US3362387A - Device for the automatic elimination of smoke and noxious gases of internal combustion engines - Google Patents

Device for the automatic elimination of smoke and noxious gases of internal combustion engines Download PDF

Info

Publication number
US3362387A
US3362387A US520826A US52082666A US3362387A US 3362387 A US3362387 A US 3362387A US 520826 A US520826 A US 520826A US 52082666 A US52082666 A US 52082666A US 3362387 A US3362387 A US 3362387A
Authority
US
United States
Prior art keywords
motor
smoke
internal combustion
engine
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US520826A
Inventor
Neumann Ernestina
Neumann Herman Frederik Marcus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HERMAN FREDERIK MARCUS NEUMANN
Original Assignee
Neumann Ernestina
Neumann Herman Frederik Marcus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neumann Ernestina, Neumann Herman Frederik Marcus filed Critical Neumann Ernestina
Application granted granted Critical
Publication of US3362387A publication Critical patent/US3362387A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1451Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the sensor being an optical sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to a new way of automatically eliminating the formation of smoke and poisonous gases produced by some motors of internal combustion when used in vehicles traveling on mountain roads Where the altitude over sea level varies and, consequently, the burden of oxygen contained in the atmosphere changes per cubic unity absorbed by the motor to sustain the combustion of the fuel. If the road goes upward, the oxygen contained in the air drops, and vice versa if the road goes downward; however, the quantity of fuel transported by the injection system remains unaltered and if in excess of the oxygen present, suboxygenation must result.
  • the object of the invention is to obtain a uniform and complete cremation of all the fuel injected into the combustion chambers by the fuel injection system so that no part of it suffers suboxidation due to lack of oxygen.
  • Another object of the invention is to obtain a fully satisfactory utility of the thermic value of the fuel burned in the motors by means of a complete oxidation of all the carbon molecules in the fuel. This will be clear if the fact is considered that 1 kg. carbon of any hydrocarbonic compound produces 8080 thermic units if burned to carbon dioxide, but if oxidized to carbon monoxide merely, the production will be only 2437 thermic units.
  • FIGURE 1 is a schematic diagram of the twenty-one elements marked A-U, which, acting ointly, reveal the presence of smoke and noxious gases and start operating in order to eliminate the same. This drawing also shows the mutual interpositions of all the elements.
  • FIGURE 2 is a vertical section of the upper part of the exhaust pipe with its two arms branching out from the center of the pipe, showing in its central part the outlet of the combustion gases to the atmosphere. To the left is shown the end of arm 3 with the light bulb B and the optical system D in the tube 5, and to the right is shown the end of arm 11 with the photoelectric cell E mounted in the pipe 10.
  • This figure also shows the ventilation system required to maintain the temperature low enough so as not to damage the optical and electronic parts of the device.
  • A designates an accumulator as customarily found in automotive vehicles;
  • B is an electric light bulb connected to this accumulator by the circuit C;
  • D is an optical system exposed to radiation from the light bulb B;
  • E is a photoelectric cell which receives the projection from the optical systemvD;
  • F is the con nection point between the photoelectric cell and the accumulator A, and
  • G is the point of connection of this cell to the solenoid or relay 1;
  • H is the electronic circuit passing from the accumulator A by way of the photoelectric cell E and the solenoid or relay I back to the accumulator;
  • J is an iron disk acting as a relay switch normally sustained by magnetic force, but if released, it drops by gravity on the contacts K and L, thus closing the electric circuit M and getting the motor N to start furnishing dynamic power to create the impulses which act upon the fuel injection system by means of the power transmission train 0 and the toothed bar P forming part of the stem Q.
  • This stem is to be connected to the adjusting mechanism of the
  • FIGURE 2 shows the exhaust pipe 1 with the left and right side braches 3 and 11, respectively.
  • the electric light bulb B is in the left side end and the head radiated from this bulb is partially broken by the heat resisting glass Window 4 in order to protect the optical system D within the tube 5.
  • This system consists of the lenses 6 and 7 for the concentration of the light rays and the lenses 3 and 9 for the projection of the concentrated light upon the surface of the photoelectric cell E located inside the end of the tube 10 in the right side branch 11 of the exhaust pipe.
  • the focal points of the lenses are located on one and the same straight center line of the tubes 5 and 10 and the optical axis are therefore coincident.
  • Wire 14 connects point F of the photoelectric cell E to the negative pole of the accumulator A, and wire 15 from point G on the cell leads to the solenoid or relay I, thus completing the electronic circuit H (FIGURE 1). Wires 18 and 19 go to either pole of the accumulator to form the circuit C of the light bulb (FIGURE 1).
  • this figure shows the ventilation system as consisting of the funnel-shaped appendixes 16 and 17, of conventional form and dimensions, mounted on the outside of the ends of the branches 3 and 11, respectively, adjustable to the angle of the exhaust pipe.
  • These appendixes are intended to capture, compress and circulate the air through the ducts 23 and inside the arms of the exhaust pipe between these and the tubes 5 and 10, to be discharged through the openings 20 and 21 and the atmospheric outlet 13. This is possible because of the relative motion of the atmosphere due to the speed of the vehicle en route, and necessary in order to protect the optical and electronic systems against overheating.
  • the stem Q When the dynamic elements are paralyzed electrically, the stem Q is subjected to the pressure inherent in the spiral spring R under contra-pressure against the seat S, and therefore it tends to reciprocate the foregoing movement in the adjusting mechanism of the fuel injection system, by and by, as long as there is no smoke to interfere with the projection of the light from the bulb B (FIGURE 1).
  • control means minimizing the amount of non-oxidized combustion products exhausted from said engine comprising sensing means generating control signal in response to the presence of non-oxidized combustion products in said exhaust system, and motive means responsive to said control signal and interconnected with said fuel injection means modulating the capacity of said injection means to vary the amount of fuel injected into said engine to minimize the amount of non-oxidized combustion products exhausted from said engine.
  • sensing means comprises a source of radiant energy, a power source, a radiant energy responsive means in circuit with said power source, and optical means optically coupling radiant energy from said source through a portion of said exhaust system with said radiant energy responsive means, the degree of transmittance of said optical means with respect to said radiant energy being a direct function of the amount of non-oxidized combustion products present in said exhaust system.
  • said radiant energy responsive means comprises a variable impedance photoelectric cell and a solenoid winding in series with said power source.
  • control means includes a power source and said motive means comprises a motor, power control means interconnecting said motor and said power source in response to said control signal, energizing said motor for the duration of said control signal, displaceable output means on said motor means interconnected with said fuel injection means modulating the capacity thereof as a function of the displacement of said output means, and bias means interconnected with and opposing the displacement of said output means acting to reverse the displacement of said output means in the absence of said control signal.
  • said power source comprises an electric power source
  • said motor comprises a rotary electric motor
  • said power control means comprises a relay acting to connect said motor in circuit with said power source
  • said output means comprises a rotary-to-reciprocating mechanical movement including a reciprocating output shaft
  • said bias means comprises a compression spring acting on said output shaft in opposition to a displacement thereof by said motor.
  • said sensing means comprises a source of radiant energy, a power source, a radiant energy responsive means in circuit with said power source, and optical means optically coupling radiant energy from said source through a portion of said exhaust system with said radiant energy responsive means, the degree of transmittance of said optical means with respect to said radiant energy being a direct function of the amount of non-oxidized combustion products present in said exhaust system
  • said motive means comprises a motor, power control means interconnecting said motor and said power source in response to said control signal, energizing said motor for the duration of said control signal, displaceable output means on said motor means interconnected with said fuel injection means modulating the capacity thereof as a function of the displacement of said output means, and bias means interconnected with and opposing the displacement of said output means acting to reverse the displacement of said output means in the absence of said control signal.
  • said radiant energy responsive means comprises a variable impedance photoelectric cell and a solenoid winding in series with said power source; and wherein said power source comprises an electric power source, said motor comprises a rotary electric motor, said power control means comprises a relay acting to connect said motor in circuit with said power source, said output means comprises a rotary-to-reciprocating mechanical movement including a reciprocating output shaft, and said bias means comprises a compression spring acting on said output shaft in opposition to a displacement thereof by said motor.

Description

Jan. 9, 1968 I E NEUMANN ET AL 3,362,387
DEVICE FOR THE AUTOMATIC ELIMINATION OF SMOKE AND NOXIOUS GASES OF INTERNAL COMBUSTION ENGINES Filed Jan. 10, 1966 2 Sheets-Sheet 1 INVENTORS Ernestine Neumanna Herm an Neumonn ATTORN EYS Jan. 9, 1968 E. NEUMANN ET AL 3,362,387
DEVICE FOR THE AUTOMATIC ELIMINATION OF SMOKE AND NOXIOUS GASES OF INTERNAL COMBUSTION ENGINES Filed Jan. 10, 1966 T t u M N Q a 9 u. E
mvsurons Ernestine Neumonn8 Hermon Neumann ATTORNEYS United States Patent Ofiice 3,362,387 Patented Jan. 9, 1968 81,48 7 Claims. (Cl. 123140) This invention relates to a new way of automatically eliminating the formation of smoke and poisonous gases produced by some motors of internal combustion when used in vehicles traveling on mountain roads Where the altitude over sea level varies and, consequently, the burden of oxygen contained in the atmosphere changes per cubic unity absorbed by the motor to sustain the combustion of the fuel. If the road goes upward, the oxygen contained in the air drops, and vice versa if the road goes downward; however, the quantity of fuel transported by the injection system remains unaltered and if in excess of the oxygen present, suboxygenation must result.
The object of the invention is to obtain a uniform and complete cremation of all the fuel injected into the combustion chambers by the fuel injection system so that no part of it suffers suboxidation due to lack of oxygen.
Another object of the invention is to obtain a fully satisfactory utility of the thermic value of the fuel burned in the motors by means of a complete oxidation of all the carbon molecules in the fuel. This will be clear if the fact is considered that 1 kg. carbon of any hydrocarbonic compound produces 8080 thermic units if burned to carbon dioxide, but if oxidized to carbon monoxide merely, the production will be only 2437 thermic units.
This invention, consisting of the combined employment of several elements in specific coordination, will be better understood from a consideration of the following detailed description, in view of the drawings that form part of the specification.
Nevertheless, it is to be understood that the invention is not confined to the disclosure, being susceptible of such changes and modifications which shall define no material departure from the salient features of the invention as expressed in the appended claims.
In the drawings:
FIGURE 1 is a schematic diagram of the twenty-one elements marked A-U, which, acting ointly, reveal the presence of smoke and noxious gases and start operating in order to eliminate the same. This drawing also shows the mutual interpositions of all the elements.
FIGURE 2 is a vertical section of the upper part of the exhaust pipe with its two arms branching out from the center of the pipe, showing in its central part the outlet of the combustion gases to the atmosphere. To the left is shown the end of arm 3 with the light bulb B and the optical system D in the tube 5, and to the right is shown the end of arm 11 with the photoelectric cell E mounted in the pipe 10.
This figure also shows the ventilation system required to maintain the temperature low enough so as not to damage the optical and electronic parts of the device.
Referring particularly to the general arrangement shown in FIGURE 1, A designates an accumulator as customarily found in automotive vehicles; B is an electric light bulb connected to this accumulator by the circuit C; D is an optical system exposed to radiation from the light bulb B; E is a photoelectric cell which receives the projection from the optical systemvD; F is the con nection point between the photoelectric cell and the accumulator A, and G is the point of connection of this cell to the solenoid or relay 1; H is the electronic circuit passing from the accumulator A by way of the photoelectric cell E and the solenoid or relay I back to the accumulator; J is an iron disk acting as a relay switch normally sustained by magnetic force, but if released, it drops by gravity on the contacts K and L, thus closing the electric circuit M and getting the motor N to start furnishing dynamic power to create the impulses which act upon the fuel injection system by means of the power transmission train 0 and the toothed bar P forming part of the stem Q. This stem is to be connected to the adjusting mechanism of the fuel injection system. Regarding this nothing is shown because the diverse manufacturers of interior combustion motors make their fuel injection systems all different.
The compression power inherent in the spiral spring R located on the stem Q and seated against the collar S acts reciprocating, balancing the movements when the motor N is Without current.
FIGURE 2 shows the exhaust pipe 1 with the left and right side braches 3 and 11, respectively. The electric light bulb B is in the left side end and the head radiated from this bulb is partially broken by the heat resisting glass Window 4 in order to protect the optical system D within the tube 5. This system consists of the lenses 6 and 7 for the concentration of the light rays and the lenses 3 and 9 for the projection of the concentrated light upon the surface of the photoelectric cell E located inside the end of the tube 10 in the right side branch 11 of the exhaust pipe. The focal points of the lenses are located on one and the same straight center line of the tubes 5 and 10 and the optical axis are therefore coincident.
Wire 14 connects point F of the photoelectric cell E to the negative pole of the accumulator A, and wire 15 from point G on the cell leads to the solenoid or relay I, thus completing the electronic circuit H (FIGURE 1). Wires 18 and 19 go to either pole of the accumulator to form the circuit C of the light bulb (FIGURE 1).
Further, this figure shows the ventilation system as consisting of the funnel- shaped appendixes 16 and 17, of conventional form and dimensions, mounted on the outside of the ends of the branches 3 and 11, respectively, adjustable to the angle of the exhaust pipe. These appendixes are intended to capture, compress and circulate the air through the ducts 23 and inside the arms of the exhaust pipe between these and the tubes 5 and 10, to be discharged through the openings 20 and 21 and the atmospheric outlet 13. This is possible because of the relative motion of the atmosphere due to the speed of the vehicle en route, and necessary in order to protect the optical and electronic systems against overheating.
Functions The smoke, when developed in the motor, must pass through the exhaust pipe 1 to the cross 12 and between the opening 20 in the branch 3 and the opening 21 in branch 11, thus forming a curtain between these two openings, which are the path for the light rays projected by the lenses 8 and 9 in the tube 5 to the surface of the photoelectric cell E located in the extreme end of the tube 10 and, consequently, the illumination of this electronic body will be reduced or this body may be left in complete darkness for a moment (FIGURE 2).
All photoelectric cells, whether generative, emissive or conductive, are characterized by the property of losing some or all of these qualities if left in darkness, partially or totally.
In these cases, the electronic circuit H is immediately affected and the magnet of the relay or solenoid I loses its power and capacity to hold and sustain the iron dish I, which, due to gravity, then drops on the two contacts K and L, thus closing the electric circuit M and starting the electric motor N. This impulse of the dynamic transmission train on the rack P and the stem Q is sufficient to act upon the adjusting mechanism of the fuel injection system by reducing the quantity of fuel injected just sufficiently to eliminate that portion thereof which, due to deficit of oxygen in the air momentarily absorbed, cannot be fully oxidized.
The moment that the combustion motor does not receive fuel in excess of the quantity that can be perfectly oxidized in accordance with the quantity of oxygen absorbed with the air, the smoke and noxious gases disappear, and with them the obstacle to the full illumination of the photoelectric cell E by the rays of light from the bulb B. Instantly the photoelectric cell E recovers its particular electronic quality as generator, emissary or conductor and the electronic circuit H regains power to activate the magnet of the relay or solenoid I, attracting and picking up the disk I from the contacts K and L, thus breaking the current of the circuit M and paralyzing the motor N.
When the dynamic elements are paralyzed electrically, the stem Q is subjected to the pressure inherent in the spiral spring R under contra-pressure against the seat S, and therefore it tends to reciprocate the foregoing movement in the adjusting mechanism of the fuel injection system, by and by, as long as there is no smoke to interfere with the projection of the light from the bulb B (FIGURE 1).
What is claimed is:
1. In an internal combustion engine including variable capacity fuel injection means and a combustion product exhaust system, control means minimizing the amount of non-oxidized combustion products exhausted from said engine comprising sensing means generating control signal in response to the presence of non-oxidized combustion products in said exhaust system, and motive means responsive to said control signal and interconnected with said fuel injection means modulating the capacity of said injection means to vary the amount of fuel injected into said engine to minimize the amount of non-oxidized combustion products exhausted from said engine.
2. The invention defined in claim 1, wherein said sensing means comprises a source of radiant energy, a power source, a radiant energy responsive means in circuit with said power source, and optical means optically coupling radiant energy from said source through a portion of said exhaust system with said radiant energy responsive means, the degree of transmittance of said optical means with respect to said radiant energy being a direct function of the amount of non-oxidized combustion products present in said exhaust system.
3. The invention defined in claim 2, wherein said radiant energy responsive means comprises a variable impedance photoelectric cell and a solenoid winding in series with said power source.
4. The invention defined in claim 1, wherein said control means includes a power source and said motive means comprises a motor, power control means interconnecting said motor and said power source in response to said control signal, energizing said motor for the duration of said control signal, displaceable output means on said motor means interconnected with said fuel injection means modulating the capacity thereof as a function of the displacement of said output means, and bias means interconnected with and opposing the displacement of said output means acting to reverse the displacement of said output means in the absence of said control signal.
5. The invention defined in claim 4, wherein said power source comprises an electric power source, said motor comprises a rotary electric motor, said power control means comprises a relay acting to connect said motor in circuit with said power source, said output means comprises a rotary-to-reciprocating mechanical movement including a reciprocating output shaft, and said bias means comprises a compression spring acting on said output shaft in opposition to a displacement thereof by said motor.
6. The invention defined in claim 1, wherein said sensing means comprises a source of radiant energy, a power source, a radiant energy responsive means in circuit with said power source, and optical means optically coupling radiant energy from said source through a portion of said exhaust system with said radiant energy responsive means, the degree of transmittance of said optical means with respect to said radiant energy being a direct function of the amount of non-oxidized combustion products present in said exhaust system, and wherein said motive means comprises a motor, power control means interconnecting said motor and said power source in response to said control signal, energizing said motor for the duration of said control signal, displaceable output means on said motor means interconnected with said fuel injection means modulating the capacity thereof as a function of the displacement of said output means, and bias means interconnected with and opposing the displacement of said output means acting to reverse the displacement of said output means in the absence of said control signal.
7. The invention defined in claim 6, wherein said radiant energy responsive means comprises a variable impedance photoelectric cell and a solenoid winding in series with said power source; and wherein said power source comprises an electric power source, said motor comprises a rotary electric motor, said power control means comprises a relay acting to connect said motor in circuit with said power source, said output means comprises a rotary-to-reciprocating mechanical movement including a reciprocating output shaft, and said bias means comprises a compression spring acting on said output shaft in opposition to a displacement thereof by said motor.
References Cited UNITED STATES PATENTS 2,669,093 2/1954 Lee 123140 X RALPH D. BLAKESLEE, Primary Examiner.

Claims (1)

1. IN AN INTERNAL COMBUSTION ENGINE INCLUDING VARIABLE CAPACITY FUEL INJECTION MEANS AND A COMBUSTION PRODUCT EXHAUST SYSTEM, CONTROL MEANS MINIMIZING THE AMOUNT OF NON-OXIDIZED COMBUSTION PRODUCTS EXHAUSTED FROM SAID ENGINE COMPRISING SENSING MEANS GENERATING CONTROL SIGNAL IN RESPONSE TO THE PRESENCE OF NON-OXIDIZED COMBUSTION PRODUCTS IN SAID EXHAUST SYSTEM, AND MOTIVE MEANS RESPONSIVE TO SAID CONTROL SIGNAL AND INTERCONNECTED WITH SAID FUEL INJECTION MEANS MODULATING THE CAPACITY OF SAID INJECTION MEANS TO VARY THE AMOUNT OF FUEL INJECTED INTO SAID ENGINE TO MINIMIZE THE AMOUNT OF NON-OXIDIZED COMBUSTION PRODUCTS EXHAUSTED FROM SAID ENGINE.
US520826A 1965-03-15 1966-01-10 Device for the automatic elimination of smoke and noxious gases of internal combustion engines Expired - Lifetime US3362387A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MX8148565 1965-03-15

Publications (1)

Publication Number Publication Date
US3362387A true US3362387A (en) 1968-01-09

Family

ID=19743066

Family Applications (1)

Application Number Title Priority Date Filing Date
US520826A Expired - Lifetime US3362387A (en) 1965-03-15 1966-01-10 Device for the automatic elimination of smoke and noxious gases of internal combustion engines

Country Status (1)

Country Link
US (1) US3362387A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119811U (en) * 1974-03-16 1975-09-30
US4192272A (en) * 1977-06-07 1980-03-11 Robert Bosch Gmbh Control device for fuel-injected internal combustion engines
US4223652A (en) * 1979-05-07 1980-09-23 Budnicki Xavier B Fuel delivery systems
US4249509A (en) * 1978-03-09 1981-02-10 Vermont Castings, Inc. Wood burning apparatus having improved efficiency
FR2533316A1 (en) * 1982-09-22 1984-03-23 Inst Francais Du Petrole QUICK-RESPONSE METHOD AND DEVICE FOR DETECTING POOR COMBUSTION
US4471738A (en) * 1982-09-13 1984-09-18 Emission Control Systems, Inc. Method and apparatus for minimizing the fuel usage in an internal combustion engine
US4922714A (en) * 1987-11-23 1990-05-08 Robert Bosch Gmbh Device for measuring the particle emissions of an internal combustion engine
US5009064A (en) * 1987-11-23 1991-04-23 Robert Bosch Gmbh Apparatus for measuring the particulate matter in the flue gas or exhaust gas from a combustion process
EP1731743A2 (en) * 2005-06-10 2006-12-13 Frank Hille Method for controlling an injection system and injection system with particle sensor arrangement for internal combustion engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669093A (en) * 1947-01-10 1954-02-16 Niles Bement Pond Co Control apparatus for internal-combustion engines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669093A (en) * 1947-01-10 1954-02-16 Niles Bement Pond Co Control apparatus for internal-combustion engines

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119811U (en) * 1974-03-16 1975-09-30
US4192272A (en) * 1977-06-07 1980-03-11 Robert Bosch Gmbh Control device for fuel-injected internal combustion engines
US4249509A (en) * 1978-03-09 1981-02-10 Vermont Castings, Inc. Wood burning apparatus having improved efficiency
US4223652A (en) * 1979-05-07 1980-09-23 Budnicki Xavier B Fuel delivery systems
US4471738A (en) * 1982-09-13 1984-09-18 Emission Control Systems, Inc. Method and apparatus for minimizing the fuel usage in an internal combustion engine
JPS5977061A (en) * 1982-09-22 1984-05-02 アンスチチユ・フランセ・ドウ・ペトロル Combustion control due to high speed responsive control of exhaust gas generated from combistion chamber
EP0107535A2 (en) * 1982-09-22 1984-05-02 Institut Français du Pétrole Method and fast-answering devices for detecting faulty combustion
FR2533316A1 (en) * 1982-09-22 1984-03-23 Inst Francais Du Petrole QUICK-RESPONSE METHOD AND DEVICE FOR DETECTING POOR COMBUSTION
EP0107535A3 (en) * 1982-09-22 1986-01-15 Institut Francais Du Petrole Method and fast-answering devices for detecting faulty combustion
US4796590A (en) * 1982-09-22 1989-01-10 Institut Francais Du Petrole Rapid-response method and devices for detection of poor combustion
JPH0457859B2 (en) * 1982-09-22 1992-09-14 Ansuchi* Furanse Deyu Petorooru
US4922714A (en) * 1987-11-23 1990-05-08 Robert Bosch Gmbh Device for measuring the particle emissions of an internal combustion engine
US5009064A (en) * 1987-11-23 1991-04-23 Robert Bosch Gmbh Apparatus for measuring the particulate matter in the flue gas or exhaust gas from a combustion process
EP1731743A2 (en) * 2005-06-10 2006-12-13 Frank Hille Method for controlling an injection system and injection system with particle sensor arrangement for internal combustion engines
EP1731743A3 (en) * 2005-06-10 2007-02-14 Frank Hille Method for controlling an injection system and injection system with particle sensor arrangement for internal combustion engines

Similar Documents

Publication Publication Date Title
US3362387A (en) Device for the automatic elimination of smoke and noxious gases of internal combustion engines
US2827594A (en) Color discriminating headlight dimmer
SE8104382L (en) SEAT, SPECIAL MOTOR VEHICLE SEAT
US4555656A (en) Generator and rechargeable battery system for pedal powered vehicles
GB1397284A (en) Ignition system for an automotive engine having exhaust recirculation arrangement
US2941118A (en) Vane actuating circuitry for automatic headlighting system
GB1261195A (en) Lighting systems for road vehicles
US2060206A (en) Torpedo
US2766387A (en) Autoamtic tracking apparatus for cameras and the like
US1981985A (en) Automobile lighting system
US2876384A (en) Automobile light control system
US3149231A (en) Infraped target detection using atmospheric filter to remove solar radiation above 4microns wavelength
ES400245A1 (en) Control systems for vehicles
US1951495A (en) Light control system
US3559165A (en) Optical-audio warning system
US2572008A (en) Smoke detector and signal for diesel locomotives
US2060200A (en) Photoelectric detonator operated by reflection
JPS5633572A (en) Optical rader device
US3255733A (en) Handicapping starting arrangement for horse racing
GB1270667A (en) Lighting systems for road vehicles
FR2416134A1 (en) Remotely controlled vehicle rear view mirror - is adjusted by rod, with electric motor acting via light clutch and spring return
SE7507115L (en) CONTROL SYSTEM FOR CAR BULLETS
GB946123A (en) Improvements in and relating to a remote control device for orienting a movable object
US1308204A (en) Dirigible headlight
US1243875A (en) Apparatus for starting internal-combustion engines.