US3330672A - Silver antitarnish compositions - Google Patents
Silver antitarnish compositions Download PDFInfo
- Publication number
- US3330672A US3330672A US378993A US37899364A US3330672A US 3330672 A US3330672 A US 3330672A US 378993 A US378993 A US 378993A US 37899364 A US37899364 A US 37899364A US 3330672 A US3330672 A US 3330672A
- Authority
- US
- United States
- Prior art keywords
- silver
- tarnish
- composition
- compositions
- cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 43
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title description 59
- 229910052709 silver Inorganic materials 0.000 title description 55
- 239000004332 silver Substances 0.000 title description 55
- -1 MERCAPTO ESTER Chemical class 0.000 claims description 39
- 239000004480 active ingredient Substances 0.000 claims description 6
- 239000004744 fabric Substances 0.000 description 16
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000001681 protective effect Effects 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000005498 polishing Methods 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 8
- XRYLGRGAWQSVQW-UHFFFAOYSA-N clorotepine Chemical compound C1CN(C)CCN1C1C2=CC(Cl)=CC=C2SC2=CC=CC=C2C1 XRYLGRGAWQSVQW-UHFFFAOYSA-N 0.000 description 8
- 239000008262 pumice Substances 0.000 description 8
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000005494 tarnishing Methods 0.000 description 7
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 229910000898 sterling silver Inorganic materials 0.000 description 6
- 239000010934 sterling silver Substances 0.000 description 6
- 239000003760 tallow Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- JQTFPHLEQLLQOT-UHFFFAOYSA-N octadecyl 2-sulfanylacetate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CS JQTFPHLEQLLQOT-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical class CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- WSNMPAVSZJSIMT-UHFFFAOYSA-N COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 Chemical compound COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 WSNMPAVSZJSIMT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- WVDDGKGOMKODPV-OCAPALNOSA-N dideuterio(phenyl)methanol Chemical compound [2H][13C]([2H])(O)C1=CC=CC=C1 WVDDGKGOMKODPV-OCAPALNOSA-N 0.000 description 1
- UUPXKAJPMYOPLF-UHFFFAOYSA-N dimethyl(octadecyl)azanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN(C)C UUPXKAJPMYOPLF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- VMOFMVRUKMJXBM-UHFFFAOYSA-N dodecyl 2-sulfanylpropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)S VMOFMVRUKMJXBM-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- WDRMFQRBFDVBPJ-UHFFFAOYSA-N hexadecyl 2-sulfanylacetate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CS WDRMFQRBFDVBPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052945 inorganic sulfide Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 1
- LFHBOSSJYCHNBJ-UHFFFAOYSA-N octadecyl 2-sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)S LFHBOSSJYCHNBJ-UHFFFAOYSA-N 0.000 description 1
- UPHWVVKYDQHTCF-UHFFFAOYSA-N octadecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN UPHWVVKYDQHTCF-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
Definitions
- This invention relates to a composition for cleaning and polishing silver and protecting the cleaned polished surface. Of course, it is evident it is useful for cleaning and polishing metals which act chemically like silver.
- the physical properties of silver make this metal useful in a number of important applications.
- One of the more important properties of the metal is its high reflectivity. It is this physical characteristic which makes it desirable for use in tableware, art objects, in jewelry, and in electrical components.
- silver is considered to be a chemically inert element, the metal when exposed to an atmosphere containing sulfur forms unsightly brown to black surface films. The tarnish which is a result of the formation of silver sulfide and silver oxide, detracts from the appearance of the metal and may also interfere with its use in specific applications.
- composition of matter containing several components, which (1) removes existing tarnish, (2) cleanses the metal surface, (3) protects the silver against further tarnish, and (4) imparts a high lustre to the surface.
- Metallic silver is used commercially in several diiferent forms. The most common are pure silver, silver alloys, and silverplate. Each of these has its resistance to tarnishing. For example, sterling silver develops tarnish less rapidly than electroplated silver. To complicate this problem further, electroplating baths for depositing silver contain additives which function as 'brighteners. These substances are plated with the silver on the base metal thus modifying the electrodeposited surface and its reaction to tarnish producing chemicals.
- an amine salt having a formula corresponding to R2 Mi X- I I RH where said composition being capable of preventing silver and its alloys from tarnishing when exposed to hydrogen sulfide and hydrogen sulfide generating chemicals.
- the composition is characterized by the presence of a pair of components, the long chain alkyl thio ester of a mercaptan and the long chain alkyl amine salt of water soluble acid. It is these ingredients which dissolve the tarnish and deposit the protective finish on silver.
- the abrasive carrier may be any usual polishing abrasive, e.g., pumice, rouge, diatomaceous earth, calcium carbonate etc., the degree of fineness being consistent with the high polished surface and hardness enough to Work on the film.
- the liquid carrier may be water, in which the active ingredients are emulsified, or dissolved, or it may be an organic solvent such as isopropanol, or chlorinated hydrocarbon,
- mercapto esters such as lauryl thiogylcolate, lauryl 2-mercaptopropionate, cetyl thioglycolate, stearyl thioglycolate, stearyl 2-mercaptopropionate, etc. are capable of imparting antitarnish protection to silver.
- This protective film is essentially monomolecular and is different from that described for the high molecular weight mercaptan, in that this protection is transient in nature, because the effect wears off after a few days.
- the mercapto esters form protective films which are colorless and enhance the reflective properties of the silver. This formation of colorless film is highly desirable for silverware, tableware, decorative items, and other objects where the bright natural lustre of silver is desired.
- This invention therefore is concerned with compositions of matter which improve the antitarnish properties of the mercapto esters.
- the amines which can be used in these formulations are straight chain alkyl groups containing 12 to 18 carbon atoms.
- the amines may be primary, secondary or tertiary.
- Dodecylamine, dimethyl hydrogenated tallow amine, N- ethyl, N-hexadecylamine, Octadecylamine are examples of the amines which have been used.
- Unsaturated amines such as octadecenyl amine, amines derived from the un saturated fatty acids present in soy bean oil or peanut oil have also been used.
- the organic acids which are used to neutralize the amines are acetic acid, formic acid, citric acid, malic acid, maleic acid, fumaric acid, etc.
- the composition of matter may be used for removal of tarnish and imparting a protective film in a single treatment.
- a nonionic surfactant in the formulation will provide a cleansing action and a means of dispersing the tarnish removed by the polishing action.
- the surfactant will also aid in the rinsing and cleaning of the polished silver, which on drying will exhibit a high lustre.
- Mixtures of mercapto ester and amine salt may be emulsified in water, and these emulsions are capable of imparting a protective film to silver immersed in the liquid. These compositions are not limited to use in aqueous vehicles. Mixtures of mercapto esters and amine salts may be dissolved in organic solvents such as trichlorethylene or isopropanol. Silver plated test panels, sterling silver dinnerware and other objects immersed in these solutions develop an invisible protective coating which will protect the metal from tarnishing when exposed to sulfur contaminated atmospheres and especially highconcentration s of water soluble inorganic sulfides.
- compositions of matter of this invention may be used is to impregnate a soft cotton flannel cloth or cellulose sponge with a mixture of mercapto ester, amine salt, and abrasive.
- This cloth when moistened with water, can be used to polish silver.
- the polishing process will remove tarnish and produce an antitarnish protective film on the metal.
- Copper panels, 2 inch x 2 inch, plated with silver and polished to a high lustre were thoroughly rubbed with the above composition. After rinsing the treated panels in running water, they were wiped clean with a soft cloth. The treated panels were immersed in an 0.3% solution of potassium sulfide in Water for five minutes. No tarnish was evident after minutes immersion. An untreated panel turned black in 30 seconds.
- Example III Parts Lauryl thioglycolate 3.0 N-methyl N-dodecylamine formate 1.0 Pumice, fine 4.0 Calcium carbonate 4.0
- Two sterling silver candy bowls 3 inches in diameter, were polished with the paste described in this example.
- One of the bowls was placed in an 0.3% solution of potassium sulfide for ten minutes, No tarnish Was detected on the bowl.
- the second bowl was stored for'2 hours in an atmosphere of hydragen sulfide generated from a solution of ammonium sulfide. At the end of this time, there was only a faint trace of tarnish on the treated bowl whereas an untreated control had a black film.
- Example IV The following test was carried out to demonstrate the difference between a silver polish containing a straight chain alkyl mercaptan and a mercapto ester.
- This product was compared to a commercial silver polish A which contains a high molecular weight straight mercaptan.
- One panel was polished with commercial silver polish A and the second panel was polished with the composition described in this example.
- the polished panels were rinsed in lukewarm tap Water and dried with soft flannel cloths.
- the panel which had been cleaned with the commercial polish had a faint yellowish color whereas the second test panel retained the bright metallic lustre of the original silverplate.
- Both panels were immersed in a fresh 0.3% solution of potassium sulfide maintained at a temperature of 25 C. After five minutes, the panel treated with commercial polish began to show brown spots of tarnish whereas the panel cleaned with the composition described in this example showed no stains. After 10 minutes, the first panel (polished with the commercial polish) showed a The mixture of mercapto ester and amine salt is useful for preparation of silver antitarnish polishing cloths.
- the cloths were prepared as follows: stearyl thioglycolate, grams, and tallow amine acetate, 3.0 grams, Was dissolved in 33 grams of isopropanol.
- the solution was added to 54 grams of a commercial suspension of pumice.
- the solution was uniformly dispersed and coated on a No. 4 cotton flannel weighing 2.7 grams.
- the pickup of the dispersion by the cloth was 12.0 grams.
- the treated cloth was air dried for 12 hours.
- the pickup of solid on the dried cloth was 6.9 grams or 2.5 grams of solid/ gram of cloth.
- a similar cloth was prepared using the suspension of pumice only and omitting the stearyl thioglycolate and tallow amine acetate.
- Two 2 inch x 2 inch silver plated panels were immersed in a 1% solution of potassium sulfide until thoroughly stained. The panels were rinsed and dried.
- Panel 1 was cleaned with a moistened cloth treated with pumice suspension but not containing stearyl thioglycolate and tallow amine acetate. The cloth removed the tarnish readily.
- Panel 2 was treated similarly with cloth containing the pumice, stearyl thioglycolate, and tallow amine acetate. This cloth removed the tarnish readily.
- Panel 1 and panel 2 were immersed in a 1% solution of potassium sulfide for minutes.
- Example VI The following formulation was used to treat silver plated samples by immersion into an organic solvent.
- Octadecyl thioglycolate 120 grams, is dissolved in 3800 milliliters of trichloroethylene. Tallow amine acetate, 40.0 grams, is dissolved in this solution.
- a sterling silver mug was immersed in this solution for 15 minutes.
- the mug was removed from the solution and rinsed in clean trichloroethylene.
- the sterling silver mug did not tarnish when immersed in an 0.5% solution of potassium sulfide for 10 minutes.
- Example VII Octadecylamine acetate, 4.0 grams, was added to 12.0 grams of octadecyl thioglycolate, and the mixture was warmed to 80 C. A clear amber liquid was obtained. The oil was dispersed in 300 milliliters of water heated to 70 C. A milky white emulsion was obtained.
- Silver plated panels were immersed in this emulsion for ten minutes and then rinsed rapidly in isopropanol and dried in a jet of warm dry air.
- the treated panels were bright and lustrous, and no superficial films could be detected visually.
- the panels were treated in a closed container having atmosphere equivalent to 200 parts per million of hydrogen sulfide. The panels did not develop a tarnish film in six hours whereas untreated controls were tarnished within 15 minutes.
- composition wherein active ingredients consist essentially of 0.1-10 parts of a mercapto ester having the structure II HS(CH2) 11-0-03.
- n is an integer of value in the range 1 and 2
- R is any alkyl group containing 12 to about 18 carbon atoms
- 0.1 to 10 parts of an amine salt having the formula R is an alkyl group containing 8 to about 20 carbon atoms
- R and R are selected from the group consisting of hydrogen, methyl, and ethyl
- X is the anion derived from a low molecular weight water soluble organic acid
- composition being capable of preventing silver and its alloys from tarnishing when exposed to hydrogen sulfide and hydrogen sulfide generating compositions.
- a composition of matter as defined in claim 1 which includes 0.1 to about 10 parts of a polishing abrasive agent, said composition being capable of removing tarnish from the surface of silver and its alloys, and imparting a film to the metal surface which will prevent the formation of new tarnish.
- a process for preventing the formation of tarnish on silver and its alloys which comprises cleaning the surface of said silver with a composition of matter described in claim 1.
- a process for removing tarnish from silver and its alloys and preventing the formation of tarnish which comprises cleaning the surface of said silver with the composition in claim 2.
- a process for removing tarnish from silver and its alloys and preventing the formation of tarnish which comprises cleaning the surface of said silver with the polishing cloth described in claim 3.
- composition of matter described in claim 1 dissolved in a water insoluble organic solvent, said composition being capable of preventing silver and its alloys from tarnishing.
- composition of matter wherein active ingredients consist essentially of from 0.1% to 10% of stearyl thioglycolate and 0.1% to 10 stearyl dimethylamine acetate.
- composition of matter as defined in claim 1 wherein active ingredients consist essentially of from 0.1% to 10% of stearyl thioglycolate, 0.1% to 10% stearyl dimethylamine salt, and 0.1% to 20% of a mixture of diatomaceous earth and calcium carbonate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Detergent Compositions (AREA)
Description
United States Patent 3,330,67 SILVER ANTITARNHSH COMPOSITIONS Harry Kroll, Warwick, Alderic R. Therrieu, Jr., Woonsocket, and Phyllis W. Bennett, North Scituate, R.I.,
assignors, by mesne assignments, to Philip A. Hunt Chemical Corporation, a corporation of Delaware N0 Drawing. Filed June 29, 1964, Ser. No. 378,993
Claims. (Cl. 106-3) This invention relates to a composition for cleaning and polishing silver and protecting the cleaned polished surface. Of course, it is evident it is useful for cleaning and polishing metals which act chemically like silver.
The physical properties of silver make this metal useful in a number of important applications. One of the more important properties of the metal is its high reflectivity. It is this physical characteristic which makes it desirable for use in tableware, art objects, in jewelry, and in electrical components. Although silver is considered to be a chemically inert element, the metal when exposed to an atmosphere containing sulfur forms unsightly brown to black surface films. The tarnish which is a result of the formation of silver sulfide and silver oxide, detracts from the appearance of the metal and may also interfere with its use in specific applications.
It is the purpose of this invention to provide a composition of matter, containing several components, which (1) removes existing tarnish, (2) cleanses the metal surface, (3) protects the silver against further tarnish, and (4) imparts a high lustre to the surface.
Metallic silver is used commercially in several diiferent forms. The most common are pure silver, silver alloys, and silverplate. Each of these has its resistance to tarnishing. For example, sterling silver develops tarnish less rapidly than electroplated silver. To complicate this problem further, electroplating baths for depositing silver contain additives which function as 'brighteners. These substances are plated with the silver on the base metal thus modifying the electrodeposited surface and its reaction to tarnish producing chemicals.
There are other factors which influence the rate of tarnish formation on silverplate or sterling silver. Cutlery, flatware, and holloware are exposed to proteinaceous foodstuffs. Depending on their prior treatment, these foods contain varying amounts of hydrogen sulfide and sulfur-containing natural products. Tarnish produced by eggs on silverware is a well known example. The combustion of solid and liquid fuels is perhaps the most common source of sulfur contamination in the atmosphere. All forms of silver When exposed to atmospheres containing minute amounts of combustion products develop a tenacious brown tarnish.
It is the purpose of this deview of the factors contributing to the formation of silver tarnish to point out the complexity of this process and to emphasize that different types of tarnish may be produced on silver surfaces. Despite the complicated nature of tarnish formation, it is the object of this invention to disclose novel compositions of matter for removing all types of silver tarnish and to protect silver against the formation of tarnish regardless of the causative factors.
A number of chemical treatments have been proposed for preventing the tarnishing of silver. In the electronics industry, silver contacts have been plated with rhodium, gold, or platinum. This process is expensive and is unsuitable for many items produced from silver and its alloys. Various types of chromate treatments have also been described. These include both chemical and electrochemical depositions. These protective coatings afford silver a limited protection but because of the toxicity of chromium salts, they cannot be used on silver plate or silverware in contact with edibles. A further disadvan- 3,330,672 Patented July 11, 1967 tage of chromate treatment is the difliculty in producing consistent protection. Lacquer and silicone coatings have also been used, but these coatings are only effective as long as the film remains intact. Abrasions and other breakthroughs of the protective film exposes the silver to the tarnishing process.
More recently, high molecular weight straight chain alkyl mercaptans, such as octadecyl mercaptan, have been proposed as antitarnishing agents. Although these compounds provide a temporary protection, they tend to dull the lustre of bright silver and its alloys and they leave an objectionable greasy film on the surface of the metal.
The removal of tarnish from the surface of metallic silver :and depositing simultaneously a protective film is a delicate process involving several chemical reactions and requires the blending of several components, which if not compatible, will fail to produce the desired effect. The removal of the tarnish film from the surface of the silver while at the same time depositing a protective film is obviously a complex process but the formulations of this invention achieve this objective.
Other objects and advantages of this invention will in part be obvious and in part appear hereinafter.
This invention accordingly is in a composition of mat-- ter comprising a liquid carrier, or solid, finely divided abrasive carrier, containing '0.l10% of a mercapto ester having a structure corresponding to n=1 or 2, and R is a straight or branched alkyl group containing 12 to 18 carbon atoms, and
0.1% to 10% of an amine salt having a formula corresponding to R2 Mi X- I I RH where said composition being capable of preventing silver and its alloys from tarnishing when exposed to hydrogen sulfide and hydrogen sulfide generating chemicals.
The composition is characterized by the presence of a pair of components, the long chain alkyl thio ester of a mercaptan and the long chain alkyl amine salt of water soluble acid. It is these ingredients which dissolve the tarnish and deposit the protective finish on silver. The abrasive carrier may be any usual polishing abrasive, e.g., pumice, rouge, diatomaceous earth, calcium carbonate etc., the degree of fineness being consistent with the high polished surface and hardness enough to Work on the film.
The liquid carrier may be water, in which the active ingredients are emulsified, or dissolved, or it may be an organic solvent such as isopropanol, or chlorinated hydrocarbon,
Within this family of compounds mercapto esters such as lauryl thiogylcolate, lauryl 2-mercaptopropionate, cetyl thioglycolate, stearyl thioglycolate, stearyl 2-mercaptopropionate, etc. are capable of imparting antitarnish protection to silver. This protective film is essentially monomolecular and is different from that described for the high molecular weight mercaptan, in that this protection is transient in nature, because the effect wears off after a few days. However, in contrast to the tenacious mercaptan film, produced by the high molecular weight alkyl mercaptans, which produce a yellowish and undesirable hue on the polished silver surface, the mercapto esters form protective films which are colorless and enhance the reflective properties of the silver. This formation of colorless film is highly desirable for silverware, tableware, decorative items, and other objects where the bright natural lustre of silver is desired.
This invention therefore is concerned with compositions of matter which improve the antitarnish properties of the mercapto esters. To produce a more lasting protective action, we have :found that the organic salts of high molecular weight amines when blended with the mercapto esters increase the durability of the antitarnish protection. The amines which can be used in these formulations are straight chain alkyl groups containing 12 to 18 carbon atoms. The amines may be primary, secondary or tertiary. Dodecylamine, dimethyl hydrogenated tallow amine, N- ethyl, N-hexadecylamine, Octadecylamine are examples of the amines which have been used. Unsaturated amines such as octadecenyl amine, amines derived from the un saturated fatty acids present in soy bean oil or peanut oil have also been used. The organic acids which are used to neutralize the amines are acetic acid, formic acid, citric acid, malic acid, maleic acid, fumaric acid, etc.
When a mixture of the mercapto ester and amine is formulated with abrasive agents such as calcium carbonate, finely powdered pumice, or selected forms of diatomaceous earths, the composition of matter may be used for removal of tarnish and imparting a protective film in a single treatment. The incorporation of a nonionic surfactant in the formulation will provide a cleansing action and a means of dispersing the tarnish removed by the polishing action. The surfactant will also aid in the rinsing and cleaning of the polished silver, which on drying will exhibit a high lustre.
Mixtures of mercapto ester and amine salt may be emulsified in water, and these emulsions are capable of imparting a protective film to silver immersed in the liquid. These compositions are not limited to use in aqueous vehicles. Mixtures of mercapto esters and amine salts may be dissolved in organic solvents such as trichlorethylene or isopropanol. Silver plated test panels, sterling silver dinnerware and other objects immersed in these solutions develop an invisible protective coating which will protect the metal from tarnishing when exposed to sulfur contaminated atmospheres and especially highconcentration s of water soluble inorganic sulfides.
Another novel way in which the compositions of matter of this invention may be used is to impregnate a soft cotton flannel cloth or cellulose sponge with a mixture of mercapto ester, amine salt, and abrasive. This cloth, when moistened with water, can be used to polish silver. The polishing process will remove tarnish and produce an antitarnish protective film on the metal.
The following examples illustrate the compositions of matter and demonstrate the novel features of the invention.
Exdmple I Parts Stearyl 2-mercaptopropionate 3 Octadecylamine acetate 1 (Surfactant nonylphenol plus 6 moles ethylene oxide) 2 The above chemicals were mixed to yield a clear solution and added to 86 parts of water. To this emulsion was added 8 parts of calcium carbonate.
Copper panels, 2 inch x 2 inch, plated with silver and polished to a high lustre were thoroughly rubbed with the above composition. After rinsing the treated panels in running water, they were wiped clean with a soft cloth. The treated panels were immersed in an 0.3% solution of potassium sulfide in Water for five minutes. No tarnish was evident after minutes immersion. An untreated panel turned black in 30 seconds.
Example 11 Parts Octadecyl thioglycolate 3.0 Tallow amine acetate 0.5 Calcium carbonate 7.0 Pumice, fine 1.0 Water 86.0
Example III Parts Lauryl thioglycolate 3.0 N-methyl N-dodecylamine formate 1.0 Pumice, fine 4.0 Calcium carbonate 4.0
V'Jater 86.0
The above formulation was made up according to the procedure in Example I.
Two sterling silver candy bowls, 3 inches in diameter, were polished with the paste described in this example. One of the bowls was placed in an 0.3% solution of potassium sulfide for ten minutes, No tarnish Was detected on the bowl. The second bowl was stored for'2 hours in an atmosphere of hydragen sulfide generated from a solution of ammonium sulfide. At the end of this time, there was only a faint trace of tarnish on the treated bowl whereas an untreated control had a black film.
Example IV The following test was carried out to demonstrate the difference between a silver polish containing a straight chain alkyl mercaptan and a mercapto ester.
The following formulation was prepared by the process of Example I.
This product was compared to a commercial silver polish A which contains a high molecular weight straight mercaptan.
Two silver plated panels were immersed in an 0.3% potassium sulfide solution for five minutes. A blue black tarnish formed on the two test panels.
One panel was polished with commercial silver polish A and the second panel was polished with the composition described in this example.
The polished panels were rinsed in lukewarm tap Water and dried with soft flannel cloths. The panel which had been cleaned with the commercial polish had a faint yellowish color whereas the second test panel retained the bright metallic lustre of the original silverplate.
Both panels were immersed in a fresh 0.3% solution of potassium sulfide maintained at a temperature of 25 C. After five minutes, the panel treated with commercial polish began to show brown spots of tarnish whereas the panel cleaned with the composition described in this example showed no stains. After 10 minutes, the first panel (polished with the commercial polish) showed a The mixture of mercapto ester and amine salt is useful for preparation of silver antitarnish polishing cloths.
The cloths were prepared as follows: stearyl thioglycolate, grams, and tallow amine acetate, 3.0 grams, Was dissolved in 33 grams of isopropanol. The solution was added to 54 grams of a commercial suspension of pumice. The solution was uniformly dispersed and coated on a No. 4 cotton flannel weighing 2.7 grams. The pickup of the dispersion by the cloth was 12.0 grams. The treated cloth was air dried for 12 hours. The pickup of solid on the dried cloth was 6.9 grams or 2.5 grams of solid/ gram of cloth.
A similar cloth was prepared using the suspension of pumice only and omitting the stearyl thioglycolate and tallow amine acetate.
Two 2 inch x 2 inch silver plated panels were immersed in a 1% solution of potassium sulfide until thoroughly stained. The panels were rinsed and dried.
Panel 1 was cleaned with a moistened cloth treated with pumice suspension but not containing stearyl thioglycolate and tallow amine acetate. The cloth removed the tarnish readily.
Panel 2 was treated similarly with cloth containing the pumice, stearyl thioglycolate, and tallow amine acetate. This cloth removed the tarnish readily.
Panel 1 and panel 2 were immersed in a 1% solution of potassium sulfide for minutes.
The results were that panel 1 was badly tarnished Whereas panel '2 remained untarnished.
One the basis of this and a long sequence of like experiments with various combinations of mercapto ester and amine salt, it was concluded that the mercapto ester and amine salt plus a polishing agent could be impregnated on a suitable fabric which in turn can be used to impart an antitarnish preventative on silver.
Example VI The following formulation was used to treat silver plated samples by immersion into an organic solvent.
Octadecyl thioglycolate, 120 grams, is dissolved in 3800 milliliters of trichloroethylene. Tallow amine acetate, 40.0 grams, is dissolved in this solution.
A sterling silver mug was immersed in this solution for 15 minutes. The mug was removed from the solution and rinsed in clean trichloroethylene. The sterling silver mug did not tarnish when immersed in an 0.5% solution of potassium sulfide for 10 minutes.
Example VII Octadecylamine acetate, 4.0 grams, was added to 12.0 grams of octadecyl thioglycolate, and the mixture was warmed to 80 C. A clear amber liquid was obtained. The oil was dispersed in 300 milliliters of water heated to 70 C. A milky white emulsion was obtained.
Silver plated panels were immersed in this emulsion for ten minutes and then rinsed rapidly in isopropanol and dried in a jet of warm dry air.
The treated panels were bright and lustrous, and no superficial films could be detected visually. The panels were treated in a closed container having atmosphere equivalent to 200 parts per million of hydrogen sulfide. The panels did not develop a tarnish film in six hours whereas untreated controls were tarnished within 15 minutes.
What is claimed is:
1. A composition wherein active ingredients consist essentially of 0.1-10 parts of a mercapto ester having the structure II HS(CH2) 11-0-03.
where n is an integer of value in the range 1 and 2, and R is any alkyl group containing 12 to about 18 carbon atoms, and 0.1 to 10 parts of an amine salt having the formula R is an alkyl group containing 8 to about 20 carbon atoms, R and R are selected from the group consisting of hydrogen, methyl, and ethyl, and
X is the anion derived from a low molecular weight water soluble organic acid,
said composition being capable of preventing silver and its alloys from tarnishing when exposed to hydrogen sulfide and hydrogen sulfide generating compositions.
2. A composition of matter as defined in claim 1 which includes 0.1 to about 10 parts of a polishing abrasive agent, said composition being capable of removing tarnish from the surface of silver and its alloys, and imparting a film to the metal surface which will prevent the formation of new tarnish.
3. A polishing cloth impregnated with the composition of matter described in claim 2, capable of removing tarnish from silver and its alloys, and imparting a protective film to the metal surface which prevents the formation of new tarnish.
4. A process for preventing the formation of tarnish on silver and its alloys, which comprises cleaning the surface of said silver with a composition of matter described in claim 1.
5. A process for removing tarnish from silver and its alloys and preventing the formation of tarnish which comprises cleaning the surface of said silver with the composition in claim 2.
6. A process for removing tarnish from silver and its alloys and preventing the formation of tarnish which comprises cleaning the surface of said silver with the polishing cloth described in claim 3.
7. A composition of matter described in claim 1 dissolved in a water insoluble organic solvent, said composition being capable of preventing silver and its alloys from tarnishing.
8. A composition of matter wherein active ingredients consist essentially of from 0.1% to 10% of stearyl thioglycolate and 0.1% to 10 stearyl dimethylamine acetate.
9. A composition of matter as defined in claim 1 wherein active ingredients consist essentially of from 0.1% to 10% of stearyl thioglycolate, 0.1% to 10% stearyl dimethylamine salt, and 0.1% to 20% of a mixture of diatomaceous earth and calcium carbonate.
10. A cotton cloth impregnated with a composition as defined in claim 1 wherein active ingredients consist essentially of 0.1% to 10% of stearyl thioglycolate, 0.1% to 10 %of stearyl dimethylamine salt, and 0.1% to 20% of finely divided polishing abrasive materials.
References Cited UNITED STATES PATENTS 2,841,501 7/1958 Murphy ..1063
Claims (1)
1. A COMPOSITION WHEREIN ACTIVE INGREDIENTS CONSIST ESSENTIALLY OF 3.1-10 PARTS OF A MERCAPTO ESTER HAVING THE STRUCTURE
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US378993A US3330672A (en) | 1964-06-29 | 1964-06-29 | Silver antitarnish compositions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US378993A US3330672A (en) | 1964-06-29 | 1964-06-29 | Silver antitarnish compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US3330672A true US3330672A (en) | 1967-07-11 |
Family
ID=23495377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US378993A Expired - Lifetime US3330672A (en) | 1964-06-29 | 1964-06-29 | Silver antitarnish compositions |
Country Status (1)
Country | Link |
---|---|
US (1) | US3330672A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3498800A (en) * | 1967-09-11 | 1970-03-03 | Phillips Petroleum Co | Tarnish preventive agent |
US4006026A (en) * | 1973-02-21 | 1977-02-01 | Schering Aktiengesellschaft | Method of improving the tarnish resistance of silver |
US4053329A (en) * | 1976-04-02 | 1977-10-11 | Ppg Industries, Inc. | Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material |
US4093780A (en) * | 1972-08-21 | 1978-06-06 | Noranda Mines Limited | Treatment of zinc surfaces to inhibit wet storage staining and products employed therein |
US4744948A (en) * | 1987-06-04 | 1988-05-17 | Texaco Inc. | Thiol ester corrosion inhibition system |
US4755223A (en) * | 1986-08-22 | 1988-07-05 | Antonio Castaldo | Liquid composition for cleaning and polishing cymbals comprising kaolin clay |
US4873139A (en) * | 1988-03-29 | 1989-10-10 | Minnesota Mining And Manufacturing Company | Corrosion resistant silver and copper surfaces |
US5487792A (en) * | 1994-06-13 | 1996-01-30 | Midwest Research Institute | Molecular assemblies as protective barriers and adhesion promotion interlayer |
US20020150692A1 (en) * | 1994-12-09 | 2002-10-17 | Soutar Andrew Mcintosh | Printed circuit board manufacture |
US6896739B1 (en) | 2003-12-03 | 2005-05-24 | For Your Ease Only, Inc. | Anti-tarnish aqueous treatment |
US20070039665A1 (en) * | 2003-03-31 | 2007-02-22 | Johns Peter G | Enhancing silver tarnish-resistance |
US20070277906A1 (en) * | 2004-03-30 | 2007-12-06 | Middlesex Silver Co., Limited | Water-Based Metal Treatment Composition |
USRE45175E1 (en) | 1994-12-09 | 2014-10-07 | Fry's Metals, Inc. | Process for silver plating in printed circuit board manufacture |
USRE45297E1 (en) | 1996-03-22 | 2014-12-23 | Ronald Redline | Method for enhancing the solderability of a surface |
USRE45842E1 (en) | 1999-02-17 | 2016-01-12 | Ronald Redline | Method for enhancing the solderability of a surface |
USRE45881E1 (en) | 1996-03-22 | 2016-02-09 | Ronald Redline | Method for enhancing the solderability of a surface |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2841501A (en) * | 1957-04-17 | 1958-07-01 | James G Murphy | Silver polish |
-
1964
- 1964-06-29 US US378993A patent/US3330672A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2841501A (en) * | 1957-04-17 | 1958-07-01 | James G Murphy | Silver polish |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3498800A (en) * | 1967-09-11 | 1970-03-03 | Phillips Petroleum Co | Tarnish preventive agent |
US4093780A (en) * | 1972-08-21 | 1978-06-06 | Noranda Mines Limited | Treatment of zinc surfaces to inhibit wet storage staining and products employed therein |
US4006026A (en) * | 1973-02-21 | 1977-02-01 | Schering Aktiengesellschaft | Method of improving the tarnish resistance of silver |
US4053329A (en) * | 1976-04-02 | 1977-10-11 | Ppg Industries, Inc. | Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material |
US4755223A (en) * | 1986-08-22 | 1988-07-05 | Antonio Castaldo | Liquid composition for cleaning and polishing cymbals comprising kaolin clay |
US4744948A (en) * | 1987-06-04 | 1988-05-17 | Texaco Inc. | Thiol ester corrosion inhibition system |
US4873139A (en) * | 1988-03-29 | 1989-10-10 | Minnesota Mining And Manufacturing Company | Corrosion resistant silver and copper surfaces |
US5487792A (en) * | 1994-06-13 | 1996-01-30 | Midwest Research Institute | Molecular assemblies as protective barriers and adhesion promotion interlayer |
US20110192638A1 (en) * | 1994-12-09 | 2011-08-11 | Enthone Inc. | Silver immersion plated printed circuit board |
US20020150692A1 (en) * | 1994-12-09 | 2002-10-17 | Soutar Andrew Mcintosh | Printed circuit board manufacture |
US9072203B2 (en) | 1994-12-09 | 2015-06-30 | Enthone Inc. | Solderability enhancement by silver immersion printed circuit board manufacture |
USRE45279E1 (en) | 1994-12-09 | 2014-12-09 | Fry's Metals, Inc. | Process for silver plating in printed circuit board manufacture |
USRE45175E1 (en) | 1994-12-09 | 2014-10-07 | Fry's Metals, Inc. | Process for silver plating in printed circuit board manufacture |
USRE45297E1 (en) | 1996-03-22 | 2014-12-23 | Ronald Redline | Method for enhancing the solderability of a surface |
USRE45881E1 (en) | 1996-03-22 | 2016-02-09 | Ronald Redline | Method for enhancing the solderability of a surface |
USRE45842E1 (en) | 1999-02-17 | 2016-01-12 | Ronald Redline | Method for enhancing the solderability of a surface |
US20070039665A1 (en) * | 2003-03-31 | 2007-02-22 | Johns Peter G | Enhancing silver tarnish-resistance |
US7037379B2 (en) | 2003-12-03 | 2006-05-02 | For Your Ease Only, Inc. | Anti-tarnish aqueous treatment |
US20050148480A1 (en) * | 2003-12-03 | 2005-07-07 | For Your Ease Only, Inc. | Anti-tarnish aqueous treatment |
US6896739B1 (en) | 2003-12-03 | 2005-05-24 | For Your Ease Only, Inc. | Anti-tarnish aqueous treatment |
US20050121052A1 (en) * | 2003-12-03 | 2005-06-09 | For Your Ease Only, Inc. | Anti-tarnish aqueous treatment |
US20070277906A1 (en) * | 2004-03-30 | 2007-12-06 | Middlesex Silver Co., Limited | Water-Based Metal Treatment Composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3330672A (en) | Silver antitarnish compositions | |
US3248235A (en) | Anti-tarnish composition for coppercontaining surfaces | |
US2628199A (en) | Tarnish remover | |
US4999054A (en) | Gold plating solutions, creams and baths | |
US2841501A (en) | Silver polish | |
US5019288A (en) | Cleaning composition for copper and copper alloys and method of manufacture thereof | |
US3653931A (en) | Anti-tarnish composition for metal surfaces and process for its use | |
JPH07505182A (en) | Cleaning compositions for hard surfaces, especially glass | |
US4483887A (en) | Metal plating iron-containing substrates | |
US3365312A (en) | Metal cleaner, article and method | |
US3398003A (en) | Silver polish-tarnish retarder containing a dialkyl disulfide having from 8 to 20 carbon atoms in each alkyl radical | |
GB2201163A (en) | Electroless silver plating compositions | |
US2144642A (en) | Composition for and method of preventing silver from tarnishing | |
US4006026A (en) | Method of improving the tarnish resistance of silver | |
US4832743A (en) | Gold plating solutions, creams and baths | |
CA1300318C (en) | Solutions and creams for silver plating and polishing | |
US3117012A (en) | Silver polish | |
US3352695A (en) | Silver polish containing di-n-hexadecyl disulfide | |
US3282848A (en) | Process and composition for the removal of tarnish on metals | |
US3410703A (en) | Silver and copper tarnish preventatives | |
DE1949463B2 (en) | Agent containing aminomethyl-substituted polysiloxanes and its use for the production of water-repellent and gloss-imparting coatings | |
US3741834A (en) | Metal tarnish removers | |
US2315852A (en) | Method of inhibiting corrosion | |
US2059052A (en) | Cleaning and polishing material | |
EP0102986B1 (en) | A non-abrasive metal cleaning agent |