US3320761A - Single evaporator, single fan combination refrigerator - Google Patents

Single evaporator, single fan combination refrigerator Download PDF

Info

Publication number
US3320761A
US3320761A US455227A US45522765A US3320761A US 3320761 A US3320761 A US 3320761A US 455227 A US455227 A US 455227A US 45522765 A US45522765 A US 45522765A US 3320761 A US3320761 A US 3320761A
Authority
US
United States
Prior art keywords
air
evaporator
fresh food
chamber
food compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US455227A
Other languages
English (en)
Inventor
Robert B Gelbard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US455227A priority Critical patent/US3320761A/en
Priority to GB20583/66A priority patent/GB1137145A/en
Priority to DE19661501052 priority patent/DE1501052A1/de
Priority to SE6522/66A priority patent/SE324165B/xx
Priority to NL6606491A priority patent/NL6606491A/xx
Application granted granted Critical
Publication of US3320761A publication Critical patent/US3320761A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Definitions

  • the present invention relates to household refrigerators and is more particularly concerned with a combination refrigerator, that is a refrigerator including a freezer compartment and a fresh food compartment, both of which are cooled by circulating air from the two compartments over a single evaporator employing a single fan to accomplish the circulation.
  • Combination refrigerators including a single evaporator and a single fan for circulating air from the freezer and fresh food compartments over the evaporator are well known. In the operation of such refrigerators, a major portion of the refrigerated air from the evaporator is directed into the freezer compartment while a smaller portion is directed into the fresh food compartment.
  • such refrigerators have the additional advantage of permitting automatic defrost of the evaporator which is normally contained within an evaporator chamber outside of or separate from both of the storage compartments without significantly disturbing the temperatures of those compartments.
  • thermally operated automatic dampers are provided for regulating the supply of cool air to one or both compartments in accordance with the cooling requirements thereof.
  • One object of the present invention is to provide a combination refrigerator in which a single fan circulates air over a single evaporator to maintain the two compartments at their respective below and above freezing temperatures and a single control is arranged to provide fully automatic operation to maintain the two compartments at their proper operating temperatures over a wide range of ambient temperature and load conditions.
  • Another object of the invention is to provide a two compartment refrigerator in which the compartments are maintained within their desired above and below freezing temperature ranges by means of a forced air cooling system including a single evaporator over which air is circulated and which includes a single control means responsive to both compartment cooling requirements.
  • a further object of the invention is to provide a refrigerator including a freezer compartment and a fresh food compartment, means for cooling the compartments comprising a single evaporator and a single fan for circulating air from the compartments over the evaporator and returning refrigerated air to the compartments and control means arranged to be responsive to the temperature of mixture of recirculated fresh food compartment air and cooled air supplied to that compartment from the evaporator.
  • a two temperature refrigerator including a freezer compartment and a fresh food compartment.
  • a single evaporator contained within an evaporator chamber separate from the two compartments.
  • air is withdrawn from each of the compartments, passed in heat exchange relationship with the evaporator and the refrigerated or cooled air from the evaporator is supplied in separate air streams to the two compartments.
  • the refrigerated air supplied to the fresh food compartment is discharged through a nozzle into a mixing hood or chamber so designed that a proportioned amount of fresh food cabinet air is drawn into the mixing chamber by the aspirating effects induced by the air from the nozzle and becomes mixed therewith within the chamber before passing out of the chamber into the fresh food compartment.
  • the operation of the fan and a refrigerant condensing unit for supplying condensed refrigerant to the evaporator are controlled by means of a thermostat including a sensing element subjected to the temperature of the mixed air within the mixing chamber.
  • the mixing chamber is further so constructed and arranged that when the refrigerant condensing means and fan are deenergized at a predetermined low temperature of the mixed air, the sensing element will sense the temperature of the air within the fresh food compartment and will re-energize the condensing means and fan at a predetermined maximum fresh food compartment air temperature.
  • FIGURE 1 is a vertical side elevational view through a refrigerator embodying the present invention
  • FIGURE 2 is an enlarged vertical sectional view of a portion of the refrigerator illustrated in FIGURE 1;
  • FIGURE 3 is a sectional view taken generally along lines 3-3 of FIGURE 2;
  • FIGURE 4 is a wiring diagram for the refrigerator shown in the previous figures.
  • FIGURE 5 is a somewhat schematic front view of another embodiment of the present invention.
  • FIGURE 6 is a vertical side sectional view of the refrigerator of FIGURE 5.
  • a refrigerator comprising insulated walls defining an upper freezer compartment 1 intended to operate at a temperature below freezing and a lower fresh food compartment 2 adapted to operate at an above freezing temperature of about 35 to 40 F.
  • the two compartments are separated by an insulated partition 3.
  • the access opening to the freezer compartment 1 is closed by means of an insulated door 4 while the access opening to the fresh food compartment 2 is closed by means of a door 5.
  • a machinery compartment 6 in the lower portion of the cabinet contains the refrigerant condensing component of a refrigera- 0 tion system including a hermetic motor-driven compressor 7 and a condenser 8.
  • the single evaporator 9 for refrigerating the two compartments 1 and 2 is contained within an evaporator chamber 10 formed within the insulated partition 3. It is to be understood that the compressor 7, the condenser 8, suitable flow restricting means (not shown) and the evaporator 9 are connected in closed series flow relationship to form the usual closed refrigerant circuit.
  • air streams from these two compartments are'passed over the evaporator 9 and the refrigerated or cooled air returned to the compartments by means of a single fan generally indicated by the numeral 12. More specifically, the inlet portion or end 14 of the evaporator chamber 10- is connected by means of a relatively large louvered inlet 15 at the forward end of the partition 3 to the freezer compartment 1 and the major portion of the air cooled or refrigerated by the evaporator 9 is returned to the freezer compartment though an air passage 16.
  • This air leaving the passage 16 flows into the rear end of a tunnel 17 provided in the bottom of the freezer compartment for the storage of one or more freezing trays 18 and passes from the tunnel through a plurality of louvers 19' provided in the side walls of the tunnel and a second set of louvers 20 provided in the top wall of the tunnel adjacent the front thereof.
  • the access opening at the front of tunnel 17 is closed by a solid pivoted door 21.
  • console member generally indicated by the numeral and illustrated in greater detail in FIGURES 2 and 3 of the drawing.
  • This console member is positioned adjacent the top and rear walls of the compartment 2 at the outlet end of the passage 24 and as shown in FIG- URES 2 and 3 of the drawing it includes side wall portions 32 and 33 which along with the front wall 34 thereof and the rear wall 35 of the fresh food compartment 2 form a mixing chamber 36.
  • the nozzle 39 is split into two portions and each portion includes a damper 40 for regulating the flow of air through the nozzle and thereby adjusting the relative proportions of the cooled air supplied to the two compartments.
  • a control wheel 41 having a portion extending through the forward front wall 34 of the console provides means for manually adjusting the positions of the dampers 40.
  • the upper flared portion of the mixing chamber 36 is in communication with the fresh food compartment 2 through a plurality of louvered inlet passages or openings 43 provided in the upper portion of the member 30 and the lower flared end 45 opens directly into compartment 2.
  • the air flowing through the nozzle 39 discharging into the chamber 36 at a point intermediate its inlet and center portion draws a proportioned amount of fresh food cabinet air into the mixing chamber 36 through the passages 43 where it mixes with the cooled air from the nozzle before being discharged through the outlet passage 45.
  • a control thermostat generally indicated by the numeral 47 is also housed within the console 30 in a chamber 56 to one side of the chamber 36.
  • the knob or wheel 48 for adjusting the operating temperature of the thermostat 46 partially extends through a slot 49 in the front wall 34 of the console 30 for manual regulation or adjustment of the thermostat while the control capillary 50 connected to the thermostat bellows 51 has its sensing portion 52 disposed within the chamber 36 where it is responsive to the temperature of the air therein.
  • the portion 52 of the control capillary is mounted beneath the sloping bottom portion of the wall 33 out of line with the nozzle 39 and a deflector wall 53 within the chamber 36 is provided for directing a portion of the mixed air flow ing from the mixing chamber 36 into contact therewith.
  • the thermostat 47 is generally maintained at about the same temperature as the fresh food air within the com.- partment 2 by the natural circulation of that air through the side louvers 55 and some of passages 43.
  • the chamber 36 or at least the front wall 34 exposed directly to the fresh food compartment air is lined with or formed of a suitable heat insulating material 57.
  • a defrost heater 60 in heat exchange relationship with the evaporator 9, which heater is periodically energized to warm the evaporator 9 to defrost temperatures.
  • the control circuitry for controlling the operation of the heater 6i) and both the normal and defrost operation of the refrigerator is illustrated inFIGURE 4.
  • the control circuit is designed to initiate a defrost cycle after a predetermined period of compressor operation;
  • adefrost timer 61 including a timer motor 62 connected across the supply lines 63 and 64 through the thermostat 47.
  • the timer 6]. includes a double throw switch operated by the timer motor 62 and including a first contact 65 which is normally engaged by switch arm 66 to complete a circuit through the thermostat 47 energizing both the fan 12 and the compressor 7 when the thermostat 47 calls for cooling.
  • the timer 61 is designed so that at predetermined intervals the timer switch operates to move switch arm66 from contact with contact 65 into engagement with a contact 68 thereby opening the circuit to the fan 12 and the compressor 7 and closing a circuit including the defrost heater 60 for a period of time suflicient to assure defrosting of the evaporator 9.
  • the energization of heater 60 is also under the control of a defrost control switch 69 sensing a temperature within the chamber 10 and designed to open the heater circuit at an above freezing temperature indicating complete defrosting action. After a suitable period, the timer 62 moves the switch arm 66 to open the heater circuit and close the fan and compressorcircuit through the contact 65 thereby returning the refrigerator to a normal or cooling cycle of operation.
  • Defrost water collecting in the drain pan at the bottom of the chamber 10 during defrost flows downwardly through a drain opening 72 and into a trough 73 from which it is discharged onto the rear wall 35. This water flowing downwardly along the back wall 35 of the cabinet ultimately flows out of the fresh food compartment through a drain 74 for evaporation in suitable means (not shown) in the machinery compartment 6.
  • the compressor 7 When the compressor 7 is supplying condensed refrigerant to the evaporator 9 and the fan 12 is operating to circulate 'air from the two compartments 1 and 2 over the evaporator 9, the major portion of the air issuing from the chamber 10 passes upwardly into the freezer compartment 1 while a relatively smaller portion flows through the outlet passage 24 into the mixing chamber 36.
  • the refrigerated air flowing through the passage 24 and the nozzle 39 into the chamber 36 becomes mixed with a proportioned amount of fresh food cabinet air drawn into the chamber 36 through the passages 43.
  • the control capillary 52 positioned in the lower portion of the chamber 36 senses the temperature of this air mixture and when that temperature reaches a predetermined minimum, the thermostat 47 operates to de-energize the timer motor 62, the fan 12 and the compressor 7.
  • the temperature within the compartment 2 gradually increases. This increase in temperature is transmitted to the capillary control portion 52 by natural circulation of fresh food compartment air through the chamber 36 with the result that the sensing capillary 52 ultimately senses the temperature of the fresh food compartment air.
  • the location and mounting of the capillary 52 on the spider support 70 formed integrally with the front wall 34 or in heat conducting relationship with the console 36 provides a way of adjusting the warm-up cycle of the capillary element 70.
  • the degree of thermal mass linked to the capillary 72 is governed by the design of the support 70.
  • the warm-up response to the capillary 52 is adjusted to minimize motor overloads that might otherwise result from the rapid warm-up of the capillary 53 induced by door openings during the compressor ofl? cycle.
  • the thermostat 47 operates to again energize the fan, compressor 7 and timer motors and this energization continues until the sensing element 52 again senses a lower predetermined temperature of the mixed air flowing in contact therewith in the chamber 36.
  • the defrost heater 60 is energized through the contact 68 and the normally closed defrost terminating switch 69.
  • the timer is designed to continue energization of the heater 60 for a predetermined interval as for example about 20 minutes. This period is selected to assure complete removal of all frost from the evaporator regardlessof the frost conditions thereof.
  • the defrost terminating switch69 sensing a defrost temperature, opens the circuit including the heater, 60 and thereby limits the amount of heat supplied to the evaporator.
  • the timer again completes a circuit through the compressor 7 and the fan 12 and as the thermostat 47 is already calling for cooling operation, the compressor and fan operate until the temperatures sensed by the sensing element are at a predetermined lower value.
  • the control is actually responsive to or senses the existing temperature within both the fresh food compartment 2 and the freezer compartment 1. In other words, it senses both the fresh food compartment and. the freezer com partment loads and will terminate a refrigerating cycle only when both are satisfied.
  • Sensing of the fresh food .compartment air is accomplished by the circulation of a controlled amount of air from that compartment through the chamber 36 during operation of the fan 12.
  • the sensing of freezer compartment load or temperature results from the fact that the temperature of the air flowing from the evaporator chamber is'dependentnot only upon the temperature at which the evaporator is operating but also upon the temperature of the air flowing into the evaporator chamber.
  • the temperature of the air flowing from the evaporator chamber 10 varies directly with the temperature of the freezer compartment air introduced into the chamber.
  • the temperature of the outgoing air or specifically the portion thereof which passes into the mixing chamber 36 through the supply passage 24 thus reflects freezer temperature. Therefore the compressor and the fan continue to operate until both the freezer and fresh food compartment requirements are met.
  • the proportioning of the amounts of air flowing to the fresh food compartment and to the freezer compartment is manually controlled by adjustment of the dampers 40 'but once set this control need not be adjusted through most customer usage conditions. Also since the sensing element 52 is positioned within the lower portion of the chamber 36, it is shielded from momentary temperature fluctuations within the fresh food compartment 2 resulting, for example, from ambient air entering the compartment 2 during the brief periods the door is opened.
  • FIGURES 5 and 6 illustrate an embodiment of the present invention as applied to a refrigerator in which the freezer compartment is positioned below the fresh food compartment and the two compartments are maintained at their desired operating temperatures by the circulation of air over an evaporator generally positioned in the rear portion of the freezer compartment. More specifically, there is illustrated a refrigerator comprising a fresh food compartment and a freezer compartment 31 separated by an insulating partition 82. A housing 83 in the rear portion of the freezer compartment 1 contains an evaporator 84 and generally separates the evaporator from the compartment 81. A single fan 85 is employed to circulate air from the two compartments through the evaporator housing and over the evaporator and to return the circulated air to the two compartments.
  • the fan 85 draws freezer compartment air through an air inlet passage 86 in the form of an elongated slot in the bottom of the housing 83 and supplies cooled air to the freezer compartment through an air outlet 88 positioned in the upper portion of the freezer compartment 81.
  • a portion of the refrigerated air from the evaporator 84 is conducted from the fan 85 upwardly through a duct 90 into an aspirator means generally indicated by the numeral 91 positioned in the upper portion of the fresh food compartment 80.
  • the aspirator 91 is similar to that shown in FIGURES 2 and 3 of the drawing except that it is inverted.
  • a nozzle 92 at the outlet end of the duct 90 which discharges refrigerated air into the interior of a housing 93 where the refrigerated air becomes mixed with some recirculated fresh food air entering the housing through louvers 94.
  • the mixed air is discharged into the fresh food compartment 80 through an outlet 95.
  • Air from the fresh food compartment 80 is withdrawn through a duct 97 show in FIGURE 5 of the drawing, which duct connects the lower portion of the fresh food compartment with an upper portion of the evaporator housing 83. This air from the fresh food compartment passes downwardly through a portion of the evaporator 84 and then upwardly through another portion to the fan 85.
  • refrigerant condensing means for supplying condensed refrigerant to said evaporator
  • lair circulating means including a single fan for circulating air from both of said compartments through :said evaporator chamber and conducting a first stream of air from said chamber to said freezer compartment and a second stream of air from said chamber to saidfresh food compartment,
  • .and control means responsive to the temperature of the mixed air prior to the introduction thereof into said fresh food compartment for controlling said refrigerant condensing means.
  • a refrigerator comprising:
  • a mixing chamber having inlet and outlet passages communicating with said fresh food compartment
  • air circulating means including a single fan for circulating air from both of said compartments through said evaporator chamber and conducting -a first stream of air to said freezer compartment and a second stream of air to said mixing chamber,
  • a refrigerator comprising:
  • refrigerant condensing means for supplying condensed refrigerant to said evaporator
  • a mixing chamber in said fresh food compartment having inlet and outlet passages communicating with said fresh food compartment
  • air circulating means including a single fan for circulating air from both of said compartments through said evaporator chamber and conducting a first stream of air to said freezer compartment and a second stream of air to said mixing chamber,
  • said mixing chamber including a nozzle means for receiving said secondair stream and discharging said second air stream into said mixing chamber between said mixing chamber inlet and outlet passages where by discharge of air from said nozzle means into said mixing chamber induces air from said fresh food compartment to flow through said inlet passage into said mixing chamber to mix with said second air stream,
  • a refrigerator comprising insulated walls defining a cabinet and an insulated partition dividing the interior of said cabinet into a freezer compartment and a fresh food compartment having access openings at the front of said cabinet,
  • said chamber having an inlet portion and an outlet portion and an evaporator positioned within said chamber between said portions,
  • means for conducting air from the outlet portion of said evaporator chamber to said compartments comprising a single fan means having aninlet connected to said outlet portion and outlet ducts discharging cooled air from said chamber into said freezer compartment and said fresh foodcompartment,
  • a mixing hood having an inlet passage communicating with said fresh food compartment and an outlet passage spaced from said inlet passage and communicating with said fresh food compartment,
  • a nozzle connected to the outlet duct to said fresh food compartment and being disposed within said hood between said inlet and outletpassages whereby discharge of air from said nozzle into said mixing hood induces air from said fresh food compartment to flowthrough said inlet passage into said hood to mix with said cooled air,
  • means for proportioning the air flowing to said freezer and fresh food compartments from said evaporator chamber comprising means associated with said nozzle for regulating the amount of air introduced into said mixing hood,
  • a refrigerant condensing means for supplying refrigerant to said evaporator
  • a refrigerator comprising:
  • means for mixing the air supplied to said fresh food compartment with fresh food compartment air and introducing the mixed air into said fresh food compartment comprising:
  • a mixing chamber including an inlet passage and an outlet passage connecting said chamber to said fresh food compartment
  • a nozzle connected to the supply conduit to said fresh food compartment, said nozzle having its outletend positioned within said mixing chamber between said inlet and outlet passages whereby the flow of air through said nozzle induces circulation of fresh food compartment air through said mixing chamber and the mixing thereof with the air from said nozzle,
  • refrigerant condensing means for supplying condensed refrigerant to said evaporator
  • control means for controlling the operation of said condensing means and said fan including a temperature sensing means positioned in said mixing chamber and responsive to the temperature of the mixed air therein,
  • said mixing chamber being positioned relative to said fresh food compartment so that when said fan is deenergized, air within said fresh food compartment will be circulated by natural convection through said chamber in heat exchange relation with said sensing means,
  • said sensing means being supported in heat exchange relationship with a wall of said mixing chamber exposed to the air in said fresh food compartment.
  • a refrigerator comprising:
  • means for mixing the air supplied to said fresh food compartment with fresh food compartment air and introducing the mixed air into said fresh food compartment comprising:
  • a mixing chamber including an inlet passage and an outlet passage connecting said chamber to said fresh food compartment
  • a nozzle connected to the supply conduit to said fresh food compartment, said nozzle having its outlet end positioned within said mixing chamber between said inlet and outlet passages whereby the flow of air through said nozzle induces circulation of fresh food compartment air through said mixing chamber and the mixing thereof with the air from said nozzle,
  • refrigerant condensing means for supplying condensed refrigerant to said evaporator
  • control means for controlling the operation of said condensing means and said fan including a temperature sensing means positioned in said mixing chamber and responsive to the temperature of the mixed air therein,
  • said mixing chamber being positioned relative to said fresh food compartment so that when said fan is de-energized, air within said fresh food compartment will circulate by natural convection through said chamber in heat exchange relation with said sensing means,
  • said sensing means being supported on a wall of said mixing chamber exposed to the air in said fresh food compartment so as also to be affected by the temperature of said wall as affected by the temperature of the air in the fresh food compartment.
  • a refrigerator comprising:
  • means for mixing the air supplied to said fresh food compartment with fresh food compartment air and introducing the mixed air into said fresh food compartment comprising:
  • a mixing chamber including an upper passage and a lower outlet passage connecting said chamber to said fresh food compartment
  • a nozzle connected to the supply conduit to said fresh food compartment, said nozzle having its outlet end positioned within said mixing chamber between said upper and lower passages whereby the flow of air through said nozzle induces circulation of fresh food compartment air in said mixing chamber through said upper passage and the mixing thereof with the air from said nozzle,
  • refrigerant condensing means for supplying condensed refrigerant to said evaporator
  • control means for controlling the operation of said condensing means and said fan including a temperature sensing means positioned in said mixing chamber and responsive to the temperature of air therein,
  • said mixing chamber being positioned relative to said fresh food compartment so that when said fan is deenergized, air within said fresh food compartment will be circulated by natural convection through said passages and said chamber in heat exchange relation with said sensing means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
US455227A 1965-05-12 1965-05-12 Single evaporator, single fan combination refrigerator Expired - Lifetime US3320761A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US455227A US3320761A (en) 1965-05-12 1965-05-12 Single evaporator, single fan combination refrigerator
GB20583/66A GB1137145A (en) 1965-05-12 1966-05-10 Improvements in refrigerator
DE19661501052 DE1501052A1 (de) 1965-05-12 1966-05-11 Kompressorkuehlschrank
SE6522/66A SE324165B (nl) 1965-05-12 1966-05-12
NL6606491A NL6606491A (nl) 1965-05-12 1966-05-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US455227A US3320761A (en) 1965-05-12 1965-05-12 Single evaporator, single fan combination refrigerator

Publications (1)

Publication Number Publication Date
US3320761A true US3320761A (en) 1967-05-23

Family

ID=23807939

Family Applications (1)

Application Number Title Priority Date Filing Date
US455227A Expired - Lifetime US3320761A (en) 1965-05-12 1965-05-12 Single evaporator, single fan combination refrigerator

Country Status (5)

Country Link
US (1) US3320761A (nl)
DE (1) DE1501052A1 (nl)
GB (1) GB1137145A (nl)
NL (1) NL6606491A (nl)
SE (1) SE324165B (nl)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466891A (en) * 1967-09-06 1969-09-16 Amana Refrigeration Inc Combination freezer and refrigerator with fast freezing means
US3572049A (en) * 1969-09-22 1971-03-23 Gen Motors Corp Electrical assembly for a refrigerator
US3599442A (en) * 1969-09-22 1971-08-17 Gen Motors Corp Unitary fan evaporator assembly
DE2252732A1 (de) * 1971-11-01 1973-05-17 Gen Electric Verdampfer mit integralen kuehlfahnen
US4009589A (en) * 1976-01-02 1977-03-01 General Electric Company Single evaporator, single fan combination refrigerator with independent temperature controls and method of adjustment
US4009590A (en) * 1976-01-02 1977-03-01 General Electric Company Single evaporator, single fan combination refrigrator with independent temperature controls
US4009591A (en) * 1976-01-02 1977-03-01 General Electric Company Single evaporator, single fan combination refrigerator with independent temperature controls
US4198222A (en) * 1977-12-01 1980-04-15 General Electric Company Condensation preventing arrangement for interior of a household refrigerator
US4229945A (en) * 1978-12-08 1980-10-28 General Electric Company Household refrigerator air flow control and method
US4296611A (en) * 1978-12-08 1981-10-27 General Electric Company Household refrigerator air flow control and method
US4704874A (en) * 1986-09-09 1987-11-10 General Electric Company Household refrigerator air flow system
ES2054570A2 (es) * 1992-04-29 1994-08-01 Fagor S Coop Ltda Mejoras introducidas en los medios anticondensacion de aparatos frigorificos domesticos.
US5347820A (en) * 1993-08-10 1994-09-20 Samsung Electronics Co., Ltd. Mounting arrangement for a refrigerator deodorizer
US5722248A (en) * 1994-11-11 1998-03-03 Samsung Electronics Co., Ltd. Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (h.m. cycle)
US5771701A (en) * 1994-11-11 1998-06-30 Samsung Electronics Co., Ltd. Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (H.M. cycle)
US5881568A (en) * 1996-04-29 1999-03-16 Lg Electronics Inc. Refrigerator
US6209342B1 (en) * 1999-01-04 2001-04-03 Camco Inc. Refrigerator evaporator housing
US9759479B2 (en) * 2015-10-22 2017-09-12 Whirlpool Corporation Appliance modular system for incorporating a pantry compartment within an appliance
US10549598B2 (en) * 2015-04-24 2020-02-04 Denso Corporation Vehicle air-conditioning apparatus
CN114484989A (zh) * 2021-12-13 2022-05-13 安徽康佳同创电器有限公司 一种风冷冰箱以及风冷冰箱的温度控制方法
CN114543426A (zh) * 2020-11-26 2022-05-27 合肥美的电冰箱有限公司 风道组件及制冷设备
DE102022117539A1 (de) 2022-07-13 2024-01-18 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932459A1 (de) * 1989-09-28 1991-04-11 Bosch Siemens Hausgeraete Kuehlschrank, insbesondere mehrtemperaturen-kuehlschrank
CN102226623A (zh) * 2011-06-10 2011-10-26 海信容声(广东)冰箱有限公司 一种卧式蒸发器仓

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015215A (en) * 1959-07-22 1962-01-02 Whirlpool Co Home appliance
US3020733A (en) * 1959-04-20 1962-02-13 Whirlpool Co Home appliance
US3050961A (en) * 1961-05-09 1962-08-28 Gen Motors Corp Single evaporator two-compartment refrigerator
US3090209A (en) * 1961-04-24 1963-05-21 Whirlpool Co Refrigerating apparatus
US3093981A (en) * 1961-07-24 1963-06-18 Whirlpool Co Gas flow controller means for a refrigerator
US3105364A (en) * 1961-04-24 1963-10-01 Gen Motors Corp Refrigerating apparatus with defrost means
US3107502A (en) * 1961-04-24 1963-10-22 Whirlpool Co Air circuit means for combined freezer and refrigerator apparatus
US3110158A (en) * 1961-05-29 1963-11-12 Gen Motors Corp Refrigerating apparatus including defrost means
US3126716A (en) * 1964-03-31 de witte

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126716A (en) * 1964-03-31 de witte
US3020733A (en) * 1959-04-20 1962-02-13 Whirlpool Co Home appliance
US3015215A (en) * 1959-07-22 1962-01-02 Whirlpool Co Home appliance
US3090209A (en) * 1961-04-24 1963-05-21 Whirlpool Co Refrigerating apparatus
US3105364A (en) * 1961-04-24 1963-10-01 Gen Motors Corp Refrigerating apparatus with defrost means
US3107502A (en) * 1961-04-24 1963-10-22 Whirlpool Co Air circuit means for combined freezer and refrigerator apparatus
US3050961A (en) * 1961-05-09 1962-08-28 Gen Motors Corp Single evaporator two-compartment refrigerator
US3110158A (en) * 1961-05-29 1963-11-12 Gen Motors Corp Refrigerating apparatus including defrost means
US3093981A (en) * 1961-07-24 1963-06-18 Whirlpool Co Gas flow controller means for a refrigerator

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466891A (en) * 1967-09-06 1969-09-16 Amana Refrigeration Inc Combination freezer and refrigerator with fast freezing means
US3572049A (en) * 1969-09-22 1971-03-23 Gen Motors Corp Electrical assembly for a refrigerator
US3599442A (en) * 1969-09-22 1971-08-17 Gen Motors Corp Unitary fan evaporator assembly
DE2252732A1 (de) * 1971-11-01 1973-05-17 Gen Electric Verdampfer mit integralen kuehlfahnen
US4009589A (en) * 1976-01-02 1977-03-01 General Electric Company Single evaporator, single fan combination refrigerator with independent temperature controls and method of adjustment
US4009590A (en) * 1976-01-02 1977-03-01 General Electric Company Single evaporator, single fan combination refrigrator with independent temperature controls
US4009591A (en) * 1976-01-02 1977-03-01 General Electric Company Single evaporator, single fan combination refrigerator with independent temperature controls
US4198222A (en) * 1977-12-01 1980-04-15 General Electric Company Condensation preventing arrangement for interior of a household refrigerator
US4229945A (en) * 1978-12-08 1980-10-28 General Electric Company Household refrigerator air flow control and method
US4296611A (en) * 1978-12-08 1981-10-27 General Electric Company Household refrigerator air flow control and method
US4704874A (en) * 1986-09-09 1987-11-10 General Electric Company Household refrigerator air flow system
ES2054570A2 (es) * 1992-04-29 1994-08-01 Fagor S Coop Ltda Mejoras introducidas en los medios anticondensacion de aparatos frigorificos domesticos.
US5347820A (en) * 1993-08-10 1994-09-20 Samsung Electronics Co., Ltd. Mounting arrangement for a refrigerator deodorizer
US5722248A (en) * 1994-11-11 1998-03-03 Samsung Electronics Co., Ltd. Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (h.m. cycle)
US5771701A (en) * 1994-11-11 1998-06-30 Samsung Electronics Co., Ltd. Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (H.M. cycle)
US5881568A (en) * 1996-04-29 1999-03-16 Lg Electronics Inc. Refrigerator
US6209342B1 (en) * 1999-01-04 2001-04-03 Camco Inc. Refrigerator evaporator housing
US10549598B2 (en) * 2015-04-24 2020-02-04 Denso Corporation Vehicle air-conditioning apparatus
US9759479B2 (en) * 2015-10-22 2017-09-12 Whirlpool Corporation Appliance modular system for incorporating a pantry compartment within an appliance
US9945602B2 (en) 2015-10-22 2018-04-17 Whirlpool Corporation Appliance modular system for incorporating a pantry compartment within an appliance
CN114543426A (zh) * 2020-11-26 2022-05-27 合肥美的电冰箱有限公司 风道组件及制冷设备
CN114484989A (zh) * 2021-12-13 2022-05-13 安徽康佳同创电器有限公司 一种风冷冰箱以及风冷冰箱的温度控制方法
CN114484989B (zh) * 2021-12-13 2023-12-01 安徽康佳同创电器有限公司 一种风冷冰箱以及风冷冰箱的温度控制方法
DE102022117539A1 (de) 2022-07-13 2024-01-18 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät

Also Published As

Publication number Publication date
SE324165B (nl) 1970-05-25
NL6606491A (nl) 1966-11-14
DE1501052A1 (de) 1970-10-08
GB1137145A (en) 1968-12-18

Similar Documents

Publication Publication Date Title
US3320761A (en) Single evaporator, single fan combination refrigerator
US3359751A (en) Two temperature refrigerator
US2907180A (en) Refrigerating apparatus having air control means for multiple compartments
US2812642A (en) Refrigerating apparatus
US3455119A (en) Plural compartment high humidity domestic refrigerator
US3893307A (en) Refrigerator freezer with frost eliminator
US3403533A (en) Refrigerator with upright dividing wall
US3050956A (en) Refrigerating apparatus with frost free compartment
US7127904B2 (en) Refrigerating appliance comprising a refrigerating compartment, a cold storage compartment and a freezer compartment
US2810267A (en) Refrigerated display case
US3104533A (en) Refrigerating apparatus
US4229945A (en) Household refrigerator air flow control and method
US3004400A (en) Two compartment frost-free refrigerator
US4296611A (en) Household refrigerator air flow control and method
US3261173A (en) Refrigerating apparatus
US3050961A (en) Single evaporator two-compartment refrigerator
US3280583A (en) Combination refrigerator
US2863300A (en) Refrigerating apparatus
US3370439A (en) Refrigerators
US3070973A (en) Refrigerating apparatus
US3733841A (en) Refrigerator temperature control
US3084519A (en) Two temperature forced air refrigerator systems
US3126717A (en) Forced air cooled refrigerator
US3609988A (en) Side-by-side refrigerator freezer with high humidity compartment
US3375677A (en) Method and apparatus for maintaining high humidity in a frost-free domestic refrigerator