the plunger, as it rotates.
The outer end of arm 46 carries a ball bearing 48 which fits in the socket 49 of a slidable block carried in a radial guideway 50 in a crank member 51 which is rotatably mounted, by means of its shaft 52 and antifriction bearings 53 in a yoke 54. Yoke 54 is mounted for rotary or angular adjustment about the axis of a pair of trunnions 55, 56. The upper trunnion 55 is rotatable in bar 57 and held in place vertically by snap ring 58. The lower trunnion 56 is fixed to the yoke 54 and rotatably mounted in the bottom of housing 25 for angular adjustment, as below described.
In FIGS. 4-6, the plunger 42 is shown in the mid-position of its stroke, and the yoke 54 in a neutral or nonpumping position, in which the axis of shaft 52 is parallel to the cylinder bore, so that plunger arm 46 merely rotates in a plane at right angles to the plunger axis. In the actual construction chosen for purposes of illustration herein, the cylinder (and plunger) diameter and the plunger maximum stroke are equal, so that the plunger moves to the right and left of the position of FIG. 5 by a distance equal to about half the plunger diameter. In a typical construction, the plunger diameter and total stroke may be /8", with other dimensions in proportion. An angular adjustment of yoke 54 of about 15 will produce the required maximum plunger reciprocation, while adjustments to lesser angles will vary the stroke and, hence, pumping rate, as desired.
The plunger 42 is formed with a cutout portion 59 by means of which communication is alternately established between the inlet port 35 and cylinder space 6% and between outlet port 36 and cylinder space 60. Conveniently, the cutout 59 may be former by a simple fiat and the port openings 35, 36 may be circular bores, the port opening being substantially proportional to the sine of the angle of rotation of the plunger. The pumping action is extremely simple: starting in the mid-position (FIG. 5), rotation of gear 44 and plunger 42 will complete the suction stroke and also bring the fiat 59 to a position where both ports 35 and 36 are blocked off; the next 90 of rotation will bring the flat over the outlet port and discharge ink therethrough, until we again have the position of FIG. 5 but with the flat 59 at the top, instead of the bottom, of the plunger; 21 third 90 of rotation completes the discharge stroke and brings the flat to a position where both ports are blocked off; while the fourth and last 90 accomplishes the first half of the suction stroke and brings the parts again to the position of FIG. 5.
The plungers 42, with their gears 44 and cross arms 46, may all be the same, and may be set in different angular positions in assembling the unit. Thus, with eight plungers in the unit, using gears 44 with 24 teeth permits setting each plunger ahead of the preceding by three teeth (45), so that the eight plungers are operating at any given time in eight different phase positions, and the power consumption is practically steady.
The speed of operation of the mechanism is sufficiently low so that the forces due to mass accelerations may be neglected. Under normal operating conditions, the discharge pressure of the ink is moderate, in a range such as 10 to 20 pounds per square inch. With a plunger of /s" diameter, the cylinder area is only about one-tenth square inch, and the hydraulic pressure force on the plunger is between one and two pounds.
Each plunger 42 is selectively fitted to its cylinder sleeve bore 43 and is otherwise unconstrained in its movements. The gears 44 are preferably involute, being capable of meshing with true gear action of slightly different center distances, do not subject the plunger to any further re quirement of alignment, other than that imposed by he cylinder bores 43. The forces on each gear consist of a tooth pressure on the driven side of the gear and a somewhat less tooth pressure on the driving side of the gear, which forces resolve into a fluctuating couple and small resultant lateral force. The length of plunger 42 within the cylinder bore 43 is sufficient to maintain alignment, without any tendency toward scuffing action, and with a factor of safety, far in excess of the lateral forces produced by the gearing 44 and idle crank drive 46-51. It will be noted that small displacements of the yoke 54 and of the crank mechanism carried thereby will not appreciably afiect the action of the pump. It is, therefore, possible in the pump construction of the present invention, to fit the plunger and cylinder sleeve selectively and to permit interchange and replacement of the parts without requiring high precision in the remainder of the mechanisrn.
The adjusting mechanism for the stroke of plungers 42 comprises, for each plunger, a coupling member 65 secured to trunnion 56 and interfitting with coupling member 66 carried on the plate 27 and rotatably mounted therein by shaft section 67, the lower end of which carries a slotted arm 68 receiving a slidable bushing member 69 which holds a crank pin 70, the axis of which is spaced from the axis of shaft section 67. Crank pin 70 fits into a cross slot 71 formed in the top of a nut 72 which fits on the threaded section 73 of shaft 74, being moved axially of the shaft 74 as the latter is rotated and thus accomplishing the adjusting movement for controlling the reciprocation of plunger 42, by adjusting the angle of the idler crank mechanism carried in the yoke 54 between parallelism (actually, substantial coincidence) to the plunger axis 42 at about inclination with respect to the said axis, so as to adjust between zero and full stroke of the plunger.
The shaft 74 is fixed to and carried by an inner shaft element 75 journaled in the plates 26 and having an extension 76 at one end. Extension 76 has a square end 77 and may be used for manual adjustment of the stroke of plunger 42. Shaft 74 carries a gear 78 meshing with and driven by pinnion 79 which is carried on and driven by the shaft 80 of indexing motor 81. Indexing motor 81 is of the known commercially available type utilizing a permanent magnet rotor, for moving in substantially a uniform increment upon each actuation and permitting stalling or overpowering by the manual adjustment. Shaft 74 carries a second gear 82 meshing with gear wheel 83 rotatably mounted on a side plate 26 by the bolt and shaft arrangement 84. Gear wheel 83 has a slot 85 accommodating the stop pin 86 for limiting the rotary movement of wheel 83 and, hence, of shaft 74 and thus setting the stroke adjustment range for the plunger 42.
The arrangement of the adjustment mechanism is the same for all plungers, with the exception that the motors 81 for alternating plungers are positioned oppositely to the motors 81, so as to economize space, the shaft 74, gears carried thereby and meshing gears also being reversed. Inasmuch as each plunger and cylinder has not only its own manual adjustment, but also its own motor adjustment by means of motor 81 or 81, the entire inking arrangement may be controlled page by page and column by column from a control panel at each unit and also by a master control panel at the folder or other desired location.
What is claimed is:
1. Ink pumping mechanism for supplying ink to the ink rail of a printing machine ink motion, comprising the combination of a housing accommodating a plurality of measuring pump elements, each having a cylinder bore with a discharge port and intake port in its wall and a plunger rotatably and reciprocably carried in the bore, the plunger having a recess in one side for communicating alternately with the intake and discharge port, means for supplying ink to the intake ports and means for connecting the discharges of the said elements to the ink rail at spaced points therealong for supplying ink thereto, with drive means for the said pump elements comprising a train of meshing gears rotatively fixed to the said plungers for rotating the said plungers and axially moveable therewith, means for reciprocating the plungers, comprising, for each plunger, an idle crank mechanism operable to reciprocate the plunger as it rotates comprising a yoke mounted on said housing for angular rotation, a crank member rotatably mounted in said yoke and a cross arm having one end thereof secured to said crank member by means of a ball joint and the other end thereof secured to said plunger, and means for angularly adjusting the said crank mechanism for varying the stroke of plunger and rate of pumping.
2. Ink pumping mechanism according to claim 1, in which the said means for adjusting the crank mechanism comprises a step by step electric motor for each measuring pump element, means operable thereby for angularly adjusting the said crank mechanism.
3. Ink pumping mechanism according to claim 2, comprising also manual adjustment means for the said crank mechanism.
4. Ink pumping mechanism according to claim 3, comprising a screw and nut connection, the screw being rotatively adjustable by the said motor and manual means and the nut being coupled to the said crank mechanism for adjusting the same by means of interfitting coupling members.
References Cited UNITED STATES PATENTS 2,183,720 12/1939 Lougee et al 101-365 X 2,392,706 1/1946 Taylor et al. 101-365 2,430,895 11/1947 Tuve et al. 103-157 X 2,436,492 2/1948 Shepard 103-157 X 2,450,570 10/1948 Topham 103-157 X 2,469,796 5/1949 Stobb et al. 101-207 2,821,919 2/1958 Dressel 101-365 2,887,950 5/1959 Street 101-365 2,900,900 8/1959 Harless 101-366 3,168,872 2/1965 Pinkerton 103-157 ROBERT E. PULFREY, Primary Examiner. J. R. FISHER, Assistant Examiner.
US431130A 1965-02-08 1965-02-08 Inking mechanism for printing machines Expired - Lifetime US3366051A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US431130A US3366051A (en) 1965-02-08 1965-02-08 Inking mechanism for printing machines
DE19651436509 DE1436509A1 (en) 1965-02-08 1965-10-25 Inking mechanism for printing machines
CH173866A CH443354A (en) 1965-02-08 1966-02-08 Ink pumping device for printing machines
GB5527/66A GB1102873A (en) 1965-02-08 1966-02-08 Inking mechanism for printing machines
SE01564/66A SE330894B (en) 1965-02-08 1966-02-08
DK64266AA DK121240B (en) 1965-02-08 1966-02-08 Color pump mechanism for applying color to a color rail to the color supply plant of a printing press.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US431130A US3366051A (en) 1965-02-08 1965-02-08 Inking mechanism for printing machines

Publications (1)

Publication Number Publication Date
US3366051A true US3366051A (en) 1968-01-30

Family

ID=23710607

Family Applications (1)

Application Number Title Priority Date Filing Date
US431130A Expired - Lifetime US3366051A (en) 1965-02-08 1965-02-08 Inking mechanism for printing machines

Country Status (6)

Country Link
US (1) US3366051A (en)
CH (1) CH443354A (en)
DE (1) DE1436509A1 (en)
DK (1) DK121240B (en)
GB (1) GB1102873A (en)
SE (1) SE330894B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2019967A1 (en) * 1968-10-04 1970-07-10 Miehle Goss Dexter Inc
US3608486A (en) * 1969-04-28 1971-09-28 Hoe & Co R Drive means for the inking mechanism of a printing machine
US3636873A (en) * 1969-02-27 1972-01-25 Wood Industries Inc Inking pump mechanism for printing machines
US3739721A (en) * 1971-05-10 1973-06-19 Baker Perkins Ltd Inking pump mechanisms for printing machines
US3914073A (en) * 1974-12-17 1975-10-21 Ralph L Fusco Printing ink pump
FR2387775A1 (en) * 1977-04-18 1978-11-17 Harris Corp INKING MECHANISM FOR PRINTING PRESS
US4461209A (en) * 1982-07-13 1984-07-24 Smith R.P.M. Corporation Ink pump with positive zero set
US5182993A (en) * 1989-03-02 1993-02-02 Tokyo Kikai Seisakusho, Ltd. Ink supply source driving apparatus for rotary presses
US5213044A (en) * 1990-11-30 1993-05-25 Como Technologies, Incorporated Method and apparatus for use in printing
US5460091A (en) * 1990-10-30 1995-10-24 Como Technologies, Inc. Printing press ink supply system
US5526745A (en) * 1994-05-31 1996-06-18 Kabushiki Kaisha Tokyo Kikai Seisakusho Pump unit for printing machine
US6336405B1 (en) * 1999-08-27 2002-01-08 Kabushiki Kaisha Tokyo Kikai Seisakusho Pump for printing machine
US20030116043A1 (en) * 2001-12-25 2003-06-26 Yoshinori Uera Pump for inking or like purposes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183720A (en) * 1937-08-25 1939-12-19 Hoe & Co R Inking mechanism for printing machines
US2392706A (en) * 1942-05-23 1946-01-08 Goss Printing Press Co Ltd Inking mechanism
US2430895A (en) * 1942-12-08 1947-11-18 Richard L Tuve Continuous water analyzer
US2436492A (en) * 1946-06-06 1948-02-24 Nathan Mfg Co Pumping unit for mechanical lubricators
US2450570A (en) * 1943-10-02 1948-10-05 United Shoe Machinery Corp Variable displacement pump
US2469796A (en) * 1945-01-16 1949-05-10 Hoe & Co R Inking mechanism for printing machines
US2821919A (en) * 1951-04-06 1958-02-04 Hoe & Co R Inking mechanisms
US2887950A (en) * 1957-05-31 1959-05-26 Springfield Newspapers Inc Inking apparatus for printing press
US2900900A (en) * 1954-04-06 1959-08-25 Hoe & Co R Inking mechanism for printing machines
US3168872A (en) * 1963-01-23 1965-02-09 Harry E Pinkerton Positive displacement piston pump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183720A (en) * 1937-08-25 1939-12-19 Hoe & Co R Inking mechanism for printing machines
US2392706A (en) * 1942-05-23 1946-01-08 Goss Printing Press Co Ltd Inking mechanism
US2430895A (en) * 1942-12-08 1947-11-18 Richard L Tuve Continuous water analyzer
US2450570A (en) * 1943-10-02 1948-10-05 United Shoe Machinery Corp Variable displacement pump
US2469796A (en) * 1945-01-16 1949-05-10 Hoe & Co R Inking mechanism for printing machines
US2436492A (en) * 1946-06-06 1948-02-24 Nathan Mfg Co Pumping unit for mechanical lubricators
US2821919A (en) * 1951-04-06 1958-02-04 Hoe & Co R Inking mechanisms
US2900900A (en) * 1954-04-06 1959-08-25 Hoe & Co R Inking mechanism for printing machines
US2887950A (en) * 1957-05-31 1959-05-26 Springfield Newspapers Inc Inking apparatus for printing press
US3168872A (en) * 1963-01-23 1965-02-09 Harry E Pinkerton Positive displacement piston pump

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2019967A1 (en) * 1968-10-04 1970-07-10 Miehle Goss Dexter Inc
US3636873A (en) * 1969-02-27 1972-01-25 Wood Industries Inc Inking pump mechanism for printing machines
US3608486A (en) * 1969-04-28 1971-09-28 Hoe & Co R Drive means for the inking mechanism of a printing machine
US3739721A (en) * 1971-05-10 1973-06-19 Baker Perkins Ltd Inking pump mechanisms for printing machines
US3914073A (en) * 1974-12-17 1975-10-21 Ralph L Fusco Printing ink pump
FR2387775A1 (en) * 1977-04-18 1978-11-17 Harris Corp INKING MECHANISM FOR PRINTING PRESS
US4461209A (en) * 1982-07-13 1984-07-24 Smith R.P.M. Corporation Ink pump with positive zero set
US5182993A (en) * 1989-03-02 1993-02-02 Tokyo Kikai Seisakusho, Ltd. Ink supply source driving apparatus for rotary presses
US5460091A (en) * 1990-10-30 1995-10-24 Como Technologies, Inc. Printing press ink supply system
US5213044A (en) * 1990-11-30 1993-05-25 Como Technologies, Incorporated Method and apparatus for use in printing
US5526745A (en) * 1994-05-31 1996-06-18 Kabushiki Kaisha Tokyo Kikai Seisakusho Pump unit for printing machine
US6336405B1 (en) * 1999-08-27 2002-01-08 Kabushiki Kaisha Tokyo Kikai Seisakusho Pump for printing machine
US20030116043A1 (en) * 2001-12-25 2003-06-26 Yoshinori Uera Pump for inking or like purposes
US6732647B2 (en) * 2001-12-25 2004-05-11 Kabushiki Kaisha Tokyo Kikai Seisakusho Pump for inking or like purposes

Also Published As

Publication number Publication date
CH443354A (en) 1967-09-15
SE330894B (en) 1970-12-07
GB1102873A (en) 1968-02-14
DE1436509A1 (en) 1969-05-14
DK121240B (en) 1971-09-27

Similar Documents

Publication Publication Date Title
US3366051A (en) Inking mechanism for printing machines
US3065693A (en) Printing machine ink pumping system
US2157970A (en) Apparatus for delivering liquids and viscous materials
US3636873A (en) Inking pump mechanism for printing machines
US2469796A (en) Inking mechanism for printing machines
US1822690A (en) Continuous rotary machine
JPH06171064A (en) Vibrating roller driver in inking arrangement of rotary press
US4461209A (en) Ink pump with positive zero set
US1726454A (en) Fourteen and one-half per cent to james
US2242214A (en) Distributing device for printing machines
US3090363A (en) Fluid motor
US6176348B1 (en) Multiple-pump system for lubricating
US2382701A (en) Gear pump
US2981182A (en) Leverless inking mechanism for rotary printing machines
US4429630A (en) Printing machine milling roller drive system
US1998004A (en) Differential hydraulic speed gear
US2452754A (en) Variable power transmission
US1583172A (en) Inking mechanism for printing machines
US3698288A (en) Variable metering pump
US2183739A (en) Printing press
US2420080A (en) Inking mechanism for printing machines
US3237570A (en) Hydraulic machines of the barrel and swash plate type
US2866411A (en) Ink pumps for printing presses
US3018727A (en) Inking mechanism for printing machines
US1814285A (en) Pumping apparatus