US3342749A - Corrosion inhibited phosphate solutions - Google Patents
Corrosion inhibited phosphate solutions Download PDFInfo
- Publication number
- US3342749A US3342749A US372102A US37210264A US3342749A US 3342749 A US3342749 A US 3342749A US 372102 A US372102 A US 372102A US 37210264 A US37210264 A US 37210264A US 3342749 A US3342749 A US 3342749A
- Authority
- US
- United States
- Prior art keywords
- thiosulfate
- corrosion
- mercaptobenzothiazole
- copper
- weight percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 title claims description 41
- 230000007797 corrosion Effects 0.000 title claims description 40
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title description 10
- 229910019142 PO4 Inorganic materials 0.000 title description 8
- 239000010452 phosphate Substances 0.000 title description 8
- 239000000203 mixture Substances 0.000 claims description 56
- 229910052802 copper Inorganic materials 0.000 claims description 31
- 239000010949 copper Substances 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 30
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 39
- 239000000243 solution Substances 0.000 description 36
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 26
- -1 copper metals Chemical class 0.000 description 23
- 239000004254 Ammonium phosphate Substances 0.000 description 22
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 22
- 235000019289 ammonium phosphates Nutrition 0.000 description 22
- 239000003112 inhibitor Substances 0.000 description 15
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 15
- 229940054266 2-mercaptobenzothiazole Drugs 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000012141 concentrate Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 10
- 235000019345 sodium thiosulphate Nutrition 0.000 description 10
- 239000005696 Diammonium phosphate Substances 0.000 description 9
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 9
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 9
- 235000019838 diammonium phosphate Nutrition 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 7
- 229910000881 Cu alloy Inorganic materials 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 239000001768 carboxy methyl cellulose Substances 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 244000025254 Cannabis sativa Species 0.000 description 3
- 229920002907 Guar gum Polymers 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000665 guar gum Substances 0.000 description 3
- 235000010417 guar gum Nutrition 0.000 description 3
- 229960002154 guar gum Drugs 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229960000892 attapulgite Drugs 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052625 palygorskite Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 229910001619 alkaline earth metal iodide Inorganic materials 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- DXGKKTKNDBFWLL-UHFFFAOYSA-N azane;2-[bis(carboxymethyl)amino]acetic acid Chemical class N.N.N.OC(=O)CN(CC(O)=O)CC(O)=O DXGKKTKNDBFWLL-UHFFFAOYSA-N 0.000 description 1
- UICQRVKPMFZOAJ-UHFFFAOYSA-L azanium dipotassium phosphate Chemical compound [NH4+].[K+].[K+].[O-]P([O-])([O-])=O UICQRVKPMFZOAJ-UHFFFAOYSA-L 0.000 description 1
- JBNQVUDIGQTJML-UHFFFAOYSA-L azanium;disodium;phosphate Chemical compound [NH4+].[Na+].[Na+].[O-]P([O-])([O-])=O JBNQVUDIGQTJML-UHFFFAOYSA-L 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 239000006012 monoammonium phosphate Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical class [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 description 1
- ANHSGCWTORACPM-UHFFFAOYSA-N triazanium phosphoric acid phosphate Chemical compound [NH4+].[NH4+].[NH4+].OP(O)(O)=O.[O-]P([O-])([O-])=O ANHSGCWTORACPM-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D1/00—Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
- A62D1/0028—Liquid extinguishing substances
- A62D1/0035—Aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/28—Ammonium phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/38—Condensed phosphates
- C01B25/40—Polyphosphates
- C01B25/405—Polyphosphates of ammonium
Definitions
- This invention relates to improved aqueous solutions of phosphate salts, which solutions are characterized by having a significantly reduced tendency to corrode copper metal and copper containing alloys. More specifically, the present invention relates to corrosion-inhibited ammonium phosphate solutions suitable for prolonged use in handling and storage equipment made of copper and/ or copper alloys and to the compositions useful for manufacturing them.
- Aqueous ammonium phosphate solutions have many uses: One of the most valuable recent developments in the field of fire fighting, and more particularly, forest, brush, and grass fire fighting, was that relating to the use of aqueous solutions of ammonium phosphate salts. Since the present invention is particularly valuable when practiced in connection with forest and brush fire fighting, the present discussion will be directed toward this particular end use. However, it should be kept in mind that the invention is generally useful for inhibiting corrosion of copper by ammonium phosphate solutions.
- the solutions are dropped by airplane such as air-tankers onto brush, trees and dry grass in the path of a fire in order to slow or stop the progress of the fire.
- airplane such as air-tankers onto brush, trees and dry grass in the path of a fire in order to slow or stop the progress of the fire.
- ammonium phosphate solutions for forest fire control has been slowed because of the concern by those in the field over the natural corrosivity of such aqueous ammonium phosphate solutions toward some of the vital parts of airtankers and storage equipment.
- Aqueous solutions containing several weight percent of dissolved ammonium phosphate are considered to be corrosive toward copper metal or copper alloys such as brass and bronze and the like, and are corrosive to an extent suificient to cause great concern when the aqueous solutions are to come into physical contact with vital aircraft parts, since failure of the aircraft parts due even to slow corrosion (i.e., more than about 10 mils per year) occurring over a prolonged period of time could result in the loss of the aircraft and crew.
- inorganic water-soluble thiosulfate is intended to include all of those inorganic thiosulfate materials or compounds that are soluble in distilled water at a temperature of 25 C. to the extent of at least about 0.005 weight percent. It includes, for example, the alkali metal and alkaline earth metal iodides such as sodium, potassium, lithium, rubidium, cesium, calcium, magnesium, barium, barylliurn, and strontium, thiosulfates as well as ammonium thiosulfate. Of these, generally sodium, potassium and/or ammonium thiosulfates are preferred.
- the protection from corrosion that can be afforded copper equipment by practicing the present invention apparently results from the thiosulfate (anion) portion of the inorganic thiosulfate compound, the particular source from which the thiosulfate anions are derived in manufacturing the aqueous ammonium phosphate solutions is not at all critical, provided a sufficient amount of thiosulfate anions are provided in the phosphate solutions to effectively decrease the normal corrosivity of the phosphate solutions toward copper and copper-containing alloys.
- this term encompasses alkali metal (such as Na, K, Rb, Cs, Li), alkaline earth metal (such as Mg, Ca, Be, Sr), soluble amine salts (such as methylamine, ethylamine and t-butylamine), and many other salts.
- Z-mercaptobenzothiazole is ordinarily considered to be insoluble in most aqueous systems having pHs below about 10, apparently enough of the Z-mercaptobenzothiazoles is soluble in the preferred aqueous ammonium orthophosphate solutions of the present invention to perform well as a copper corrosion inhibitor when used in combination with one or more of the abovedescribed soluble inorganic thiosulfate compounds.
- the inhibitor combinations of the present invention perform well even in very dilute ammonium phosphate solutions, since corrosion is often induced or caused by such solutions by a concentration effect resulting from splashing upon copper surfaces and subsequent evaporation of the water from the aqueous solution.
- the ammonium phosphate solutions in which the inhibitor combinations of the present invention perform particularly effectively are those that contain at least about 0.5 weight percent, and up to the level at about which the solutions are saturated therewith, or even more (such as in the form of an aqueous slurry) of dissolved ammonium phosphate salts, including monoammonium dibydrogen orthophosphate and/ or diammonium monohydrogen orthophosphate salts, and mixtures thereof, and also including the diammonium and monoammonium mixed orthophosphate salts that also contain an alkali metal cation, such as monoammonium disodium orthophosphate, monoammonium dipotassium orthophosphate and the like, no matter from What source these materials were derived, or in what form the mate
- the inhibited aqueous phosphate solutions of this invention have a pH above about 7, and preferably between about 7.2 and about 11, but can be even higher without detrimentally effecting the desired corrosion protection afforded by the present invention.
- the preferred pH is from about 7.2 to about 10.
- pHs within these preferred ranges are generally more desirable.
- compositions having pHs somewhat higher or lower than these preferred ranges can also be utilized to advantage in the practice of the present invention.
- aqueous ammonium phosphate compositions containing at least about 0.0075 and preferably from about 0.01 to about 5 weight percent of one or more of the thiosulfate compounds in the dissolved state should be utilized.
- aqueous ammonium phosphate compositions containing at least about 0.0075 and preferably from about 0.01 to about 5 weight percent of one or more of the thiosulfate compounds in the dissolved state should be utilized.
- Generally optimum corrosion-inhibiting effects can be attained by utilizing at least about 0.02 weight percent of the thiosulfate compound in combination with at least about 001 Weight percent of one of the aforementioned Z-mercaptobenzothiazole materials.
- the weight ratio of ammonium orthophosphate salt(s) to inorganic thiosulfate salt(s) in the compoistions of the present invention ordinarily falls within the range of from about 350021 to about 01:1, and is preferably within the range of from about 250021 to about 1:1.
- the weight ratio of ammonium orthophosphate salt(s) to 2- mercaptobenzothiazole in the compositions of this invention ordinarily falls Within the range of from about 250021 to about 2.5:1.
- the weight ratio of total ammonium orthophosphate salt(s) to thiosulfate ions in the composition and the weight ratio of thiosulfate ions to 2-mercaptobenzothiazole can readily be determined.
- the weight ratio of ammonium orthophosphate to thiosulfate ions is between about 3500:1 and about 1.5: 1, while the weight ratio of thiosulfate ions to Z-mercaptobenzothiazole in the aqueous compositions of this invention is preferably between about 300:1 and about 0.0035: 1.
- a surprising feature of the present invention is that the corrosion inhibitor combination (soluble thiosulfate plus Z-mercaptobenzothiazole) acts synergistically in the protection of the copper from corrosion by the ammonium orthophosphate solutions.
- soluble thiosulfate compounds when soluble thiosulfate compounds are utilized alone (as the only inhibitor for copper) in a 10 Weight percent aqueous solution of diammonium orthophosphate, for example, the best protection that can be afforded the copper even when very large amounts of thiosulfate is used, is down to about 15 mils per year (as compared with a no inhibitor control corrosion rate of about 1000 mils per year).
- the corrosion-inhibited ammonium phosphate solutions of the present invention can also contain materials other than the phosphate salts and the thiosulfate and 2-mercaptobenzothiazole compounds without detracting substantially from the benefits that can be obtained by practicing this invention.
- the solutions can contain minor amounts of water-soluble surfactants; inorganic and organic complexing agents such as the alkali metal tripolyphosphate, pyrophosphates and trimetaphosphates, as well as the higher polyphosphates such as the hexametaphosphates, and also can contain ethylenediamine tetraacetic acid and various alkali metal and ammonium salts thereof and the alkali metal and ammonium nitrilotriacetates; any of the various sticking agents such as carboxymethylcellulose or thickening agents such as algin, citrus pectates, clays such as bentonites and attapulgites, and the like, guar gum and carboxyethylcellulose; other corrosion-inhibiting ingredients such as the water-soluble fiuosilicates for protecting aluminum in accordance with the disclosure in US. Patent Re. 25,394; and inorganic and organic pigments and dyes; as well as many other materials.
- inorganic and organic complexing agents such as the al
- the corrosion-inhibited phosphate compositions of this invention can be manufactured via any of a number of methods without any noticeably detrimental effects upon the ultimate performance of the compositions.
- the thiosulfate and Z-mercaptobenzothiazole compounds can simply be dissolved by intermixing them into or with the otherwise completely formulated aqueous compositions, or at any other stage during the preparation of the fire-control compositions.
- the thiosulfate and/ or the 2-mercaptobenzothiazole compound can first be dissolved in water, and the resulting solution then intermixed subsequently with the ammonium phosphate materials.
- Still another process for manufacturing the aqueous corrosion inhibited phosphate compositions described heretofore involves one of the preferred embodiments of the present invention.
- This preferred embodiment comprises a concentrate mixture of one or more of the ammonium phosphate salts described heretofore with one ents, including a thickenerif one is desired in--the final firecontrol compositions, as well as dyes, pigments, watersoftening agents, and the like, all of which should preferably be present in the concentrate compositions in minor amounts, as compared to the ammonium phosphate salt(s) contained therein.
- Preferred concentrate compositions contain at least about 30 weight percent, and still more preferably, at least about 50 weight percent, of ammonium orthophosphate material, and minor amounts (less than 50 Weight percent), based on the weight of the concentrate composition, of the combination corrosion inhibitor described hereinbefore, thickener, other corrosion inhibitions, and other desired additives.
- Typical examples of the preferred concentrate compositions of this invention include: (percentages are in terms of weight percent) Wt. percent Diammonium phosphate 90.0 Guar gum 9.0 Sodium thiosulfate .75 Z-mercaptobenzothiazole .25
- Diammonium phosphate 95 Monoammonium phosphate 4 Sodium thiosulfate 0.5 Z-mercaptobenzothiazole 0.5
- Diammonium phosphate 80 Sodium tripolyphosphate 10 Sodium alginate 9 Ammonium thiosulfate 0.8 Z-mercaptobenzothiazole sodium salt 0.2
- Diammonium phosphate 92 Carboxymethyl cellulose 5 Sodium tripolyphosphate 4 Potassium thiosulfate 0.9 Z-mercaptobenzothiazole 0.1
- Diammonium phosphate Monoammonium phosphate 3 Sodium alginate 10 Sodium thiosulfate 1.7 Z-mercaptobenzothiazole 0.3
- Diammonium phosphate 45 Triammonium acid pyrophosphate 45 Sodium carboxymethylcellulose 9 Sodium thiosulfate 0.8 Z-mercaptobenzothiazole 0.2
- concentrate compositions are also useful as corrosion-inhibited de-icer compounds, wherein, either alone or in combination with additional corrosion inhibiting materials, they can be utilized in a manner similar to that in which more corrosive, less desirable, sodium chloride, is presently conventionally utilized.
- these particulated, solid ammonium phosphate-thiosulfate compounds can effectively de-i'ce aircraft runways, sidewalks, roadways and the like when they are simply spread over ice and/ or snow.
- the concentrate compositions of this invention can be prepared via any of a number of convenient procedures, including simply blending or mixing together the appropriate amounts of the various dry ingredients.
- the size of the individual particles in these preferred concentrate compositions is not critical in so far as the practice of the present invention is concerned, it is generally preferred that they be of sufficiently small size to pass through a US. Standard 12 mesh screen. For optimum results, at least about 80 weight percent of these particles should be small enough to pass through a US. Standard 20 mesh screen.
- commercial grades of phosphate and thiosulfate salts do not necessarily meet these optimum standards of particle size, they can readily be utilized in the preparation of the compositions of this invention.
- the corrosion rate or rate of attack on copper by the composition of Example I is thus found to be about 0.8 mils per year.
- Control 940 8.34 parts of water plus 1.2 parts of a pro-pared blend. Numbers correspond to specific preferred concentnate compositions given above.
- compositions tested are excellent forest and brush-fire retardants.
- the corrosion inhibited ammonium phosphate compositions of this invention can be dropped on, around or in front of fires burning in practically any cellulosic fuel.
- they can be dropped or sprayed on wooden or frame structures, or structures that contain cellulosic components close by an actively burning fire in order to protect the coated structure from burning embers, as well as from spontaneous ignition due to excessive heat from the nearby fire.
- An aqueous copper corrosion inhibited ammonium orthophosphate composition having a pH above about 7 and consisting essentially of, in addition to an ammonium orthophosphate dissolved therein in an amount of at least 0.5 weight percent, (a) a water soluble inorganic thiosulfate in an amount of at least about 00075 weight percent and (b) a 2-mercaptobenzothiazole inhibitor in an amount of at least about 0.0005 weight percent.
- a copper corrosion-inhibited aqueous ammonium orthophosphate composition having a pH above about 7 and consisting essentially of at least about 0.5 weight percent of an ammonium orthophosphate salt selected from 'the group consisting. of monoammonium dihydrogen orthophosphate, diammonium monohydrogen orthophosphate, and mixtures thereof, from about 0.0075 to about 5 weight percent of a water soluble inorganic thiosulfate, and from about 0.0005 to about 2 weight percent of a 2-mercaptobenzothiazole.
- composition as in claim 4 wherein the weight ratio of said thiosulfate to said Z-mercaptobenzothiazole in said composition is from about 300:1 to about .0035: 1.
- a process for decreasing the corrosivity of copper and copper alloys caused by a normally corrosive aqueous solution containing at least one inorganic ammonium 0rthophosphate salt in an amount of at least about 0.5 weight percent comprises effecting the contact of said copper and copper alloys with said solution having dissolved therein (a) a water soluble inorganic thiosulfate salt in an amount of at least about 0.0075 weight percent and (b) a 2-mercaptobenzothiazole in an amount of at least about 0.0005 weight percent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Lubricants (AREA)
- Fertilizers (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US372102A US3342749A (en) | 1964-06-02 | 1964-06-02 | Corrosion inhibited phosphate solutions |
| ES0313530A ES313530A1 (es) | 1964-06-02 | 1965-05-29 | Un metodo de hacer una composicion de ortofosfato amonico. |
| NO158296A NO117957B (enrdf_load_stackoverflow) | 1964-06-02 | 1965-05-31 | |
| FR19298A FR1444322A (fr) | 1964-06-02 | 1965-06-02 | Composition pour la lutte contre l'incendie, inhibée à la corrosion |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US372102A US3342749A (en) | 1964-06-02 | 1964-06-02 | Corrosion inhibited phosphate solutions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3342749A true US3342749A (en) | 1967-09-19 |
Family
ID=23466726
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US372102A Expired - Lifetime US3342749A (en) | 1964-06-02 | 1964-06-02 | Corrosion inhibited phosphate solutions |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3342749A (enrdf_load_stackoverflow) |
| ES (1) | ES313530A1 (enrdf_load_stackoverflow) |
| FR (1) | FR1444322A (enrdf_load_stackoverflow) |
| NO (1) | NO117957B (enrdf_load_stackoverflow) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3890165A (en) * | 1970-04-09 | 1975-06-17 | Fmc Corp | Passivation of materials which come into contact with peroxygen compounds |
| US3959166A (en) * | 1974-12-16 | 1976-05-25 | Nalco Chemical Company | Cleaner for automotive engine cooling system |
| EP0277932A1 (en) * | 1987-01-30 | 1988-08-10 | Monsanto Company | Fire retardant concentrates and methods for preparation thereof |
| US5156769A (en) * | 1990-06-20 | 1992-10-20 | Calgon Corporation | Phenyl mercaptotetrazole/tolyltriazole corrosion inhibiting compositions |
| US5746947A (en) * | 1990-06-20 | 1998-05-05 | Calgon Corporation | Alkylbenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors |
| US20020096668A1 (en) * | 2000-11-28 | 2002-07-25 | Vandersall Howard L. | Fire retardant compositions with reduced aluminum corrosivity |
| US6447697B1 (en) | 1999-03-03 | 2002-09-10 | Astaris, Llc | Colorant liquid, method of use, and wildland fire retardant liquids containing same |
| US20030066990A1 (en) * | 2000-11-28 | 2003-04-10 | Vandersall Howard L. | Ammonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors |
| US20030204004A1 (en) * | 2000-11-28 | 2003-10-30 | Vandersall Howard L. | Methods for preparation of biopolymer thickened fire retardant compositions |
| US6676858B2 (en) | 1999-03-03 | 2004-01-13 | Astaris Llc | Colorant liquid, method of use, and wildland fire retardant liquids containing same |
| US6802994B1 (en) | 2000-11-28 | 2004-10-12 | Astaris Llc | Fire retardant compositions containing ammonium polyphosphate and iron additives for corrosion inhibition |
| US20110079578A1 (en) * | 2009-10-05 | 2011-04-07 | Kesheng Feng | Nickel-Chromium Alloy Stripper for Flexible Wiring Boards |
| WO2022079101A1 (en) * | 2020-10-14 | 2022-04-21 | Vt Production Dooel Skopje | Fire extinguishing compositions and method of prepration thereof |
| WO2022132962A1 (en) * | 2020-12-15 | 2022-06-23 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11534643B2 (en) | 2019-06-07 | 2022-12-27 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11975231B2 (en) | 2022-03-31 | 2024-05-07 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2567157A1 (fr) * | 1984-07-05 | 1986-01-10 | Monsanto Co | Solutions de sulfate de diammonium a action corrosive inhibee |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1997669A (en) * | 1934-02-23 | 1935-04-16 | Arcieri Antonio | Aeroplane attachment for extinguishing fires |
| US2303399A (en) * | 1939-05-01 | 1942-12-01 | Hall Lab Inc | Alkaline detergent |
| US2617713A (en) * | 1948-04-15 | 1952-11-11 | Pure Oil Co | Method of inhibiting corrosion of steel by alkali solutions |
| US2901428A (en) * | 1953-05-22 | 1959-08-25 | Chem Fab Grunan Ag | Fire extinguishing method |
| US2972581A (en) * | 1955-09-21 | 1961-02-21 | Nalco Chemical Co | Corrosion inhibitor composition and cooling solution |
| USRE25394E (en) * | 1963-06-11 | Corrosion-inhibited liquid fertilizer | ||
| US3238136A (en) * | 1963-07-01 | 1966-03-01 | Jefferson Chem Co Inc | Antifreeze composition |
-
1964
- 1964-06-02 US US372102A patent/US3342749A/en not_active Expired - Lifetime
-
1965
- 1965-05-29 ES ES0313530A patent/ES313530A1/es not_active Expired
- 1965-05-31 NO NO158296A patent/NO117957B/no unknown
- 1965-06-02 FR FR19298A patent/FR1444322A/fr not_active Expired
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE25394E (en) * | 1963-06-11 | Corrosion-inhibited liquid fertilizer | ||
| US1997669A (en) * | 1934-02-23 | 1935-04-16 | Arcieri Antonio | Aeroplane attachment for extinguishing fires |
| US2303399A (en) * | 1939-05-01 | 1942-12-01 | Hall Lab Inc | Alkaline detergent |
| US2617713A (en) * | 1948-04-15 | 1952-11-11 | Pure Oil Co | Method of inhibiting corrosion of steel by alkali solutions |
| US2901428A (en) * | 1953-05-22 | 1959-08-25 | Chem Fab Grunan Ag | Fire extinguishing method |
| US2972581A (en) * | 1955-09-21 | 1961-02-21 | Nalco Chemical Co | Corrosion inhibitor composition and cooling solution |
| US3238136A (en) * | 1963-07-01 | 1966-03-01 | Jefferson Chem Co Inc | Antifreeze composition |
Cited By (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3890165A (en) * | 1970-04-09 | 1975-06-17 | Fmc Corp | Passivation of materials which come into contact with peroxygen compounds |
| US3959166A (en) * | 1974-12-16 | 1976-05-25 | Nalco Chemical Company | Cleaner for automotive engine cooling system |
| EP0277932A1 (en) * | 1987-01-30 | 1988-08-10 | Monsanto Company | Fire retardant concentrates and methods for preparation thereof |
| US5156769A (en) * | 1990-06-20 | 1992-10-20 | Calgon Corporation | Phenyl mercaptotetrazole/tolyltriazole corrosion inhibiting compositions |
| US5746947A (en) * | 1990-06-20 | 1998-05-05 | Calgon Corporation | Alkylbenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors |
| US6676858B2 (en) | 1999-03-03 | 2004-01-13 | Astaris Llc | Colorant liquid, method of use, and wildland fire retardant liquids containing same |
| US6447697B1 (en) | 1999-03-03 | 2002-09-10 | Astaris, Llc | Colorant liquid, method of use, and wildland fire retardant liquids containing same |
| US6517747B2 (en) | 1999-03-03 | 2003-02-11 | Astaris, Llc | Colorant liquid, method of use, and wildland fire retardant liquids containing same |
| US20030066990A1 (en) * | 2000-11-28 | 2003-04-10 | Vandersall Howard L. | Ammonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors |
| US20030204004A1 (en) * | 2000-11-28 | 2003-10-30 | Vandersall Howard L. | Methods for preparation of biopolymer thickened fire retardant compositions |
| US20030212177A1 (en) * | 2000-11-28 | 2003-11-13 | Vandersall Howard L. | Use of biopolymer thickened fire retardant compositions to suppress fires |
| US20020096668A1 (en) * | 2000-11-28 | 2002-07-25 | Vandersall Howard L. | Fire retardant compositions with reduced aluminum corrosivity |
| US6802994B1 (en) | 2000-11-28 | 2004-10-12 | Astaris Llc | Fire retardant compositions containing ammonium polyphosphate and iron additives for corrosion inhibition |
| US6828437B2 (en) | 2000-11-28 | 2004-12-07 | Astaris, Llc | Use of biopolymer thickened fire retardant composition to suppress fires |
| US6846437B2 (en) | 2000-11-28 | 2005-01-25 | Astaris, Llc | Ammonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors |
| US6852853B2 (en) | 2000-11-28 | 2005-02-08 | Astaris Llc | Methods for preparation of biopolymer thickened fire retardant compositions |
| US6905639B2 (en) | 2000-11-28 | 2005-06-14 | Astaris Llc | Fire retardant compositions with reduced aluminum corrosivity |
| TWI460311B (zh) * | 2009-10-05 | 2014-11-11 | Macdermid Inc | 用於撓性配線基板之鎳-鉻合金剝離劑 |
| US8486281B2 (en) * | 2009-10-05 | 2013-07-16 | Kesheng Feng | Nickel-chromium alloy stripper for flexible wiring boards |
| US20110079578A1 (en) * | 2009-10-05 | 2011-04-07 | Kesheng Feng | Nickel-Chromium Alloy Stripper for Flexible Wiring Boards |
| CN102666927A (zh) * | 2009-10-05 | 2012-09-12 | 麦克德米德尖端有限公司 | 用于挠性配线板的镍-铬合金剥离剂 |
| US11607570B2 (en) | 2019-06-07 | 2023-03-21 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11819723B2 (en) | 2019-06-07 | 2023-11-21 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11819722B1 (en) | 2019-06-07 | 2023-11-21 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11534643B2 (en) | 2019-06-07 | 2022-12-27 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11554280B2 (en) | 2019-06-07 | 2023-01-17 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| WO2022079101A1 (en) * | 2020-10-14 | 2022-04-21 | Vt Production Dooel Skopje | Fire extinguishing compositions and method of prepration thereof |
| US11395934B2 (en) | 2020-12-15 | 2022-07-26 | Frs Group, Llc | Long-term fire retardant with magnesium sulfate and corrosion inhibitors and methods for making and using same |
| US11883703B2 (en) | 2020-12-15 | 2024-01-30 | Frs Group, Llc | Long-term fire retardant with magnesium sulfate and corrosion inhibitors and methods for making and using same |
| US11628324B2 (en) | 2020-12-15 | 2023-04-18 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11420084B2 (en) | 2020-12-15 | 2022-08-23 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| WO2022132962A1 (en) * | 2020-12-15 | 2022-06-23 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11865392B2 (en) | 2020-12-15 | 2024-01-09 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11865391B2 (en) | 2020-12-15 | 2024-01-09 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11602658B2 (en) | 2020-12-15 | 2023-03-14 | Frs Group, Llc | Long-term fire retardant with magnesium sulfate and corrosion inhibitors and methods for making and using same |
| US12214236B2 (en) | 2020-12-15 | 2025-02-04 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US12214237B2 (en) | 2020-12-15 | 2025-02-04 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| EP4263690A4 (en) * | 2020-12-15 | 2024-11-20 | FRS Group, LLC | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US12109446B2 (en) | 2022-03-31 | 2024-10-08 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US12053658B2 (en) | 2022-03-31 | 2024-08-06 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
| US11975231B2 (en) | 2022-03-31 | 2024-05-07 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
Also Published As
| Publication number | Publication date |
|---|---|
| FR1444322A (fr) | 1966-07-01 |
| ES313530A1 (es) | 1966-02-16 |
| NO117957B (enrdf_load_stackoverflow) | 1969-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3342749A (en) | Corrosion inhibited phosphate solutions | |
| US3257316A (en) | Corrosion-inhibited phosphate solutions and compositions useful for manufacturing them | |
| US3293189A (en) | Corrosion-inhibited phosphate solutions and compositions useful for manufacturing them | |
| CA1333215C (en) | Fire retardant concentrates and methods for preparation thereof | |
| US6905639B2 (en) | Fire retardant compositions with reduced aluminum corrosivity | |
| US4983326A (en) | Fire retardant concentrates and methods for preparation thereof | |
| CA2429809C (en) | Biopolymer thickened fire retardant compositions | |
| ES2496169T3 (es) | Composición retardante de la llama | |
| US3275566A (en) | Corrosion-inhibited phosphate solutions | |
| US3309324A (en) | Corrosion inhibited ammonium sulfate solutions and compositions useful for manufacturing them | |
| US4971728A (en) | Method for the preparation of aqueous fire retarding concentrates | |
| US6019176A (en) | Fire suppressants and methods of manufacture and use thereof | |
| WO2008031559A2 (en) | Flame retardant composition | |
| AU2002216632A1 (en) | Fire retardant compositions with reduced aluminum corrosivity | |
| US3338829A (en) | Corrosion-inhibited ammonium orthophosphate solutions and compositions useful for manufacturing them | |
| US3223649A (en) | Corrosion-inhibited phosphate solutions and compositions useful for manufacturing them | |
| US3364149A (en) | Corrosion-inhibited phosphate solutions and compositions useful for manufacturing them | |
| US3350305A (en) | Corrosion-inhibited phosphate firefighting solutions and compositions useful for manufacturing them | |
| EP0871519B1 (en) | Stabilized, corrosion-inhibited fire retardant compositions and methods | |
| CA1107047A (en) | Chemical retardants for forest fires | |
| EP4543549A2 (en) | Fire retardant concentrate compositions containing a carboxylic acid and one or more corrosion inhibitors | |
| US3809653A (en) | Inhibition of corrosive action of fire retardants containing aqueous ammoniated superphosphoric acid on aluminum | |
| US3558486A (en) | Fire fighting compositions with asbestos thickening agent | |
| EP4590407A1 (en) | Use of a fire extinguishing liquid | |
| CA1131000A (en) | Concentrate for range, brush and forest fire retardant compositions |