US3340217A - Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene - Google Patents

Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene Download PDF

Info

Publication number
US3340217A
US3340217A US329873A US32987363A US3340217A US 3340217 A US3340217 A US 3340217A US 329873 A US329873 A US 329873A US 32987363 A US32987363 A US 32987363A US 3340217 A US3340217 A US 3340217A
Authority
US
United States
Prior art keywords
parts
weight
monomer
styrene
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US329873A
Inventor
Woodruff Douglas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morton International LLC
Original Assignee
Morton International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL131012D priority Critical patent/NL131012C/xx
Application filed by Morton International LLC filed Critical Morton International LLC
Priority to US329873A priority patent/US3340217A/en
Priority to DE19641570897 priority patent/DE1570897A1/en
Priority to GB36008/64A priority patent/GB1071795A/en
Priority to NL6410258A priority patent/NL6410258A/xx
Priority to FR987221A priority patent/FR1416414A/en
Priority to LU46898D priority patent/LU46898A1/xx
Priority to SE10806/64A priority patent/SE320194B/xx
Priority to BE652923A priority patent/BE652923A/xx
Priority to SE13552/66A priority patent/SE323761B/xx
Priority to US635280A priority patent/US3382177A/en
Application granted granted Critical
Publication of US3340217A publication Critical patent/US3340217A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate

Definitions

  • This invention relates to the production of novel crosslinked polymeric latices of the type useful in opacifying aqueous liquid detergent compositions, to opacified detergent compositions made therefrom, and to the process of opacifying aqueous liquid detergent compositions.
  • An aqueous liquid detergent composition is one containing water, a surface active agent and optionally one or more of the following ingredients: a foam stabilizer, a foam booster, a small amount of a hydrotrope, eg an alcohol. Usually the whole composition is adjusted to a neutral pH.
  • the above type composition is often characterized as a light-duty liquid detergent.
  • a so-called general-purpose or a heavy-duty liquid detergent may contain, in addition, one or more of the so-called alkaline boosters, such as alkali metal silicates, carbonates, polyphosphates and the like.
  • Aqueous liquid detergents are used extensively in dish washing, laundering, bathing, and in general purpose cleaning preparations. They frequently contain solubilizing aids (hydrotropes) such as sodium benzene sulfonate, sodium toluene sulfonate, sodium xylene sulfonate and/or alcohol. They are usually clear in appearance and have varying degrees of viscosity.
  • Dyes and particularly opacifying agents are conventionally added to these products to improve their attractiveness to consumers, who, through long exposure to cosmetic products in the form of creams and locations, have come to associate a creamy or opaque, milky appearance with mildness, softness and luxuriousness.
  • one object of this invention is the provision of polymer latices for use in opacifying liquid detergent compositions.
  • Another object of this invention is the provision of a novel improved process for producing improved opacifier latices.
  • a further object is the provision of stable, opacified liquid detergents containing various concentrations of alcohol.
  • Another object of this invention is the provision of polymer latices which are useful in opacifying liquid detergent compositions containing a hydrotrope.
  • Still another object is the provision of polymer latices for use in opacifying commercial cleaning and bleaching preparations such as toilet bowl cleaners, liquid laundry bleaches and household ammonia.
  • a still further object of this invention is the-provision of a process for opacifying liquid detergent compositions.
  • the present invention comprises an interpolymer latex, said interpolymer containing in cross-linked polymerized form a major proportion of a monomer selected from the group consisting of styrene and methylated styrene and a minor proportion of an unsaturated acid, a hydrophilic monomer and up to 2 parts of divinyl benzene per parts of total monomer.
  • the interpolymer comprises from about 78 to 96 parts by weight of a monomer selected from the group of styrene and methylated styrenes, from about 1 to 20 parts by weight of an unsaturated acid selected from the group of methacrylic acid, acrylic acid and itaconic acid, and from 1 to 20 parts by weight of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate, and glycidyl acrylate, and up to about 2 parts by Weight of divinylbenzene, the proportions of said monomers being selected to total 100 parts.
  • Another broad form of the present invention is a process for producing the herein above described cross-linked interpolymer latex which preferably comprises carrying out said polymerization by dividing said monomers into two fractions wherein the first contains a major proportion of the monomer of the group consisting of styrene and methylated styrene, a major proportion of the unsaturated acid monomer and all of the divinyl benzene monomer, said first fraction being added as a first monomer phase to an aqueous polymerization medium containing a surface active agent and a free radical catalyst and upon completion of the addition of the said first monomer fraction, adding a second monomer fraction, containing the hydrophilic monomer and the remaining portion of monomers.
  • the interpolymer latex product preferably has a solids content of from about 30 to 50 percent by weight on a total latex basis.
  • Another form of the present invention is a stable opacified aqueous liquid detergent composition containing a detergent selected from the group consisting of anionic and nonionic surface active agents and an opacifying latex as above defined.
  • a detergent selected from the group consisting of anionic and nonionic surface active agents and an opacifying latex as above defined.
  • detergent compositions which contain alcohols as solubilizing aids and/ or hydrotropes.
  • the term detergent or surface active agent also includes specific surface active agents which are known to the art as foam boosters and/or foam stabilizers for their particular function in the detergent formulation.
  • the opacifier is present (on a solids basis) in amounts of from 0.2 to 14 parts per 100 parts of surface active agent.
  • the alcohol is preferably present in amounts of from 3.6 to 83 parts on the same basis, and when present the hydrotrope, other than alcohol, preferably in amounts of from 1.8 to 83 parts.
  • per- Surface active agent including detergent, foam booster and/or foam stabilizer
  • n 18-55 Alcohol 2-15 Hydrotrope other than alcohol
  • Anionic and nonionic surface active agents utilized in the opacified liquid detergents of the present invention include sodium dodoceylbenzene sulfonate, alkali salts of complex organic phosphate esters, alkyl aryl sulfonates, sodium lauryl ether sulfates, sodium lauryl sulfate, the octyl and nonyl phenoxy (polyethyleneoxy) ethanols, polyoxyalkylene ethanols, polyoxyethylene sorbitan fatty acids and fatty acid alkanolamides, and the like.
  • the latices herein described are particularly useful in opacifying liquid detergents containing alcohol, it should be noted that they are also effective in opacifying light duty liquid detergents, heavy duty liquid detergents, shampoos, hair-waving solutions, liquid toilet bowl cleaners, laundry bleaching liquids and household ammonia, which compositions conventionally contain materials which adversely affect the stability of ordinary opacifying latices.
  • the monomers may be present in varying amounts.
  • monomers of the group of styrene and methylated styrene are present in amounts of from about 85 to 95 parts by weight per 100 parts of total monomer and most preferably from 87 to 93 parts by weight on the same basis.
  • styrene is preferred.
  • methylated styrene monomers useful in preparing the interpolymer latices of the present invention are monomethyl styrenes, such as 4-methyl styrene, and dimethyl styrenes, such as 2,4-dimethyl styrene. It should be understood that mixtures of styrene and/or methylated styrenes can also be used.
  • the unsaturated monomeric acids such as methacrylic acid, acrylic acid and itaconic acid may be used interchangeably in preparing the interpolymer latex compositions of the present invention.
  • the unsaturated acids also function to impart freeze-thaw and mechanical stability to the resultant latex. In the most preferred embodiment of the present invention they are used in proportions of from 1 to parts by weight on a 100 parts of total monomer basis.
  • Glycidyl methacrylate or glycidyl acrylate is a hydrophilic monomer which is essential to the successful operability of the latices of the present invention, and each may be used interchangeably in the polymerization process. It is preferred to use from 2 to 10 parts by weight on a 100 parts of total monomer basis.
  • Divinylbenzene is a cross-linking agent which in the proportions used imparts stability to the resultant latex.
  • the cross-linked character of the latices of the present invention is attested to by the fact that upon drying at room temperature, there is obtained a particulate solid which is insoluble in acetone, methyl ethyl ketone, toluene, dimethylformamide and benzene.
  • the latices of the present invention are non-film forming, and preferably have an average particle size of less than 0.5 micron.
  • the amount of divinylbenzene used is critical and should not exceed approximately 2 parts by weight per 100 parts of total monomers. In the present compositions, divinylbenzene in excess of about 2 parts by Weight tends to reverse the stability which lesser amounts impart and induces coagulation of the latex.
  • the divinylbenzene used herein is a technical grade in the form of a 55 percent active solution containing 45 percent of ethyl vinylbenzene. Eth- 4 yl vinylbenzene has of course no functional capability of cross-linking.
  • the latices of the present invention are further characterized by their unusual stability to coagulation or precipitation by methanol, the usual polymer emulsion precipitating agent, or by dilute aqueous solutions of hydrochloric acid. It is believed that this stability is the result of a combination of attributes such as the cross-linked condition of the copolymers comprising the latices, coupled with the effect of the hydrophilic monomers, glycidyl methacrylate or glycidyl acrylate.
  • alkaline materials which are satisfactory in the pH adjustment of the present latices are the following: Monoethanolamine, diethanolamine, triethanolamine, ammonium hydroxide, sodium hydroxide, monoisopropanolamine, diisopropanolamine, triisopropanolamine, 3-aminopropanol, morpholine and tetraethanol ammonium hydroxide. These alkaline materials are used to adjust the pH of the latex product to from about 7 to 11.
  • the type of surface active agents used in the polymerization procedure of the process of the present invention is not critical.
  • Anionic surfactants exemplified by alkyl aryl sulfonates and/or alkyl sulfates, may be used alone or in blends with nonionic surfactants, in amounts ranging from about 1 to 10 percent on a total monomer basis.
  • the time of polymerization is likewise not critical and it should be understood that by utilizing certain catalyst systems, such as, for example, redox systems, the polymerization may be carried out in a relatively short time. Accord ingly, the time of polymerization may extend from about 15 to about 240 minutes, although for most purposes from about 30 to 180 minutes are adequate.
  • the polymerization procedure of the present invention employed to prepare the herein described latices is an aqueous emulsion polymerization technique utilizing free radical or peroxide type catalysts. It is possible to prepare the present opacifier latices by either a one or a two phase monomer addition procedure. However, a two phase monomer addition procedure is preferred, as it results in a latex which imparts greater storage stability to a liquid detergent in which it is incorporated than does that produced by a one monomer phase addition.
  • a two phase monomer addition procedure is employed in which from 60 to percent by Weight'of the total styrene or methylated styrene used, from 50 to 80 percent by Weight of the total unsaturated acid used, and 100 percent by weight of the total divinylbenzene used are added as a first monomer phase or fraction to a reaction vessel containing water, a surface active agent, and a free radical catalyst.
  • a second monomer fraction or phase containing the balance ie from 10 to 40 percent by weight of the total styrene used, 20 to 50 percent by weight of the total unsaturated acid used, and 100 percent by weight of the total hydrophilic monomer used, is added.
  • the temperature is maintained at from 80 to C. until completion of the monomer addition.
  • the pH is adjusted to from 7 to 11 as above indicated. It should be understood that the parts by weight or percentages referred to herein have reference to monomeric constituents only and do not include diluents, carriers, additives, or other materials which may be used in conjunction with the monomers in the polymerization process.
  • the divinylbenzene should be present in the first monomer fraction or phase which is added to the reaction vessel containing water, a surface active agent, buffer and free radical catalyst. If divinylbenzene is added as a component of the second monomer phase, the resultant latex exhibits unsatisfactory stability when incorporated in a liquid detergent composition.
  • the kettle charge is added to a suitable vessel equipped with reflux condenser, mechanical stirrer, addition funnel and thermometer.
  • the charge is heated to 9092 C. with continuous stirring.
  • the catalyst premix is added with stirring.
  • monomer phase A is added to the stirred reaction medium at a uniform rate over a period of about 60 minutes.
  • the addition of monomer phase B is begun at a constant rate over a period of about minutes.
  • the entire reaction is carried out at temperatures varying between 85 C. and 95 C. Stirring and heating at this temperature is continued for about 60 minutes after the completion of the addition of monomer phase B, after which the batch is neutralized With diethanolamine (neutralization charge) and heated at 90 C. for an additional 30 minutes and then cooled to form the finished product.
  • the final product has a solids content of about 40%, an average particle size of less than 0.5 microns and a pH of about 9.5.
  • EXAMPLE 2 A copolymer latex is prepared as set forth in Example 1 with the exception that vinyl toluene (4-methyl styrene) is substituted for styrene.
  • vinyl toluene (4-methyl styrene) is substituted for styrene.
  • EXAMPLE 3 A copolymer latex is prepared as set forth in Example 1 with the exception that in monomer phase B, 30 parts of glycidyl acrylate is substituted for 30 parts of 'glycidyl methacrylate. When this opacified detergent composition is tested for stability by storage at 125 F., there is no change in the appearance of the opacified detergent after more than 30 days.
  • EXAMPLE 4 A copolymer latex is prepared as in Example 1 except that acrylic acid is substituted for methacrylic acid.
  • the opacified detergent composition of Example 1 using this latex is stable for 30 days at 125 F.
  • EXAMPLE 5 A copolymer latex is prepared as set forth in Example 1 with the exception that in monomer phase B, 30 parts of styrene is substituted for 30 parts of glycidyl methacrylate.
  • Example 1 The procedure of Example 1 is repeated in the following Examples 6, 7, 8, 9 and 10, with the only exception that substitutions for glycidyl methacrylate are made in monomer phase B as indicated in Table 1.
  • Example 11 the proportion of glycidyl methacrylate is increased to approximately one and one-half times its concentration in Example 1.
  • Each latex so prepared is evaluated as an opacifier according to the procedure set forth in Example 1, with the results shown in Table 1.
  • the quantities of ingredients in Table 1 are expressed as parts by weight.
  • the results of opacifier evaluations of the latices prepared according to Examples 6 through 11 illustrate the essentiality of glycidyl methacrylate or glycidyl acrylate to the preparation of interpolymer latices which exhibit stability in opacifying aqueous liquid detergent compositions having an appreciable alcohol content.
  • Example 11 demonstrates that increasing the glycidyl methacrylate content of the latex does not impair its opacifying capability.
  • EXAMPLE 12 An interpolymer latex is prepared as set forth in Example 1 with the exception that the addition of diethanolamine is omitted. The resultant pH is 5.7.
  • the detergent composition described in Example 1 is opacified using the copolymer latex of Example 12 and is tested for storage stability as before, there is a slight separation after one week.
  • the stability of the detergent opacified with the latex of Example 12 when compared with the stability of the same detergent composition opacified with the latex of Example 1, illustrates the additional stability achieved by the regulation of the pH from 7 to 11.
  • the resultant opacified detergent containing 1% by weight of the latext of Example 13 is stable for more than 30 days upon storage at 125 F.
  • Example 1 The procedure followed is the same as that of Example 1 with the exception that the monomer phase is added as a single charge rather than the two step addition of Example 1.
  • Example 14 As an opacifier was carried out in the same manner as that of Example 1.
  • the resultant opacified latex is stable at 125 F. for two weeks.
  • Styrene Glycidyl methacrylate Methacrylic acid 1 13.2 active. 2 Active.
  • EXAMPLE 1A6 opacified liquid detergent composition An opacified liquid detergent is prepared utilizing the COPOIYIIIGI latex obtained in Example 1. The ingredients listed below are dispersed in water to form a homogeneous aqueous dispersion:
  • Tlu's'results in a milky, lotion-like detergent composition which exhibits excellent storage'stability.
  • EXAMPLE 17 Opacified liquid detergent composition Acid (dilute sulfuric) to pH 6.5 to 7.5.
  • This composition is an opalescent liquid which exhibits excellent storage stability.
  • Opacified liquid detergent composition Percent by weight Ten milliliters of each of the latices prepared in accordance with Examples 1 and 13 are added to approximately 100 milliliters of methanol with thorough mixing. The resultant mixture in each instance is homogeneous and free from evidence of coagulation or precipitation. The addition of an aqueous solution of hydrochloric acid containing approximately 10% by weight of HCl fails to induce coagulation in either of the above latices.
  • EXAMPLE 20 Each of the latices prepared in accordance with Examples 1 and 13 is allowed to evaporate at approximately 70 F. to obtain the nonvolatile matter of each. Each latex yields a powdery particulate solid which exhibits no film-forming tendencies and which is insoluble in acetone, methylethylketone, benzene, toluene and dimethylformamide.
  • the novel copolymers of the present invention result in latices which are particularly useful in opacifying liquid detergents.
  • Examples 1 through 11 demonstrate the criticality of the monomers glycidyl methacrylate and glycidyl acrylate in the compositions herein described to provide an opacified detergent solution displaying storage stability.
  • Example 12 illustrates the optimum pH range of the finished latex.
  • Example 13 illustrates the use of a quantity of glycidyl methacrylate which is substantially less than that used in Example 1.
  • Example 14 illustrates that it is possible to prepare the latices of the present invention by a single monomer admixture addition rather than a two phase technique.
  • the resultant opacified liquid detergent employing such latex lacks that degree of stability which the same liquid detergent opacified with the latex of Example 1 displays. This lends weight to the premise that a two-step addition procedure produces a latex which has enhanced opacifying properties.
  • Example 15 demonstates the criticality of the ratio of divinylbenzene employed.
  • Examples 16, 17 and 18 demonstrate various liquid detergent compositions which may be opacified by means of the present latices.
  • Example 19 underscores the unique stability of the present latices which are unalfected by the presence of large volumes of methanol, a solvent generally employed as a coagulating agent for aqueous polymer latices.
  • Example 20 illustrates the non-film forming, cross-linked characteristics of the interpolymers of the present invention.
  • a cross-linked interpolymer latex comprising in cross-linked polymerized form from 78 to 96 parts by weight of a monomer selected from the group consisting of styrene and methylated styrene, from 1 to 20 parts by weight of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid, from 1 to 20 parts by weight of a monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and up to two parts by weight of divinylbenzene, the proportions of said monomers being selected to total 100 parts by weight in the aggregate, said latex being further characterized in being resistant to coagulation by methanol.
  • a cross-linked interpolymer latex comprising in cross-linked polymerized form from to 95 parts by weight of a monomer selected from the group of styrene and methylated styrene, from 1 to 10 par-ts by weight of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid, from 1 to 10 parts by weight of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and divinylbenzene in an amount of up to 2 parts by weight per hundred parts of total monomer, the monomer in the aggregate totaling 100 parts and said latex being characterized in being resistant to coagulation by methanol.
  • a cross-linked interpolymer latex said interpolymer containing in polymerized form from 78 to 96 parts by weight of styrene, from 1 to 20 parts by weight of methacrylic acid, from 1 to 20 parts by weight of glycidyl methacrylate, and divinyl benzene in an amount up to 2 parts by weight per hundred parts of monomer, the proportions of said monomers being selected to total 100 parts by weight, said latex being further characterized in being resistant to coagulation by methanol.
  • a process for preparing a cross-linked interpolymer latex comprising in polymerized crosslinked form per 100 parts of said interpolymer from about 78 to about 96 parts of a styrene monomer selected from the group consisting of styrene and methylated styrenes; from about 1 to about 20 parts of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid; from about 1 to about 20 parts of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and up to about two parts of divinylbenzene; said process comprising adding and polymerizing in an aqueous interpolymerization reaction a first monomer fraction comprising an admixture of from about 60 to about weight percent of the total of the styrene monomers, from about 50 to about 80 weight percent of the unsaturated acid, and the divinylbenzen
  • a process for preparing a cross-linked interpolymer latex comprising in polymerized crosslinked form per 100 parts of said interpolymer from about 85 to about parts of a styrene monomer selected from the group consisting of styrene and methylated styrenes, from about 1 to about 10 parts of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid, from about 1 to about 10 parts of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and up to about two parts of divinylbenzene; said process 1 1 comprising adding and polymerizing in an aqueous interpolymerization reaction a first monomer fraction comprising an admixture of from about 60 to about 90 weight percent of the styrene monomer, from about 50 to about 80 weight percent of the total of an unsaturated acid, and the divinylbenzen
  • a process for preparing a cross-linked interpolymer latex comprising in polymerized, crosslinked form from 78 to 96 parts by weight of a styrene monomer selected from the group consisting of styrene and methylated styrene and from 1 to 20 parts by weight of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid; from 1 to 20 parts by weight of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate; and up to 2 parts by weight of divinylbenzene per 100 parts of total monomer; said process comprising adding and polymerizing in an aqueous interpolymerization reaction a first monomer phase containing a majorproportion of the styrene monomer and the unsaturated acid and all of the divinylbenzene and thereafter adding as a second monomer phase the remaining minor proportionof the s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

United States Patent 3,340,217 CROSSLINKED INTERPOLYMER LATEX 0F STY- RENE, AN UNSATURATED CARBOXYLIC ACID, AN UNSATURATED GLYCIDYL COMPOUND AND DIVlNYL-BENZENE Douglas Woodrulr, Marengo, 111., assignor to Morton International Inc., a corporation of Delaware N0 Drawing. Filed Dec. 11, 1963, Ser. No. 329,873 7 Claims. (Cl. 260-295) This invention relates to the production of novel crosslinked polymeric latices of the type useful in opacifying aqueous liquid detergent compositions, to opacified detergent compositions made therefrom, and to the process of opacifying aqueous liquid detergent compositions.
An aqueous liquid detergent composition, as the term is used herein, is one containing water, a surface active agent and optionally one or more of the following ingredients: a foam stabilizer, a foam booster, a small amount of a hydrotrope, eg an alcohol. Usually the whole composition is adjusted to a neutral pH. The above type composition is often characterized as a light-duty liquid detergent. A so-called general-purpose or a heavy-duty liquid detergent may contain, in addition, one or more of the so-called alkaline boosters, such as alkali metal silicates, carbonates, polyphosphates and the like.
Aqueous liquid detergents are used extensively in dish washing, laundering, bathing, and in general purpose cleaning preparations. They frequently contain solubilizing aids (hydrotropes) such as sodium benzene sulfonate, sodium toluene sulfonate, sodium xylene sulfonate and/or alcohol. They are usually clear in appearance and have varying degrees of viscosity.
Dyes and particularly opacifying agents are conventionally added to these products to improve their attractiveness to consumers, who, through long exposure to cosmetic products in the form of creams and locations, have come to associate a creamy or opaque, milky appearance with mildness, softness and luxuriousness.
Polymer latices of varying descriptions have heretofore been used to opacify detergent formulations. However, many liquid detergents which are opacified with conventional polymer latices, particularly those containing alcohols, display poor storage stability and often soon deposit a sludge-like material which destroys the attractiveness of the product and thereby defeats the original objective.
It would, therefore, be desirable to provide improved polymer latices which have utility in the production of stable, opacified liquid detergent compositions.
Accordingly, one object of this invention is the provision of polymer latices for use in opacifying liquid detergent compositions.
Another object of this invention is the provision of a novel improved process for producing improved opacifier latices.
A further object is the provision of stable, opacified liquid detergents containing various concentrations of alcohol.
Another object of this invention is the provision of polymer latices which are useful in opacifying liquid detergent compositions containing a hydrotrope.
"ice
Still another object is the provision of polymer latices for use in opacifying commercial cleaning and bleaching preparations such as toilet bowl cleaners, liquid laundry bleaches and household ammonia.
A still further object of this invention is the-provision of a process for opacifying liquid detergent compositions.
The fulfillment of these and other objects of the present invention may be better understood by reference to the following specification and appended claims.
Accordingly, in one broad form, the present invention comprises an interpolymer latex, said interpolymer containing in cross-linked polymerized form a major proportion of a monomer selected from the group consisting of styrene and methylated styrene and a minor proportion of an unsaturated acid, a hydrophilic monomer and up to 2 parts of divinyl benzene per parts of total monomer. More particularly the interpolymer comprises from about 78 to 96 parts by weight of a monomer selected from the group of styrene and methylated styrenes, from about 1 to 20 parts by weight of an unsaturated acid selected from the group of methacrylic acid, acrylic acid and itaconic acid, and from 1 to 20 parts by weight of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate, and glycidyl acrylate, and up to about 2 parts by Weight of divinylbenzene, the proportions of said monomers being selected to total 100 parts.
Another broad form of the present invention is a process for producing the herein above described cross-linked interpolymer latex which preferably comprises carrying out said polymerization by dividing said monomers into two fractions wherein the first contains a major proportion of the monomer of the group consisting of styrene and methylated styrene, a major proportion of the unsaturated acid monomer and all of the divinyl benzene monomer, said first fraction being added as a first monomer phase to an aqueous polymerization medium containing a surface active agent and a free radical catalyst and upon completion of the addition of the said first monomer fraction, adding a second monomer fraction, containing the hydrophilic monomer and the remaining portion of monomers.
The interpolymer latex product preferably has a solids content of from about 30 to 50 percent by weight on a total latex basis.
Another form of the present invention is a stable opacified aqueous liquid detergent composition containing a detergent selected from the group consisting of anionic and nonionic surface active agents and an opacifying latex as above defined. Of particular interest are detergent compositions which contain alcohols as solubilizing aids and/ or hydrotropes. The term detergent or surface active agent also includes specific surface active agents which are known to the art as foam boosters and/or foam stabilizers for their particular function in the detergent formulation. Preferably the opacifier is present (on a solids basis) in amounts of from 0.2 to 14 parts per 100 parts of surface active agent. The alcohol is preferably present in amounts of from 3.6 to 83 parts on the same basis, and when present the hydrotrope, other than alcohol, preferably in amounts of from 1.8 to 83 parts. Expressed as per- Surface active agent (including detergent, foam booster and/or foam stabilizer) n 18-55 Alcohol 2-15 Hydrotrope (other than alcohol) 1-15 Water 60'-8O Opacifier latex-solids (30-50% solids) .1-5
Anionic and nonionic surface active agents utilized in the opacified liquid detergents of the present invention include sodium dodoceylbenzene sulfonate, alkali salts of complex organic phosphate esters, alkyl aryl sulfonates, sodium lauryl ether sulfates, sodium lauryl sulfate, the octyl and nonyl phenoxy (polyethyleneoxy) ethanols, polyoxyalkylene ethanols, polyoxyethylene sorbitan fatty acids and fatty acid alkanolamides, and the like.
Although, as previously pointed out, the latices herein described are particularly useful in opacifying liquid detergents containing alcohol, it should be noted that they are also effective in opacifying light duty liquid detergents, heavy duty liquid detergents, shampoos, hair-waving solutions, liquid toilet bowl cleaners, laundry bleaching liquids and household ammonia, which compositions conventionally contain materials which adversely affect the stability of ordinary opacifying latices.
In the interpolymer latex compositions of the present invention the monomers may be present in varying amounts. In the preferred aspects of this invention, monomers of the group of styrene and methylated styrene are present in amounts of from about 85 to 95 parts by weight per 100 parts of total monomer and most preferably from 87 to 93 parts by weight on the same basis. Of the aforesaid monomers, styrene is preferred. Exemplary of the methylated styrene monomers useful in preparing the interpolymer latices of the present invention are monomethyl styrenes, such as 4-methyl styrene, and dimethyl styrenes, such as 2,4-dimethyl styrene. It should be understood that mixtures of styrene and/or methylated styrenes can also be used.
The unsaturated monomeric acids such as methacrylic acid, acrylic acid and itaconic acid may be used interchangeably in preparing the interpolymer latex compositions of the present invention. In addition to forming an essential component of the interpolymer latices of this invention, the unsaturated acids also function to impart freeze-thaw and mechanical stability to the resultant latex. In the most preferred embodiment of the present invention they are used in proportions of from 1 to parts by weight on a 100 parts of total monomer basis.
Glycidyl methacrylate or glycidyl acrylate is a hydrophilic monomer which is essential to the successful operability of the latices of the present invention, and each may be used interchangeably in the polymerization process. It is preferred to use from 2 to 10 parts by weight on a 100 parts of total monomer basis.
Divinylbenzene is a cross-linking agent which in the proportions used imparts stability to the resultant latex.
The cross-linked character of the latices of the present invention is attested to by the fact that upon drying at room temperature, there is obtained a particulate solid which is insoluble in acetone, methyl ethyl ketone, toluene, dimethylformamide and benzene. The latices of the present invention are non-film forming, and preferably have an average particle size of less than 0.5 micron. The amount of divinylbenzene used is critical and should not exceed approximately 2 parts by weight per 100 parts of total monomers. In the present compositions, divinylbenzene in excess of about 2 parts by Weight tends to reverse the stability which lesser amounts impart and induces coagulation of the latex. The divinylbenzene used herein is a technical grade in the form of a 55 percent active solution containing 45 percent of ethyl vinylbenzene. Eth- 4 yl vinylbenzene has of course no functional capability of cross-linking.
The latices of the present invention are further characterized by their unusual stability to coagulation or precipitation by methanol, the usual polymer emulsion precipitating agent, or by dilute aqueous solutions of hydrochloric acid. It is believed that this stability is the result of a combination of attributes such as the cross-linked condition of the copolymers comprising the latices, coupled with the effect of the hydrophilic monomers, glycidyl methacrylate or glycidyl acrylate.
Exemplary of the alkaline materials which are satisfactory in the pH adjustment of the present latices are the following: Monoethanolamine, diethanolamine, triethanolamine, ammonium hydroxide, sodium hydroxide, monoisopropanolamine, diisopropanolamine, triisopropanolamine, 3-aminopropanol, morpholine and tetraethanol ammonium hydroxide. These alkaline materials are used to adjust the pH of the latex product to from about 7 to 11.
The type of surface active agents used in the polymerization procedure of the process of the present invention is not critical. Anionic surfactants, exemplified by alkyl aryl sulfonates and/or alkyl sulfates, may be used alone or in blends with nonionic surfactants, in amounts ranging from about 1 to 10 percent on a total monomer basis. The time of polymerization is likewise not critical and it should be understood that by utilizing certain catalyst systems, such as, for example, redox systems, the polymerization may be carried out in a relatively short time. Accord ingly, the time of polymerization may extend from about 15 to about 240 minutes, although for most purposes from about 30 to 180 minutes are adequate.
The polymerization procedure of the present invention employed to prepare the herein described latices is an aqueous emulsion polymerization technique utilizing free radical or peroxide type catalysts. It is possible to prepare the present opacifier latices by either a one or a two phase monomer addition procedure. However, a two phase monomer addition procedure is preferred, as it results in a latex which imparts greater storage stability to a liquid detergent in which it is incorporated than does that produced by a one monomer phase addition.
In the most preferred process of the present invention, a two phase monomer addition procedure is employed in which from 60 to percent by Weight'of the total styrene or methylated styrene used, from 50 to 80 percent by Weight of the total unsaturated acid used, and 100 percent by weight of the total divinylbenzene used are added as a first monomer phase or fraction to a reaction vessel containing water, a surface active agent, and a free radical catalyst. Upon completion of the addition of the first monomer phase, a second monomer fraction or phase containing the balance, ie from 10 to 40 percent by weight of the total styrene used, 20 to 50 percent by weight of the total unsaturated acid used, and 100 percent by weight of the total hydrophilic monomer used, is added. The temperature is maintained at from 80 to C. until completion of the monomer addition. Upon completion of the reaction, the pH is adjusted to from 7 to 11 as above indicated. It should be understood that the parts by weight or percentages referred to herein have reference to monomeric constituents only and do not include diluents, carriers, additives, or other materials which may be used in conjunction with the monomers in the polymerization process.
In the preferred two-phase monomer addition procedure of the present invention, the divinylbenzene should be present in the first monomer fraction or phase which is added to the reaction vessel containing water, a surface active agent, buffer and free radical catalyst. If divinylbenzene is added as a component of the second monomer phase, the resultant latex exhibits unsatisfactory stability when incorporated in a liquid detergent composition.
For a more complete understanding of the present invention, reference is now made to the following specific examples illustrating the preparation of the various operable copolymer latices, their evaluation as opacifiers for liquid detergent compositions containing various concentrations of alcohol, and opacified detergent compositions.
EXAMPLE 1 Parts by Parts by Weight per Kettle Charge Weight 100 Parts Total Monomer Ammonium salt of sulfate ester of an alkylphenoxypclytethyleneoxy) ethanol 6. 5 Sodium bicarbonate 3. 0 ater 580. 0 Catalyst Premix:
Ammonium persulfate 2. 0 Water 20. 0 Monomer Phase A:
Styrene 265 66. 3 M ethacrylic acid 2. 5 Divinylhenzene (55% active) 1 9. 6 2 1. 3 Monomer Phase B:
Styrene 85 21. 2 Glycidyl methaerylate. 3O 7. 5 Mcthacrylic Acid 5 l. 2 Neutralization Charge:
Diethanolamine Water 15 1 5.3 parts active. 2 Active.
The kettle charge is added to a suitable vessel equipped with reflux condenser, mechanical stirrer, addition funnel and thermometer.
The charge is heated to 9092 C. with continuous stirring. When the charge reaches this temperature, the catalyst premix is added with stirring. Upon completion of the addition of the catalyst premix, monomer phase A is added to the stirred reaction medium at a uniform rate over a period of about 60 minutes. After the addition of monomer phase A, the addition of monomer phase B is begun at a constant rate over a period of about minutes. The entire reaction is carried out at temperatures varying between 85 C. and 95 C. Stirring and heating at this temperature is continued for about 60 minutes after the completion of the addition of monomer phase B, after which the batch is neutralized With diethanolamine (neutralization charge) and heated at 90 C. for an additional 30 minutes and then cooled to form the finished product. The final product has a solids content of about 40%, an average particle size of less than 0.5 microns and a pH of about 9.5.
Evaluation of opacifier stability To evaluate the stability of a typical liquid detergent opacified with the composition of Example 1, the following liquid detergent was employed in this as well as in tests hereinafter described as representative of a typical aqueous light-duty liquid detergent containing alcohol as the solubilizing aid.
Parts by weight Nonyl phenoxy (polyethyleneoxy)ethanol (15 moles ethylene oxide), 11.0 parts Laurie diethanolamide, 5.0 parts 41.5 Sodium alkyl aryl sulfonate (57.5% active, 25.5
parts V Ethyl alcohol 8.0
Water, ion exchanged 40.5 Dilute sulfuric acid to adjust to about pH 7.0.
component was added with the second or phase B component. The resultant latex when formulated with the detergent composition described above showed deterioration and loss of stability after two days accelerated storage at F.
EXAMPLE 2 A copolymer latex is prepared as set forth in Example 1 with the exception that vinyl toluene (4-methyl styrene) is substituted for styrene. When the resultant opacified detergent composition of Example 1 is tested for stability by storage at 125 F., there is no change in the appearance of the opacified detergent after more than 30 days storage at 125 F.
EXAMPLE 3 A copolymer latex is prepared as set forth in Example 1 with the exception that in monomer phase B, 30 parts of glycidyl acrylate is substituted for 30 parts of 'glycidyl methacrylate. When this opacified detergent composition is tested for stability by storage at 125 F., there is no change in the appearance of the opacified detergent after more than 30 days.
EXAMPLE 4 A copolymer latex is prepared as in Example 1 except that acrylic acid is substituted for methacrylic acid. The opacified detergent composition of Example 1 using this latex is stable for 30 days at 125 F.
EXAMPLE 5 A copolymer latex is prepared as set forth in Example 1 with the exception that in monomer phase B, 30 parts of styrene is substituted for 30 parts of glycidyl methacrylate.
When this opacified detergent composition is tested for stability by storage at 125 F., there is considerable separation in less than 24 hours, as evidenced by a sludgelike layer on the bottom of the container and a loss of opacity in the detergent.
EXAMPLES 6 to 11 The procedure of Example 1 is repeated in the following Examples 6, 7, 8, 9 and 10, with the only exception that substitutions for glycidyl methacrylate are made in monomer phase B as indicated in Table 1. In Example 11, the proportion of glycidyl methacrylate is increased to approximately one and one-half times its concentration in Example 1. Each latex so prepared is evaluated as an opacifier according to the procedure set forth in Example 1, with the results shown in Table 1. The quantities of ingredients in Table 1 are expressed as parts by weight.
1 Considerable separation in less than 24 hours. 1 N 0 change in appearance after 30 days.
The results of opacifier evaluations of the latices prepared according to Examples 6 through 11 illustrate the essentiality of glycidyl methacrylate or glycidyl acrylate to the preparation of interpolymer latices which exhibit stability in opacifying aqueous liquid detergent compositions having an appreciable alcohol content. Example 11 demonstrates that increasing the glycidyl methacrylate content of the latex does not impair its opacifying capability.
EXAMPLE 12 An interpolymer latex is prepared as set forth in Example 1 with the exception that the addition of diethanolamine is omitted. The resultant pH is 5.7. When the detergent composition described in Example 1 is opacified using the copolymer latex of Example 12 and is tested for storage stability as before, there is a slight separation after one week. The stability of the detergent opacified with the latex of Example 12, when compared with the stability of the same detergent composition opacified with the latex of Example 1, illustrates the additional stability achieved by the regulation of the pH from 7 to 11.
EXAMPLE 13 Percent by Parts by Weight Weight Monomer Basis Kettle Charge: Water 815 Catalyst Premix:
Ammonia Persulfate 3.1 Water 15.0 Monomer Phase A:
Styrene 410 72. 4 Methacrylic Acid 26 4. 6 Divinylbenzeue (55% active) l 2 1. 0 Ammonium slat of sulfate ester of an alkylphenoxypoly (ethyleneoxy) Ethanol (58% active) 22. 8 Monomer Phase B:
Styrene 92 16.1 Methacrylic Acid 18 3.1 Glycidyl Methacrylate 16. 4 2. 9 Neutralization Charge: Aqueous Solution of Sodium Hydroxide 54 1 5.5 parts active. 2 Active.
The procedure followed in the preparation of the latex of Example 13 is that set forth in Example 1.
The resultant opacified detergent containing 1% by weight of the latext of Example 13 is stable for more than 30 days upon storage at 125 F.
EXAMPLE 14- Parts by Parts by Weight Weight per 100 Parts Total Monomer Kettle Charge:
Ammonium salt of sulfate ester of an alkylphenoxy-poly(ethyleneoxy) ethanol. 6. 5 Sodium bicarbonate 3.0 Water 580. 0 Catalyst Premix:
Ammonium persulfate 2. 0 Water 20.0
350.0 87.5 Methacrylic acid 15. 0 3. 7 Divinylbenzene (55% active) 1 9. 6 2 1. 3 Glycidyl methacrylate 30.0 7. 5 Neutralization Charge:
Diethanolamine 15. 0 Water 15.0
1 5.3 parts active. 2 Active.
The procedure followed is the same as that of Example 1 with the exception that the monomer phase is added as a single charge rather than the two step addition of Example 1.
The evaluation of the latex Example 14 as an opacifier was carried out in the same manner as that of Example 1. The resultant opacified latex is stable at 125 F. for two weeks.
8. EXAMPLE 15 This example illustrates the results obtained when the amount of divinylbenzene exceeds two parts per 100 parts of total monomer.
Parts by Parts by Weight Weight per'100 Parts Total Monomer Kettle Charge:
Ammonium salt of sulfate ester of an alkylphenoxypoly(ethyleneoxy)ethanol- Sodium bicarbonate Water Catalyst Premix;
Ammonium persulfate Water Monomer Phase A:
Styrene Methacrylic acid Divinylbenzene (55% active) Monomer Phase B:
Styrene Glycidyl methacrylate Methacrylic acid 1 13.2 active. 2 Active.
The procedure followed is the same as that of Example 1. In this instance, coagulation of the latex occurred When approximately three-fourths of monomer phase B was added.
EXAMPLE 1A6 opacified liquid detergent composition An opacified liquid detergent is prepared utilizing the COPOIYIIIGI latex obtained in Example 1. The ingredients listed below are dispersed in water to form a homogeneous aqueous dispersion:
Percent by weight Copolymer latex 40% solids (Example 1) 1 Isopropylalcohol 5 Ammonium salt of sulfate ester of an alkylphenoxypoly(ethyleneoxy)ethanol (58% minimum activity) (Alipal CO-436) 20 Laurie diethanolamide (Superamide L-9) 3 Alkyl arylsulfonate (57.5% active) (Ultrawet 60-K)- 25 Water 46 Acid (dilute sulfuric) to pH 6.5 to 7.5.
Tlu's'results in a milky, lotion-like detergent composition which exhibits excellent storage'stability.
EXAMPLE 17 Opacified liquid detergent composition Acid (dilute sulfuric) to pH 6.5 to 7.5.
This composition is an opalescent liquid which exhibits excellent storage stability.
9 EXAMPLE 1:;
Opacified liquid detergent composition Percent by weight Ten milliliters of each of the latices prepared in accordance with Examples 1 and 13 are added to approximately 100 milliliters of methanol with thorough mixing. The resultant mixture in each instance is homogeneous and free from evidence of coagulation or precipitation. The addition of an aqueous solution of hydrochloric acid containing approximately 10% by weight of HCl fails to induce coagulation in either of the above latices.
EXAMPLE 20 Each of the latices prepared in accordance with Examples 1 and 13 is allowed to evaporate at approximately 70 F. to obtain the nonvolatile matter of each. Each latex yields a powdery particulate solid which exhibits no film-forming tendencies and which is insoluble in acetone, methylethylketone, benzene, toluene and dimethylformamide.
From the foregoing examples, it may be seen that the novel copolymers of the present invention result in latices which are particularly useful in opacifying liquid detergents. Examples 1 through 11 demonstrate the criticality of the monomers glycidyl methacrylate and glycidyl acrylate in the compositions herein described to provide an opacified detergent solution displaying storage stability. Example 12 illustrates the optimum pH range of the finished latex. Example 13 illustrates the use of a quantity of glycidyl methacrylate which is substantially less than that used in Example 1.
Example 14 illustrates that it is possible to prepare the latices of the present invention by a single monomer admixture addition rather than a two phase technique. However, it will be observed that the resultant opacified liquid detergent employing such latex lacks that degree of stability which the same liquid detergent opacified with the latex of Example 1 displays. This lends weight to the premise that a two-step addition procedure produces a latex which has enhanced opacifying properties.
Example 15 demonstates the criticality of the ratio of divinylbenzene employed. The composition of Example 1, containing 1.3 percent by weight on a monomer basis of divinyl-benzene, is a stable and eifective opacifier latex, whereas the composition of Example 15, containing 2.1 weight percent of divinylbenzene results in a coagulated, useless mass.
Examples 16, 17 and 18 demonstrate various liquid detergent compositions which may be opacified by means of the present latices.
Example 19 underscores the unique stability of the present latices which are unalfected by the presence of large volumes of methanol, a solvent generally employed as a coagulating agent for aqueous polymer latices. Example 20 illustrates the non-film forming, cross-linked characteristics of the interpolymers of the present invention.
While several particular embodiments of this invention are shown above, it will be understood, of course, that the invention is not to be limited thereto, since many modifications may be made, and it is contemplated, therefore, by the appended claims, to cover any such modifications as fall within the true spirit and scope of this invention.
I claim:
1. A cross-linked interpolymer latex, said interpolymer comprising in cross-linked polymerized form from 78 to 96 parts by weight of a monomer selected from the group consisting of styrene and methylated styrene, from 1 to 20 parts by weight of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid, from 1 to 20 parts by weight of a monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and up to two parts by weight of divinylbenzene, the proportions of said monomers being selected to total 100 parts by weight in the aggregate, said latex being further characterized in being resistant to coagulation by methanol.
2. The latex of claim 1 wherein the average particle size is less than 0.5 micron.
3. A cross-linked interpolymer latex, said interpolymer comprising in cross-linked polymerized form from to 95 parts by weight of a monomer selected from the group of styrene and methylated styrene, from 1 to 10 par-ts by weight of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid, from 1 to 10 parts by weight of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and divinylbenzene in an amount of up to 2 parts by weight per hundred parts of total monomer, the monomer in the aggregate totaling 100 parts and said latex being characterized in being resistant to coagulation by methanol.
4. A cross-linked interpolymer latex, said interpolymer containing in polymerized form from 78 to 96 parts by weight of styrene, from 1 to 20 parts by weight of methacrylic acid, from 1 to 20 parts by weight of glycidyl methacrylate, and divinyl benzene in an amount up to 2 parts by weight per hundred parts of monomer, the proportions of said monomers being selected to total 100 parts by weight, said latex being further characterized in being resistant to coagulation by methanol.
5. A process for preparing a cross-linked interpolymer latex, said interpolymer comprising in polymerized crosslinked form per 100 parts of said interpolymer from about 78 to about 96 parts of a styrene monomer selected from the group consisting of styrene and methylated styrenes; from about 1 to about 20 parts of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid; from about 1 to about 20 parts of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and up to about two parts of divinylbenzene; said process comprising adding and polymerizing in an aqueous interpolymerization reaction a first monomer fraction comprising an admixture of from about 60 to about weight percent of the total of the styrene monomers, from about 50 to about 80 weight percent of the unsaturated acid, and the divinylbenzene, and thereafter adding and polymerizing in the course of said aqueous iuterpolymerization reaction a second monomer fraction comprising an admixture of from about 10 to about 40 weight percent of the total of the styrene monomers, from about 20 to about 50 weight percent of the total of unsaturated acid and hydrophilic monomer.
6. A process for preparing a cross-linked interpolymer latex, said interpolymer comprising in polymerized crosslinked form per 100 parts of said interpolymer from about 85 to about parts of a styrene monomer selected from the group consisting of styrene and methylated styrenes, from about 1 to about 10 parts of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid, from about 1 to about 10 parts of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate, and up to about two parts of divinylbenzene; said process 1 1 comprising adding and polymerizing in an aqueous interpolymerization reaction a first monomer fraction comprising an admixture of from about 60 to about 90 weight percent of the styrene monomer, from about 50 to about 80 weight percent of the total of an unsaturated acid, and the divinylbenzene, and thereafter adding and polymerizing in the course of said' aqueous interpolymen'zation reaction a second monomer fraction comprising an admixture of from about 10 to about 40 Weight percent of the total of styrene monomer, from about 20 to about 50 weight percent of the unsaturated acid and the hydrophilic monomer.
7. A process for preparing a cross-linked interpolymer latex, said interpolymer comprising in polymerized, crosslinked form from 78 to 96 parts by weight of a styrene monomer selected from the group consisting of styrene and methylated styrene and from 1 to 20 parts by weight of an unsaturated acid selected from the group consisting of methacrylic acid, acrylic acid and itaconic acid; from 1 to 20 parts by weight of a hydrophilic monomer selected from the group consisting of glycidyl methacrylate and glycidyl acrylate; and up to 2 parts by weight of divinylbenzene per 100 parts of total monomer; said process comprising adding and polymerizing in an aqueous interpolymerization reaction a first monomer phase containing a majorproportion of the styrene monomer and the unsaturated acid and all of the divinylbenzene and thereafter adding as a second monomer phase the remaining minor proportionof the styrene monomer, the unsaturated acid and the hydrophilic monomer.
References Cited ,UNITED STATES PATENTS 2,604,463 7/1952 Bilton et al. 260-80.5
FOREIGN PATENTS 665,725 6/1963 Canada.
MURRAY TILLMAN, Primary Examiner.
20 W. J. BRIGGS, SR., Assistant Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 ,340 ,217 September 5 1967 Douglas Woodruff that error appears in th d that the said Letters Patent shou It is hereby certified e above numbered patent requiring correction an 1d read as corrected below line 37, for "locations" read lotions for "slat" read salt line 43, for line 66, for "lngepal" Column 1,
column 7 line 32 "latext" read latex column 8 read Igepal Signed and sealed this 10th day of September 1968 (SEAL) Attest:
EDWARD J. BRENNER Edward M. Fletcher, Jr.
Commissioner of Patents Attesting Officer

Claims (1)

1. A CROSS-LINKED INTERPOLYMER LATEX, SAID INTERPOLYMER COMPRISING IN CROSS-LINKED POLYMERIZED FORM FROM 78 TO 96 PARTS BY WEIGHT OF A MONOMER SELECTED FROM THE GROUP CONSISTING OF STYRENE AND METHYLATED STYRENE, FROM 1 TO 20 PARTS BY WEIGHT OF AN UNSATURATED ACID SELECTED FROM THE GROUP CONSISTING OF METHACRYLIC ACID, ACRYLIC ACID AND ITACONIC ACID, FROM 1 TO 20 PARTS BY WEIGHT OF A MONOMER SELECTED FROM THE GROUP CONSISTING OF GLYCIDYL METHACRYLATE AND GLYCIDYL ACRYLATE, AND UP TO TWO PARTS BY WEIGHT OF DIVINYLBENZENE, THE PROPORTIONS OF SAID MONOMERS BEING SELECTED TO TOTAL 100 PARTS BY WEIGHT IN THE AGGREGATE, SAID LATEX BEING FURTHER CHARACTERIZED IN BEING RESISTANT TO COAGULATION BY METHANOL.
US329873A 1963-12-11 1963-12-11 Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene Expired - Lifetime US3340217A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
NL131012D NL131012C (en) 1963-12-11
US329873A US3340217A (en) 1963-12-11 1963-12-11 Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene
DE19641570897 DE1570897A1 (en) 1963-12-11 1964-09-01 Process for the production of a latex of a crosslinked copolymer and a cleaning compound containing the same
GB36008/64A GB1071795A (en) 1963-12-11 1964-09-02 Cross-linked interpolymer latex and compositions comprising the same
NL6410258A NL6410258A (en) 1963-12-11 1964-09-03
FR987221A FR1416414A (en) 1963-12-11 1964-09-04 Cross-polymeric latex and compositions containing it
LU46898D LU46898A1 (en) 1963-12-11 1964-09-07
SE10806/64A SE320194B (en) 1963-12-11 1964-09-09
BE652923A BE652923A (en) 1963-12-11 1964-09-10
SE13552/66A SE323761B (en) 1963-12-11 1966-05-07
US635280A US3382177A (en) 1963-12-11 1967-03-09 Stabilized opaque detergent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US329873A US3340217A (en) 1963-12-11 1963-12-11 Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene

Publications (1)

Publication Number Publication Date
US3340217A true US3340217A (en) 1967-09-05

Family

ID=23287383

Family Applications (1)

Application Number Title Priority Date Filing Date
US329873A Expired - Lifetime US3340217A (en) 1963-12-11 1963-12-11 Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene

Country Status (1)

Country Link
US (1) US3340217A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639290A (en) * 1966-04-14 1972-02-01 Geigy Chem Corp Combined cleaning and antisoiling compositions
FR2813313A1 (en) * 2000-08-25 2002-03-01 Rhodia Chimie Sa COMPOSITION BASED ON NANOPARTICLES OR NANOLATEX POLYMERS FOR LAUNDRY CARE
FR2813312A1 (en) * 2000-08-25 2002-03-01 Rhodia Chimie Sa Fabric care composition, especially useful for treating cotton-based fabrics, comprises a water-insoluble polymer nanolatex
US20030109413A1 (en) * 2001-07-11 2003-06-12 Cedric Geffroy Process for cleaning a surface using an aqueous composition containing a dispersed polymer
EP1776945A1 (en) 2005-10-20 2007-04-25 Cognis IP Management GmbH Opacifiers containing styrene copolymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604463A (en) * 1949-04-28 1952-07-22 Canadian Ind Cross-linkable and cross-linked vinyl type copolymers
CA665725A (en) * 1963-06-25 R. Meincke Edmund Latex base for surface coating composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA665725A (en) * 1963-06-25 R. Meincke Edmund Latex base for surface coating composition
US2604463A (en) * 1949-04-28 1952-07-22 Canadian Ind Cross-linkable and cross-linked vinyl type copolymers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639290A (en) * 1966-04-14 1972-02-01 Geigy Chem Corp Combined cleaning and antisoiling compositions
FR2813313A1 (en) * 2000-08-25 2002-03-01 Rhodia Chimie Sa COMPOSITION BASED ON NANOPARTICLES OR NANOLATEX POLYMERS FOR LAUNDRY CARE
FR2813312A1 (en) * 2000-08-25 2002-03-01 Rhodia Chimie Sa Fabric care composition, especially useful for treating cotton-based fabrics, comprises a water-insoluble polymer nanolatex
WO2002018451A3 (en) * 2000-08-25 2003-09-18 Rhodia Chimie Sa Composition based on nanoparticles or nanolatex of polymers for treating linen
US20040038851A1 (en) * 2000-08-25 2004-02-26 Eric Aubay Composition based on nanoparticles or nanolatex of polymers for treating linen
US7071156B2 (en) 2000-08-25 2006-07-04 Rhodia Chimie Composition based on nanoparticles or a nanolatex of polymers for fabric care
US20060211594A1 (en) * 2000-08-25 2006-09-21 Rhodia Chimie Composition based on nanoparticles or a nanolatex of polymers for fabric care
US20090165216A1 (en) * 2000-08-25 2009-07-02 Eric Aubay Composition based on nanoparticles or a nanolatex of polymers for fabric care
US20030109413A1 (en) * 2001-07-11 2003-06-12 Cedric Geffroy Process for cleaning a surface using an aqueous composition containing a dispersed polymer
US7094747B2 (en) * 2001-07-11 2006-08-22 Rhodia Chimie Process for cleaning a surface using an aqueous composition containing a dispersed polymer
EP1776945A1 (en) 2005-10-20 2007-04-25 Cognis IP Management GmbH Opacifiers containing styrene copolymers
US20070128144A1 (en) * 2005-10-20 2007-06-07 Nuria Bonastre Gilabert Opacifiers

Similar Documents

Publication Publication Date Title
US5789511A (en) Methods for making styrene copolymers and uses thereof
JP5542434B2 (en) Cleaning composition having an amphoteric graft polymer based on polyalkylene oxide and vinyl ester
US3328309A (en) Stabilized liquid heavy duty detergent composition
US3810977A (en) Hair fixing composition and process containing a solid terpolymer
EP0011806B1 (en) Liquid emulsion polymers, process for preparing them and aqueous compositions thickened with these emulsions
DE3885507T2 (en) Films made from PVA modified with non-hydrolyzable anionic comonomers and containing additives.
US3513120A (en) Production of dispersions of polymers of styrene and esters of acrylic or methacrylic acid
US5324765A (en) Surfactant containing composition thickened with a copolymer based on an ethylenically unsaturated carboxylic acid and an N-alkyl acrylamide
EP0368214B1 (en) Use of partially esterified copolymers in liquid detergent compositions
JPH0639501B2 (en) Crotonic acid ester-containing copolymer, method for producing the same, and use thereof
JPS6241296A (en) Liquid detergent composition
NO794228L (en) METACRYLIC ACID EMULSION COPOLYMES FOR THICKNESS FORM
US4046726A (en) Floor finish composition and components thereof
US4153569A (en) Built liquid detergent
JPS61136502A (en) Emulsifying agent for polymerization
US3296167A (en) Process for polymerizing an ethylenically unsaturated amine-containing monomeric mixture
US3244658A (en) Process of preparing a stable aqueous emulsion
US4009139A (en) Opacifying agents
US3340217A (en) Crosslinked interpolymer latex of styrene, an unsaturated carboxylic acid, an unsaturated glycidyl compound and divinyl-benzene
US3663442A (en) Household bleach having stable opacifier
US5507971A (en) Liquid cleaners for hard surfaces
US3382177A (en) Stabilized opaque detergent composition
EP0636687A2 (en) Improvements in or relating to hydrotropes
US3503892A (en) Opacifier latices
US3862906A (en) Composition for cleaning hands and other parts of the body