US3361257A - Phosphate flotation - Google Patents

Phosphate flotation Download PDF

Info

Publication number
US3361257A
US3361257A US403932A US40393264A US3361257A US 3361257 A US3361257 A US 3361257A US 403932 A US403932 A US 403932A US 40393264 A US40393264 A US 40393264A US 3361257 A US3361257 A US 3361257A
Authority
US
United States
Prior art keywords
flotation
phosphate
silica
feed
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US403932A
Inventor
Joseph F Haseman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armour Agricultural Chemical Co
Original Assignee
Armour Agricultural Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armour Agricultural Chemical Co filed Critical Armour Agricultural Chemical Co
Priority to US403932A priority Critical patent/US3361257A/en
Application granted granted Critical
Publication of US3361257A publication Critical patent/US3361257A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/006Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • B03D2203/06Phosphate ores

Definitions

  • the recovery of phosphate values from phosphate ores has long presented a problem because of the complicated procedure required for such recovery.
  • the process employed almost exclusively today is the so-called Crago process in which the deslimed and sized phosphate ore is subjected first to fatty acid and fuel oil flotation at controlled pH to produce a low-grade concentrate assaying 50 to 65 percent BPL. Sodium hydroxide is employed to provide the desired pH.
  • the low-grade froth concentrate is then passed from the flotation cells to acid scrubbers Where it is scrubbed with sulfuric acid and washed to remove the fatty acid and oil.
  • the washed concentrate is then floated with cationic reagents (amine) which separate most of the remaininig silica as a froth product which is allowed to go to Waste or to be recycled.
  • the unfloated concentrate product from the flotation cells generally assays 73 to 76 percent BPL which is acceptable for phosphoric acid or fertilizer manufacturing.
  • An object of the present invention is to accomplish the above result.
  • a further object is to provide a process requiring only one flotation operation to produce a finished concentrate, with a reduction in reagent requirements and costs and an increase in phosphate recovery.
  • a further object is to provide a process which tolerates relatively large amounts of -150 mesh slimes without seriously affecting reagent consumption or metallurgical results, so that the desliming and sizing of the feed is less critical.
  • a further object is to provide a process permitting the plant to operate efiiciently at lower conditioning time and percent solids levels.
  • Yet another object is to provide a process which greatly extends the pH range in which good conditioning and flotation are possible.
  • I add to the anionic flotation feed, and preferably to the conditioning step of the separation, certain water-soluble chemical reagents as flotation modifiers along with the anionic reagent (fatty acid) and fuel oil.
  • flotation modifiers include ammonia hydroxide and the amonium and sodium orthophosphates, pyrophosphates, metaphosphates, orthosilicates, metasilicates, fluorides, and carbonates.
  • Other modifiers that have improved the separation are organic dispersing agents, such as the sodium and calcium lignin sulfonates.
  • modifiers for best results, I prefer to add the modifiers to the conditioning step of the separation. They may be added at the same stage of conditioning as the anionic reagent (fatty acid) and oils, but I prefer to add them ahead of thesereagents. In ordinary plant operation, several conditioning tanks, connected in series, are used to provide proper retention time. Thus, for example, it is preferable to add the modifier to the first conditioning tank and the anionic reagent and oils to the second tank. This permits the modifier to act on the mineral surfaces and properly prepare them for selective attachment of the flotation reagent when it is added at the later stage.
  • the slime is in a flocculated condition and tends to coat the surfaces of both silica and phosphate grains. This coating retards or prevents attachment of the anionic flotation oils. I have found that slime tolerance is greatly increased by use of the modifiers.
  • the modifier may function as a precipitat ng or chelating agent for metallic or polyvalent cations.
  • attachment of the collector oil to the mineral surface is controlled by the presence of metallic or polyvalent cations, either in adsorbed form or as part of the mineral crystal lattice. These cations react with the collector to form an insoluble soap or oily film to which air bubbles: are attached to bring about froth flotation.
  • the phosphate ore suspension contains silica grains which have been activated by adsorption of polyvalent cations (mostly calcium) from the liquid phase.
  • the suspension also contains phosphate grains, all of which have surface calcium ions as part of the crystal lattice. Normally, therefore, the activated silica grains would be floated along with the phosphate, thereby lowering the grade of the concentrate. Since the grade of the concentrate according to my process is not lowered, it is believed that the modifiers remove the adsorbed activating ions from the silica surfaces, thereby depressing silica flotation and increasing the grade of concentrate.
  • the anionic flotation feed in the conditioners (60 to 70 percent solids) is combined with the usual amounts of fatty acid and fuel oil as in regular anionic flotation procedure.
  • Sodium hydroxide may be added to give the usual and desired pH.
  • 68 to 75 percent solids is preferred, it is possible to obtain satisfactory conditioning with the proposed modifiers at a solids level as low as 60 percent.
  • the flotation modifier in small amounts at rates of about 0.1 to about 2.5 pounds per ton of feed.
  • the feed is then passed through the rougher flotation cells, with the rougher tails going to waste and the froth concentrate passing to the cleaner flotation cells.
  • the cleaner tails may be passed to a low-grade concentrate bin at a grade of 60 to 70 BPL or they may be subjected to further processing.
  • the cleaner concentrate provides a 60 to 90 percent BPL recovery and 73 to 76 percent BPL grade.
  • the foregoing process greatly improves the selectivity of the froth flotation separation of phosphate from silicious impurities with anionic-type collectors, eliminating two separation stages heretofore required in the recovery
  • the feed used in all instances was the same, essentially -35 +150 mesh in particle size, containing about 2 percent of -325 mesh slirnes, and assaying 29.0 percent BPL.
  • the flotation procedure used for all tests was identical except for the addition of the modifier, caustic soda being used to adjust pH when necessary.
  • Norlig A is crude calcium lignosulfonate
  • Marasperse N is refined sodium lignosulfonate
  • Marasperse C is refined calcium lignosulfonate

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

United States Patent 3,361,257 PHOSPHATE FLOTATION Joseph F. Haseman, Lakeland, Fla, assignor, by mesne assignments, to Armour Agricultural Chemical Company, a corporation of Delaware No Drawing. Filed Oct. 14, 1964, Ser. No. 403,932 3 Claims. (Cl. 209-166) This invention relates to phosphate flotation, and more particularly to the use of flotation modifiers in the flotation of phosphate ores with anionic reagents.
The recovery of phosphate values from phosphate ores has long presented a problem because of the complicated procedure required for such recovery. The process employed almost exclusively today is the so-called Crago process in which the deslimed and sized phosphate ore is subjected first to fatty acid and fuel oil flotation at controlled pH to produce a low-grade concentrate assaying 50 to 65 percent BPL. Sodium hydroxide is employed to provide the desired pH. The low-grade froth concentrate is then passed from the flotation cells to acid scrubbers Where it is scrubbed with sulfuric acid and washed to remove the fatty acid and oil. The washed concentrate is then floated with cationic reagents (amine) which separate most of the remaininig silica as a froth product which is allowed to go to Waste or to be recycled. The unfloated concentrate product from the flotation cells generally assays 73 to 76 percent BPL which is acceptable for phosphoric acid or fertilizer manufacturing.
The foregoing procedure is complicated since three separate processes are used to'obtain the final concentrate. Flotation reagent requirements are high. In addition, large quantities of water are required since it is necessary to thoroughly wash the feed before both the anionic (fatty acid) and cationic (amine) flotation steps. Further, procedures for the conditioning of feed with fatty acid reagents are critical, requiring close feed and in reagent requirements and costs, a substantial advance would be made in the field of phosphate flotation separation.
An object of the present invention is to accomplish the above result. A further object is to provide a process requiring only one flotation operation to produce a finished concentrate, with a reduction in reagent requirements and costs and an increase in phosphate recovery. A further object is to provide a process which tolerates relatively large amounts of -150 mesh slimes without seriously affecting reagent consumption or metallurgical results, so that the desliming and sizing of the feed is less critical. A further object is to provide a process permitting the plant to operate efiiciently at lower conditioning time and percent solids levels. Yet another object is to provide a process which greatly extends the pH range in which good conditioning and flotation are possible. Other specific objects and advantages will appear as the specification proceeds.
In one embodiment of my invention, I add to the anionic flotation feed, and preferably to the conditioning step of the separation, certain water-soluble chemical reagents as flotation modifiers along with the anionic reagent (fatty acid) and fuel oil. Such flotation modifiers include ammonia hydroxide and the amonium and sodium orthophosphates, pyrophosphates, metaphosphates, orthosilicates, metasilicates, fluorides, and carbonates. Other modifiers that have improved the separation are organic dispersing agents, such as the sodium and calcium lignin sulfonates.
For best results, I prefer to add the modifiers to the conditioning step of the separation. They may be added at the same stage of conditioning as the anionic reagent (fatty acid) and oils, but I prefer to add them ahead of thesereagents. In ordinary plant operation, several conditioning tanks, connected in series, are used to provide proper retention time. Thus, for example, it is preferable to add the modifier to the first conditioning tank and the anionic reagent and oils to the second tank. This permits the modifier to act on the mineral surfaces and properly prepare them for selective attachment of the flotation reagent when it is added at the later stage.
While many of the above-mentioned modifiers have been used in other separation operations for different metals and in different treating steps, I find that their use in the treatment of phosphate ores and in the fatty acid flotation step has the surprising result of reducing flotation reagent requirements while increasing the grade and recovery of phosphate in the concentrate in a single flotation operation Why the modifier functions to accomplish the above results, I am unable to state with certainty. It is possible that the modifier operates as a slime dispersing agent.
Without the addition of the modifier, the slime is in a flocculated condition and tends to coat the surfaces of both silica and phosphate grains. This coating retards or prevents attachment of the anionic flotation oils. I have found that slime tolerance is greatly increased by use of the modifiers.
It is also possible that the modifier may function as a precipitat ng or chelating agent for metallic or polyvalent cations. In anionic flotation, it is believed that attachment of the collector oil to the mineral surface is controlled by the presence of metallic or polyvalent cations, either in adsorbed form or as part of the mineral crystal lattice. These cations react with the collector to form an insoluble soap or oily film to which air bubbles: are attached to bring about froth flotation.
The phosphate ore suspension contains silica grains which have been activated by adsorption of polyvalent cations (mostly calcium) from the liquid phase. The suspension also contains phosphate grains, all of which have surface calcium ions as part of the crystal lattice. Normally, therefore, the activated silica grains would be floated along with the phosphate, thereby lowering the grade of the concentrate. Since the grade of the concentrate according to my process is not lowered, it is believed that the modifiers remove the adsorbed activating ions from the silica surfaces, thereby depressing silica flotation and increasing the grade of concentrate.
Among the flotation modifiers employed as above described, best results have been obtained through the use of sodium fluoride and the lignin sulfonates. Sodium fluoride and the lignin sulfonates have given outstanding metallurgical results. In the use of these modifiers as well as others heretofore listed, it is found that the addition of these to the conditioning step before the addition of the fatty acid-fuel oil mixture gives the best results in enabling the modifier to prepare the mineral surfaces for selective attachment of the flotation reagent. Thus, in an operation in which two conditioning tanks are employed in series, the modifier should be added to the first tank and the fatty acid mixture to the second tank.
As a specific illustration of the process, the anionic flotation feed in the conditioners (60 to 70 percent solids) is combined with the usual amounts of fatty acid and fuel oil as in regular anionic flotation procedure. Sodium hydroxide may be added to give the usual and desired pH. Although 68 to 75 percent solids is preferred, it is possible to obtain satisfactory conditioning with the proposed modifiers at a solids level as low as 60 percent. To the conditioners, I also add, preferably ahead of the point at which fatty acid and fuel oil are added, the flotation modifier in small amounts at rates of about 0.1 to about 2.5 pounds per ton of feed. The feed is then passed through the rougher flotation cells, with the rougher tails going to waste and the froth concentrate passing to the cleaner flotation cells. The cleaner tails may be passed to a low-grade concentrate bin at a grade of 60 to 70 BPL or they may be subjected to further processing. The cleaner concentrate provides a 60 to 90 percent BPL recovery and 73 to 76 percent BPL grade.
The foregoing process greatly improves the selectivity of the froth flotation separation of phosphate from silicious impurities with anionic-type collectors, eliminating two separation stages heretofore required in the recovery In laboratory flotation tests, the feed used in all instances was the same, essentially -35 +150 mesh in particle size, containing about 2 percent of -325 mesh slirnes, and assaying 29.0 percent BPL. The flotation procedure used for all tests was identical except for the addition of the modifier, caustic soda being used to adjust pH when necessary.
In the following tests, with the results set out in Tables I and II, fuel oil and fatty acid (2 parts fuel oil and 1 part synthetic tall oil) were used as a regular procedure,
air being added as usual. in the flotation step. In the tests,
certain modifiers are indicated by trade names, and these are identified as follows:
Norlig A is crude calcium lignosulfonate Marasperse N is refined sodium lignosulfonate Marasperse C is refined calcium lignosulfonate The process steps and results are set out in the following tables:
TABLE 1.EFFEOT OF MODIFIERS ON ROUGHER STAGE FLOTATION Modifier Product Assay,
Tall 011 Rate, percent BPL BPL Recovery Lbs/Ton Feed Cond., in 00110., Example N0. P Percent Rate, Name Lbs/Ton Cone. Tails eed 1 (standard)... 1.5 9.2 74.1 15.5 56.1 2 (standard). 2.0 9.6 68.3 3.6 91.0 3 2.0 1.25 8.0 70.4 2.1 95.4 1.5 1.25 9.1 72.2 2.7 94.2 1.5 1.25 7.6 74.5 5.1 88.6 1.5 1.50 9.4 73.4 4.1 90.8 2.0 0.65 8.0 73.8 3.5 92.6 NaF 2.0 1.00 7.8 73.6 1.8 96.1 N84P207-10H2O 0.2 1.50 9.0 72 .0 3 .9 91.3 N11 0 .5 1.00 0 .0 73 .0 6 .3 92 .5 Norlig A 1.0 0.75 8.4 75.4 5.1 88 .1 Marasperse N"--- 0.5 0.75 8.9 73.3 1 .7 96 .2 lfiarasperse (G3- 0.75 9 .4 73.2 2.9 93 .8
arasperse 03 0.75 8.9 73.0 2.0 06.6
TABLE 2.USE OF THE INVENTION TO PRODUCE HIGH AND LOW GRADE CONCENTRATES BY ROUGHER-CLEANER FLOTATION PROCEDURE Modifier High Grade Cone. Low Grade Cone.
Example No. Tall 011 Rate, Assay, Percent Rate, Lbs/Ton Feed BPL Assay, BPL Name Lbs/Ton Dist., Percent Dist.,
Feed BPL Acid Percent BPL Percent Insol.
While in the foregoing specification I have set forth specific procedures in considerable detail for the purpose of illustrating embodiments of the invention, it will be understood that such detail or details may be varied Widely by those skilled in the art Without departing from the spirit of my invention.
I claim:
1. In a process for the recovery of phosphate values from phosphate ores containing silica activated by adsorbed polyvalent cations, in which process air flotation in an aqueous system is effected with fatty acid and fuel oil, the steps of adding to the phosphate ore and silica feed With said fatty acid and fuel oil about 0.1-2.5 pounds of sodium fluoride per ton of feed at a pH of about 7.6- 9.6 to remove said adsorbed polyvalent cations on said silica, and introducing air for floating said phosphate from said silica.
2. The process of claim 1 in which said sodium fluoride is added to said fuel before said fatty acid and fuel oil are added.
3. The process of claim 1 in which said feed material is of about '--325 +150 mesh.
References Cited UNITED STATES PATENTS 8/1934 Crago -2 209--166 X l/l935 Hasselstrom 209-166 X 7/1946 Clemmer 209l66 9/1946 Clernmer 2091 66 7/1947 Clernmer 209-166 3/1958 La Baron 209166 7/1963 Baarson 209-466 2/1967 Greene 209-166 X FOREIGN PATENTS 6/1950 France.
12/ 1939 Great Britain. 6/ 1939 Switzerland.
FRANK W. LUTTER, Primary Examiner. HARRY B. THORNTON, Examiner.
20 R. HALPER, Assistant Examiner.

Claims (1)

1. IN A PROCESS FOR THE RECOVERY OF PHOSPHATE VALUES FROM PHOSPHATE ORES CONTAINING SILICA ACTIVATED BY ADSORBED POLYVALENT CATIONS, IN WHICH PROCESS AIR FLOTATION IN AN AQUEOUS SYSTEM IS EFFECTED WITH FATTY ACID AND FUEL OIL, THE STEPS OF ADDING TO THE PHOSPHATE ORE AND SILICA FEED WITH SAID FATTY ACID AND FUEL OIL ABOUT 0.6-2.5 POUNDS OF SODIUM FLUORIDE PER TON OF FEED AT A PH OF ABOUT 7.69.6 TO REMOVE SAID ADSORBED POLYVALENT CATIONS ON SAID SILICA, AND INTRODUCING AIR FOR FLOATING SAID PHOSPHATE FROM SAID SILICA.
US403932A 1964-10-14 1964-10-14 Phosphate flotation Expired - Lifetime US3361257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US403932A US3361257A (en) 1964-10-14 1964-10-14 Phosphate flotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US403932A US3361257A (en) 1964-10-14 1964-10-14 Phosphate flotation

Publications (1)

Publication Number Publication Date
US3361257A true US3361257A (en) 1968-01-02

Family

ID=23597474

Family Applications (1)

Application Number Title Priority Date Filing Date
US403932A Expired - Lifetime US3361257A (en) 1964-10-14 1964-10-14 Phosphate flotation

Country Status (1)

Country Link
US (1) US3361257A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482688A (en) * 1966-07-08 1969-12-09 Cominco Ltd Phosphate flotation process
US3909399A (en) * 1972-05-08 1975-09-30 Vojislav Petrovich Froth flotation method for recovery of minerals
US4144969A (en) * 1977-04-18 1979-03-20 International Minerals & Chemical Corp. Beneficiation of phosphate ore
US4214710A (en) * 1978-10-20 1980-07-29 United States Borax & Chemical Corporation Froth flotation of zinc sulfide
US4261846A (en) * 1979-07-23 1981-04-14 United States Borax & Chemical Corporation Composition for froth flotation of zinc sulfide
US4269700A (en) * 1978-03-21 1981-05-26 Occidental Research Corporation Flotation of inorganic materials from glass using hydrocarbon sulfonates
US4330398A (en) * 1979-10-12 1982-05-18 Westvaco Corporation Flotation of phosphate ores with anionic agents

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1968876A (en) * 1931-10-14 1934-08-07 Phosphate Recovery Corp Composition of matter suitable for use in flotation
US1986817A (en) * 1932-12-21 1935-01-08 Hasselstrom Torsten Flotation reagent
CH203184A (en) * 1937-10-12 1939-02-28 Visura Treuhand Ges Process for the concentration of usable minerals through foam swimming treatment.
GB515601A (en) * 1937-09-10 1939-12-08 F L Smidth & Co Aktieselskab Improvements in or relating to the separation of minerals
US2403481A (en) * 1945-02-09 1946-07-09 Nasa Method of concentrating iron ore
US2407651A (en) * 1944-11-01 1946-09-17 Nasa Concentrating fluorspar by froth flotation
US2424552A (en) * 1945-05-01 1947-07-29 Clemmer Julius Bruce Froth flotation of nonmetallic minerals
FR970104A (en) * 1948-07-30 1950-12-29 Comptoir Des Phosphates De L A Improvement in the flotation of phosphate ores
US2826301A (en) * 1955-08-01 1958-03-11 Interantional Minerals & Chemi Oxidizing agents including sodium peroxide in phosphate flotation
US3098817A (en) * 1960-10-28 1963-07-23 Armour & Co Phosphate ore flotation process
US3302785A (en) * 1963-10-14 1967-02-07 Minerals & Chem Philipp Corp Phosphate matrix beneficiation process

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1968876A (en) * 1931-10-14 1934-08-07 Phosphate Recovery Corp Composition of matter suitable for use in flotation
US1986817A (en) * 1932-12-21 1935-01-08 Hasselstrom Torsten Flotation reagent
GB515601A (en) * 1937-09-10 1939-12-08 F L Smidth & Co Aktieselskab Improvements in or relating to the separation of minerals
CH203184A (en) * 1937-10-12 1939-02-28 Visura Treuhand Ges Process for the concentration of usable minerals through foam swimming treatment.
US2407651A (en) * 1944-11-01 1946-09-17 Nasa Concentrating fluorspar by froth flotation
US2403481A (en) * 1945-02-09 1946-07-09 Nasa Method of concentrating iron ore
US2424552A (en) * 1945-05-01 1947-07-29 Clemmer Julius Bruce Froth flotation of nonmetallic minerals
FR970104A (en) * 1948-07-30 1950-12-29 Comptoir Des Phosphates De L A Improvement in the flotation of phosphate ores
US2826301A (en) * 1955-08-01 1958-03-11 Interantional Minerals & Chemi Oxidizing agents including sodium peroxide in phosphate flotation
US3098817A (en) * 1960-10-28 1963-07-23 Armour & Co Phosphate ore flotation process
US3302785A (en) * 1963-10-14 1967-02-07 Minerals & Chem Philipp Corp Phosphate matrix beneficiation process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482688A (en) * 1966-07-08 1969-12-09 Cominco Ltd Phosphate flotation process
US3909399A (en) * 1972-05-08 1975-09-30 Vojislav Petrovich Froth flotation method for recovery of minerals
US4144969A (en) * 1977-04-18 1979-03-20 International Minerals & Chemical Corp. Beneficiation of phosphate ore
US4269700A (en) * 1978-03-21 1981-05-26 Occidental Research Corporation Flotation of inorganic materials from glass using hydrocarbon sulfonates
US4214710A (en) * 1978-10-20 1980-07-29 United States Borax & Chemical Corporation Froth flotation of zinc sulfide
US4261846A (en) * 1979-07-23 1981-04-14 United States Borax & Chemical Corporation Composition for froth flotation of zinc sulfide
US4330398A (en) * 1979-10-12 1982-05-18 Westvaco Corporation Flotation of phosphate ores with anionic agents

Similar Documents

Publication Publication Date Title
US4372843A (en) Method of beneficiating phosphate ores containing dolomite
US4287053A (en) Beneficiation of high carbonate phosphate ores
US3259242A (en) Beneficiation of apatite-calcite ores
US6149013A (en) Enhanced flotation reagents for beneficiation of phosphate ores
US4486301A (en) Method of beneficiating high carbonate phosphate ore
US3314537A (en) Treatment of phosphate rock slimes
US2407651A (en) Concentrating fluorspar by froth flotation
WO1987000088A1 (en) Process for the selective separation of a copper molybdenum ore
US4324653A (en) Process for the treatment of phosphate ores with silico-carbonate gangue
US4725351A (en) Collecting agents for use in the froth flotation of silica-containing ores
US3361257A (en) Phosphate flotation
US3405802A (en) Flotation of apatite
US4192737A (en) Froth flotation of insoluble slimes from sylvinite ores
US3462016A (en) Phosphate flotation process
US4600505A (en) Single float step phosphate ore beneficiation
US3164549A (en) Flotation separation of phosphate ores
US2364777A (en) Concentration of oxidized iron ores
US4227996A (en) Flotation process for improving recovery of phosphates from ores
US3462017A (en) Phosphate flotation process
US4377472A (en) Phosphate flotation
US2753997A (en) Concentration of phosphate minerals
Prasad et al. Reverse flotation of sedimentary calcareous/dolomitic rock phosphate ore—an overview
US3375924A (en) Differential froth flotation of molybdenite and copper sulfides utilizing "nokes" reagent
US2238439A (en) Froth flotation process
US6685027B2 (en) Method of concentrating phosphates from their ores