US3306789A - Nitric acid explosive composition containing inorganic nitrate oxidizer and nitrated aromatic compound - Google Patents
Nitric acid explosive composition containing inorganic nitrate oxidizer and nitrated aromatic compound Download PDFInfo
- Publication number
- US3306789A US3306789A US542247A US54224766A US3306789A US 3306789 A US3306789 A US 3306789A US 542247 A US542247 A US 542247A US 54224766 A US54224766 A US 54224766A US 3306789 A US3306789 A US 3306789A
- Authority
- US
- United States
- Prior art keywords
- nitric acid
- explosive
- weight
- nitrate
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 98
- 239000002360 explosive Substances 0.000 title claims description 92
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 title claims description 65
- 229910017604 nitric acid Inorganic materials 0.000 title claims description 65
- 229910001959 inorganic nitrate Inorganic materials 0.000 title claims description 17
- 239000007800 oxidant agent Substances 0.000 title description 5
- 150000001491 aromatic compounds Chemical class 0.000 title description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 46
- 239000000446 fuel Substances 0.000 claims description 38
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 16
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 10
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims description 8
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 claims description 7
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 claims description 7
- -1 ANALINE CRESOTE Chemical compound 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims description 5
- 235000010333 potassium nitrate Nutrition 0.000 claims description 5
- 239000004323 potassium nitrate Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 claims description 4
- 150000005181 nitrobenzenes Chemical class 0.000 claims description 4
- 125000001570 methylene group Chemical class [H]C([H])([*:1])[*:2] 0.000 claims 1
- 238000005474 detonation Methods 0.000 description 31
- DYSXLQBUUOPLBB-UHFFFAOYSA-N 2,3-dinitrotoluene Chemical compound CC1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O DYSXLQBUUOPLBB-UHFFFAOYSA-N 0.000 description 26
- 239000000243 solution Substances 0.000 description 22
- 239000013078 crystal Substances 0.000 description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 230000005496 eutectics Effects 0.000 description 16
- 239000007789 gas Substances 0.000 description 16
- 239000011435 rock Substances 0.000 description 16
- 230000008018 melting Effects 0.000 description 15
- 238000002844 melting Methods 0.000 description 15
- 238000002156 mixing Methods 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 238000002425 crystallisation Methods 0.000 description 14
- 230000008025 crystallization Effects 0.000 description 14
- 239000012530 fluid Substances 0.000 description 14
- 239000004615 ingredient Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 12
- 229910002651 NO3 Inorganic materials 0.000 description 11
- 230000001590 oxidative effect Effects 0.000 description 11
- UGWHPQNZVGJHMU-UHFFFAOYSA-Q triazanium trinitrate Chemical compound [NH4+].[NH4+].[NH4+].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O UGWHPQNZVGJHMU-UHFFFAOYSA-Q 0.000 description 11
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 10
- HZTVIZREFBBQMG-UHFFFAOYSA-N 2-methyl-1,3,5-trinitrobenzene;[3-nitrooxy-2,2-bis(nitrooxymethyl)propyl] nitrate Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O.[O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O HZTVIZREFBBQMG-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 description 7
- 230000008014 freezing Effects 0.000 description 7
- 238000007710 freezing Methods 0.000 description 7
- 239000000015 trinitrotoluene Substances 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 6
- 238000005422 blasting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000000644 propagated effect Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- WHRZCXAVMTUTDD-UHFFFAOYSA-N 1h-furo[2,3-d]pyrimidin-2-one Chemical compound N1C(=O)N=C2OC=CC2=C1 WHRZCXAVMTUTDD-UHFFFAOYSA-N 0.000 description 5
- 235000006173 Larrea tridentata Nutrition 0.000 description 5
- 244000073231 Larrea tridentata Species 0.000 description 5
- 229960002126 creosote Drugs 0.000 description 5
- 238000010587 phase diagram Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VLZLOWPYUQHHCG-UHFFFAOYSA-N nitromethylbenzene Chemical class [O-][N+](=O)CC1=CC=CC=C1 VLZLOWPYUQHHCG-UHFFFAOYSA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- WDCYWAQPCXBPJA-UHFFFAOYSA-N 1,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1 WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000408917 Anatrytone logan Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- ZPTVNYMJQHSSEA-UHFFFAOYSA-N 4-nitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1 ZPTVNYMJQHSSEA-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- YPMCBEBTVKFDSU-UHFFFAOYSA-N [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[K+].[K+].[K+] Chemical compound [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[K+].[K+].[K+] YPMCBEBTVKFDSU-UHFFFAOYSA-N 0.000 description 1
- AMQHSUQKUZLJQL-UHFFFAOYSA-N [O].O[N+]([O-])=O Chemical compound [O].O[N+]([O-])=O AMQHSUQKUZLJQL-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
- C06B23/002—Sensitisers or density reducing agents, foam stabilisers, crystal habit modifiers
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B47/00—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B47/00—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
- C06B47/14—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
Definitions
- This invention relates to improved explosive compositions of the Sprengel type which consist essentially of one or more oxidizing constituents and one or more organic fuel constituents.
- Sprengel explosives have been shown to combine low cost, high strength, a high velocity of detonation and a high level of sensitivity, and yet they have not enjoyed any commercial success. Because of the nature of the oxidizing material normally employed, for example, concentrated nitric acid, these explosives were inconvenient, unpleasant and especially hazardous to handle. In addition, because of the generally low viscosity of the fluid Sprengel mixtures, large quantities could be lost into fissured rock if the explosives were placed directly into boreholes. Additionally, Sprengel explosives generally possess little or no resistance against penetration and dilution by water which may be present in the boreholes, which dilution may render the explosives non-detonatable.
- Another object of this invention is to provide a nitric acid explosive which may be simply and economically manufactured.
- United States Patent Still another object of this invention is to provide a nitric acid explosive which may be simply compounded to provide a wide range of explosive properties.
- the improved nitric acid explosive composition of this invention comprises at least one inorganic nitrate, concentrated nitric acid and an organic fuel which is miscible with and does not react with nitric acid.
- nitric acid explosive of the invention it is advantageous to examine the chemical reactions which occur when strong or concentrated nitric acid is combined with ammonium nitrate. It has been disclosed, for example, in Chemical Abstracts, volume 29, pages 561 and 3789, that a trinitrate of ammonium can be formed when ammonium nitrate and concentrated nitric acid are combined in the ratio of one mole of ammonium nitrate to two moles of nitric acid. For pure materials, this ratio is 38.8 parts by weight of ammonium nitrate to 61.2 parts by weight of nitric acid.
- the trinitrate salt so formed, NH NO .2HNO has a melting point of 296 C.
- an ammonium trinitrate may be produced by mixing ammonia or ammonium nitrate with nitric acid containing 90 to 99% of HNO and cooling the solution to or below the crystallization point of the ammonium trinitrate. The ammonium trinitrate salts so formed may then be separated from the mother liquor.
- FIG. 1 is a phase diagram for an ammonium nitratenitric acid system
- FIG. 2 is a graphical representation of the velocity of detonation obtained using various ratios of ammonium nitrate/HNO in the explosive of the invention at oxygen balance with dinitrotoluene;
- FIGS. 3, 4 and 5 are graphical representations showing how the velocity of detonation can be varied as desired by using gas generating additives in the explosives of the invention.
- FIG. 1 there is shown a phase diagram which demonstrates the physical character of an ammonium nitrate-98% HNO system for various ammonium nitrate/HNO, ratios over a range of temperatures;
- Graph line ABC represents a plot of the crystallization point of solids obtained at the ratios and temperatures indicated.
- Line DE represents the stoichiometric proportions'of 38 parts of ammonium nitrate to 62 parts of 98% HNO 'by weight.
- ammonium nitrate for example, up to about 20 parts of ammonium nitrate, dissolved in about parts by weight of strong (98%) nitric acid will yield appreciable amounts of solid ammonium trinitrate salt, only at low temperatures.
- strong (98%) nitric acid will yield appreciable amounts of solid ammonium trinitrate salt, only at low temperatures.
- solid ammonium trinitrate crystallizes at about 27 C.
- ammonium trinitrate does not usually start to crystallize until the reactants have been super cooled to about 5 C. However, once started, crystallization takes place rapidly and the heat of crystallization released causes the temperature to rise immediately to about 27 C. If, on
- the solution is seeded with a few crystals of ammonium trinitrate at around 27 C., freezing will take place immediately as the temperature is lowered.
- the solid explosive composition thus formed may be described as a substantially homogeneous mixture of very fine needle-like crystals of ammonium nitrate, ammonium trinitrate and organic fuel.
- the crystals comprising the solid explosive composition may be identified under microscopic examination.
- the addition of the miscible organic fuel to the low melting point eutectic nitrate/nitric acid solution has the surprising effect of causing the crystallization of salts of the system outside the temperature ranges shown in the phase diagram of FIG. 1.
- the addition of the miscible organic fuel causes, in effect, a displacement in position of plot line ABC in FIG. 1 in a direction to the left of the diagram.
- the addition of the miscible organic fuel ingredient to the ammonium nitrate/nitric acid solution has the effect of absorbing or taking up some of the nitric acid present as it crystallizes on cooling.
- a mixture of ammonium nitrate and 98% nitric acid at a low enough temperature to facilitate rapid crystallization when mixed with the warm, liquid organic fuel ingredient.
- a composition comprises about 53 parts by weight of ammonium nitrate to 47 parts by weight of 98% nitric acid.
- This composition of the oxidizing ingredient may be referred to as a low melting point eutectic and corresponds to point B in the phase diagram of FIG. 1.
- Such a mixture has a crystallization point of about 13 C. and may be maintained in a fluid condition in the field at only a slightly higher temperature.
- the resultant composition may comprise large growth crystals which may be insensitive to usual detonation means or may fail to propagate after initiation.
- Preferred nitric acid explosive compositions of this invention contain as an oxidant at least one inorganic nitrate and concentrated nitric acid in the approximate concentration range of about 30 parts by weight of nitrate salt/7O parts by weight of acid to about 70 parts by weight of nitrate salt/30 parts by weight of acid, and from 10% to 45%, by weight of the total compositions, of an organic fuel which is miscible with and does not react with nitric acid.
- inorganic nitrate the salt produced by the action of nitric acid upon the metals or upon metallic oxides and hydroxides or, additionally, ammonium nitrate.
- a very suitable inorganic nitrate for inclusion in the explosive composition of this invention is ammonium nitrate. It may in some cases be advantageous to replace some or all of the ammonium nitrate by other inorganic nitrates such as potassium nitrate.
- the particle size of the inorganic salt is not critical, since the salt is dissolved in the nitric acid and granulated, prilled or crystalline forms, coated or uncoated, may be used.
- the concentrated nitric acid suitable for use in the explosive of this invention is preferably an acid containing 98% HNO although an acid containing from by weight HNO and up to the highest strength commercially available may be employed.
- a suitable organic fuel which is miscible with and which does not react with nitric acid is preferably dinitrotoluene (DNT) but other partially nitrated aromatic compounds may be used. With dinitrotoluene, maximum blasting efficiency results with amounts of DNT which give oxygen-balanced compositions.
- DNT dinitrotoluene
- the organic fuel may consist of a molten acid-inert organic explosive such as, for example, TNT.
- TNT molten acid-inert organic explosive
- the safety advantage of using a non-explosive fuel is foregone.
- the nitric acid explosive of the invention may be simply prepared.
- the two liquid components of the explosive system that is the nitrate/HNO solution and the liquid organic fuel
- the two liquid components of the explosive system that is the nitrate/HNO solution and the liquid organic fuel
- the two liquid components of the explosive system need only be poured simultaneously at specific temperatures and in appropriate proportions into the borehole where, at normal rock temperatures, solidification of the composition rapidly takes place.
- No special mixing equipment is required and the resultant composition achieves a high borehole loading density with a good degree of water resistance on hardening.
- No special precautions other than those associated with the normal handling of strong nitric acid are required. .Since the preferred individual constituents are not explosive until combined together in the borehole, a particular margin of safety may be enjoyed.
- the ingredients may be transported easily to the blasting site by means of, for example, a motor vehicle with appropriate tanks or holding vessels from which they may be simply dispensed.
- Each of the components in the fluid state may, for example, be discharged simultaneously at controlled rates from a holding vessel by means of hoses, the ends of which have been placed below the collar of a borehole.
- the nitrate/HNO solution and the liquid fuel are thus combined in the borehole where rapid solidification takes place and a cap sensitive explosive is formed. Until the two components have been combined in the borehole, no explosive has been employed thereby permitting a wide margin of safety in the use of such compositions.
- VOD velocity of detonation
- compositions may be used, they are not practical for commercial purposes because of their fluidity.
- ammonium nitrate/HNO ratios from about 20/ 80 to 30/70 are in a transient state from liquid-to solid and are likewise unattractive for use.
- Ammonium nitrate/HNO ratios between 30/70 and 70/30 oxygen balanced with DNT form solid compositions at temperatures above 5 C. and are the preferred compositions of explosives of the invention.
- Such compositions possess VODs in the range of about 6200 to about 1800 meters per second.
- EXAMPLE 2.53/47 NH NO /HNO AT OXYGEN BALANCE WITH DNT A low melting point eutectic comprising 39.3 parts by weight ofv ammonium nitrate dissolved in 34.9 parts by Weight of 98% nitric acid was cooled to 14 C. The solution was not seeded and no solids were present. This was mixed with 25.8 parts by weight of DNT at 60 C. The mixture was completely fluid momentarily, allowing for miscibility of the two components to obtain at a resulting equilibrium temperature of 28 C. The composition set up in a semi-frozen condition in 10 to 15 seconds. On cooling to normal rock temperature of about 5 C., the explosive was homogeneous, hard and dry.
- a 2000 gram sample of the composition in 2.5 inch diameter initiated with a 160 gram pentolite primer propagated with a detonation velocity of 2110 meters per second; and two similar samples primed with No. 1 fulminate-chlorate caps detonated at velocities of 2530 and 2410 meters per second.
- EXAMPLE 4.44/56 KNO /HNO AT OXYGEN BALANCE WITH DNT A stoichiometrical, 1:2 mole solution of potassium nitrate in 98% nitric acid was prepared by dissolving 30 parts by Weight of KNO in 38.5 parts by weight of acid. The solution was cooled to 18 C. and seeded with a few crystals of potassium trinitrate. A small amount of nascent trinitrate crystal was formed. Thecrystal-solution mixture was combined with 31.5 parts by weight of DNT at 60 C. The composition immediately reached an equilibrium temperature of 15 C. and was momentarily completely fluid but set up in a semi-frozen state in about 30 seconds. On cooling to 5 C., the explosive was homogeneous, hard and dry. A 2000 gram sample of the composition in 2.5 inch diameter initiated with a 160 gram primer propagated with a detonation velocity of 3240 meters per second.
- EXAMPLE 5 -53 47 NH NO /HNO AT OXYGEN BALANCE WITH TNT A low melting point eutectic of 34.8 parts by weight of ammonium nitrate dissolved in 30.8 parts by weight of 98% nitric acid was heated to 60 C. This solution was mixed with 34.4 parts by weight of TNT at C. The composition set up in a semi-frozen condition in 15 to 30 seconds and on further cooling to 5 C. was homogeneous, dry and hard. A 2000 gram sample of this explosive in 2.5 inch diameter, initiated with a gram pentolite primer, propagated at a velocity of detonation of 6020 meters per second.
- EXAMPLE 8 In a field trial at a rock quarry, two holes each of 2% inch diameter and five feet apart were drilled to a depth of 39 feet at a point representing about 9 feet of burden at the quarry rock face. A vortex funnel was placed at the collar of each of the boreholes and, through separate hoses, 74.4 parts by weight of a low melting point eutectic similar to that shown in Example 2 and 25.6 parts by weight of DNT were run into the funnel at controlled rates from holding vessels. The whirling action achieved in the funnel adequately mixed the liquid components and approximately 115 pounds of the mixed explosives composition were run into each borehole. The composition set up in a semi-frozen condition in about 10 seconds and thereafter rapidly hardened. Each borehole charge was initiated by means of a .50 gram pentolite primer and an explosive connecting cord. In the detonation, a clean break of rock was achieved at the quarry face with resulting good fragmentation.
- a wide range of detonation velocities may be obtained when employing ratios of ammonium nitrate/HNO of from 30/70 to 70/30, it has also been noted heretofore that for use in the field, a low melting point eutectic, corresponding to point B in FIG. 1, is advantageously employed.
- a low melting point eutectic because of its relatively low crystallization point of about 13 C., may be maintained and handled in the fluid state in the field at only a slightly higher temperature than 13 C.
- the low melting point eutectic, oxygen balanced with, for example, DNT as in Example 2 above has been found to have a detonation of velocity of about 2100 meters per second. It can be seen therefore that whereas handling advantages may be gained in using a low melting point eutectic of ammonium nitrate/HNO such a mixture oxygen balanced with, for example, DNT is limited in usefulness because of a relatively low velocity of detonation.
- a range of detonation velocities is desirable, and in fact essential, if useful work is to be accomplished by explosives on rock of various characteristics to achieve specific end results.
- a high velocity explosive is required where high shattering or fragmentation is required.
- an explosive of low detonation velocity is employed.
- the low melting point eutectic comprising a ratio of ammonium nitrate/98% HNO of about 53/47 by weight oxygen balanced with, for example, DNT, may be modified in composition to provide a wide range of detonation velocities, while at the same time retaining all of the advantages mentioned heretofore.
- a range of detonation velocities may be achieved with the preferred explosive compositions of the present invention by incorporating in the fuel a small amount of a substance which will react with the nitrate/HNO component to produce a dispersion of microscopic gas bubbles throughout the solidified explosive composition.
- gas generating substance that reacts with nitric acid must not react with, but must be soluble or miscible in the fuel component of the explosive composition so as to give a molecular dispersion and consequently produce gas bubbles that are microscopic in size.
- the reaction between the gas generating substance and the oxidizing solution must also be slow so that migration of the gas is virtually eliminated by the microscopic bubbles being held in a uniform dispersion by the freezing or crystallizing of the explosive composition.
- Suitable g-as generating substances are, for example, naphthylamine, methylene bis-(monomethylnaphthylene sodium sulphonate), diphenylamine, analine, creosote, o-toluidine, p-cresol, and acetone.
- the velocity of detonation of the nitric acid explosive of the present invention may be controlled by varying the quantity of gas generating substance in the mixture. Referring to FIG.
- a preferred explosive composition of the present invention comprising a low melting eutectic of ammonium nitrate/98% nitric acid oxygen balanced with a DNT fuel in which is incorporated varying proportions of methylene bis-(monomethylnaphthylene sodium sulphonate) from 0.0 to 0.5%.
- FIG. 4 and FIG. 5 show in similar graphical form the proportionate changes in detonation velocities which result from the addition of other gas generating substances.
- the gas generating substance employed is creosote
- FIG. 5 acetone.
- the soluble or miscible gas generating substance in the desired quantity need only be added to the liquid organic fuel ingredient and stirred briefly to effect solution.
- the gas generating substance/fuel mixture then need only be employed as the fuel ingredient in the manner hereinbefore described.
- FIGS. 3, 4 and 5 of the drawings were determined in the standard manner by means of a counter-chronograph, 2000 gram samples of explosives packaged in 2%. inch diameter polythene tubes being used. grams of pentolite primers were employed to detonate each charge.
- the explosive compositions of this invention are, under normal conditions of use and confinement, cap sensitive.
- cap sensitive is meant that the range of formulations as mentioned heretofore, oxygen balanced with for example, DNT, may be initiated by means of a No. 6 fulminate-chlorate cap.
- the same compositions are, however, low in sensitivity to impact or abrasion, negative results being shown in the standard Drop Test and Abrasion Test used for commercial explosives.
- the following example illustrates the sensitivity to cap initiation and the lack of sensitiveness to impact and abrasion of the explosive composition of the invention.
- the equilibrium temperature was about 19 C., the drop in temperature being due to a negative heat of solution of ammonium trinitrate crystals in the tertiary system. Thickening took place quickly due to the formation of very fine crystals of both fuel and oxidant, and on further cooling the composition was homogeneous, hard and dry at C.
- the novel nitric acid explosive of the invention represents a substantial advance in the commercial explosive art.
- the explosive is, first of all, made from inexpensive and readily available raw materials. It is further characterized by the ease by which it may be formulated, the high borehole loading density which may be achieved, resistance to water penetration and segregation of ingredients in the borehole, high detonation sensitivity and low sensitiveness to impact and abrasion, and the wide range of detonation velocities which may be provided. Because of the rapid freezing of the composition after mixing, the need for thickening or gelling agents is obviated. Neither is there any appreciable chemical reaction with carbonate rock since solidification in the borehole takes place nearly immediately after the components are combined.
- An explosive composition comprising essentially at least one inorganic nitrate selected from the group consisting of ammonium nitrate and potassium nitrate, concentrated nitric acid and an organic fuel selected from the group consisting of nitrotoluenes and nitrobenzenes, which is miscible with and does not react with nitric acid.
- An explosive composition comprising essentially an inorganic nitrate selected from the group consisting of ammonium nitrate and potassium 'nitrate, and concentrated nitric acid in a ratio of from 30 parts by weight of inorganic nitrate/ parts by weight of acid to 70 parts by weight of inorganic nitrate/ 30 parts by weight of acid, in admixture with an organic fuel selected from the group consisting of nitrotoluenes and nitrobenzenes which is miscible with but does not react with nitric acid.
- a gas-generating substance selected from the group consisting of naphthylamine, methylene bis-(monomethylnaphthylene sodium sulphonate), diphenylamine, analine cresote, o-toluidine, p-cresol and acetone.
- An explosive composition as claimed in claim 2 comprising from 55% to by weight of the mixture of inorganic nitrate and concentrated nitric acid and from 10% to 45% by weight of the organic fuel.
- a process for manufacturing a high strength, high density, low cost explosive composition which comprises mixing together an inorganic nitrate selected from the group consisting of ammonium nitrate and potassium nitrate, and nitric acid of not less than 90% strength in a weight ratio of nitrate/acid of from 30/70 to 70/30, and thereafter incorporating with said mixture from 10% to 45%, by weight of the total composition, of an organic fuel selected from the group consisting of nitrotoluenes and nitrobenzenes, which is miscible with but does not react with nitric acid, the temperatures of the nitrate/ acid component and the organic fuel component being sufiiciently low that the composition sets up in a semi-frozen state nearly immediately after mixing and becomes hard and dry on cooling to normal rock temperature of from about 5 C. to about 13 C.
- a gas generating substance selected from the group consisting of naphthylamine, methylene bis-(monomethylnaphthylene sodium sulphonate) diphenylamine, analine creosote, o-toluidine, p-cresol and acetone.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Air Bags (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA928749 | 1965-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3306789A true US3306789A (en) | 1967-02-28 |
Family
ID=4142232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US542247A Expired - Lifetime US3306789A (en) | 1965-04-21 | 1966-04-13 | Nitric acid explosive composition containing inorganic nitrate oxidizer and nitrated aromatic compound |
Country Status (6)
Country | Link |
---|---|
US (1) | US3306789A (enrdf_load_stackoverflow) |
BE (1) | BE679854A (enrdf_load_stackoverflow) |
DE (1) | DE1571212A1 (enrdf_load_stackoverflow) |
GB (1) | GB1100097A (enrdf_load_stackoverflow) |
IL (1) | IL25485A (enrdf_load_stackoverflow) |
OA (1) | OA01942A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423258A (en) * | 1966-12-12 | 1969-01-21 | American Cyanamid Co | Preparation of gelled blasting agents comprising nitric acids,fuels,and gelling agents |
US3423257A (en) * | 1966-09-01 | 1969-01-21 | American Cyanamid Co | Blasting composition containing nitric acid |
US3442728A (en) * | 1967-12-29 | 1969-05-06 | American Cyanamid Co | Gelled nitric acid blasting agent |
US3444014A (en) * | 1967-08-08 | 1969-05-13 | Du Pont | Gelled aqueous nitric acid composition and method of making same |
US3454438A (en) * | 1967-12-29 | 1969-07-08 | American Cyanamid Co | Gelled nitric acid blasting agent |
US3457127A (en) * | 1968-03-18 | 1969-07-22 | Melvin Cook | Explosive composition containing an additional product of urea and nitric acid and method of preparing same |
US3471347A (en) * | 1967-12-29 | 1969-10-07 | American Cyanamid Co | Gelled nitric acid blasting agent |
US3507720A (en) * | 1967-08-28 | 1970-04-21 | Du Pont | Gelled aqueous acidic composition containing an in situ crosslinked reaction product |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3164503A (en) * | 1963-05-13 | 1965-01-05 | Atlas Chem Ind | Aqueous emulsified ammonium nitrate blasting agents containing nitric acid |
US3242019A (en) * | 1963-05-13 | 1966-03-22 | Atlas Chem Ind | Solid emulsion blasting agents comprising nitric acid, inorganic nitrates, and fuels |
-
1966
- 1966-03-30 IL IL25485A patent/IL25485A/en unknown
- 1966-04-13 US US542247A patent/US3306789A/en not_active Expired - Lifetime
- 1966-04-14 GB GB16407/66A patent/GB1100097A/en not_active Expired
- 1966-04-14 OA OA52409A patent/OA01942A/xx unknown
- 1966-04-21 BE BE679854D patent/BE679854A/xx unknown
- 1966-04-21 DE DE19661571212 patent/DE1571212A1/de active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3164503A (en) * | 1963-05-13 | 1965-01-05 | Atlas Chem Ind | Aqueous emulsified ammonium nitrate blasting agents containing nitric acid |
US3242019A (en) * | 1963-05-13 | 1966-03-22 | Atlas Chem Ind | Solid emulsion blasting agents comprising nitric acid, inorganic nitrates, and fuels |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423257A (en) * | 1966-09-01 | 1969-01-21 | American Cyanamid Co | Blasting composition containing nitric acid |
US3423258A (en) * | 1966-12-12 | 1969-01-21 | American Cyanamid Co | Preparation of gelled blasting agents comprising nitric acids,fuels,and gelling agents |
US3444014A (en) * | 1967-08-08 | 1969-05-13 | Du Pont | Gelled aqueous nitric acid composition and method of making same |
US3507720A (en) * | 1967-08-28 | 1970-04-21 | Du Pont | Gelled aqueous acidic composition containing an in situ crosslinked reaction product |
US3442728A (en) * | 1967-12-29 | 1969-05-06 | American Cyanamid Co | Gelled nitric acid blasting agent |
US3454438A (en) * | 1967-12-29 | 1969-07-08 | American Cyanamid Co | Gelled nitric acid blasting agent |
US3471347A (en) * | 1967-12-29 | 1969-10-07 | American Cyanamid Co | Gelled nitric acid blasting agent |
US3457127A (en) * | 1968-03-18 | 1969-07-22 | Melvin Cook | Explosive composition containing an additional product of urea and nitric acid and method of preparing same |
Also Published As
Publication number | Publication date |
---|---|
OA01942A (fr) | 1970-02-04 |
BE679854A (enrdf_load_stackoverflow) | 1966-10-03 |
DE1571212A1 (de) | 1970-11-26 |
GB1100097A (en) | 1968-01-24 |
IL25485A (en) | 1970-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4818309A (en) | Primer composition | |
US4310364A (en) | Emulsion explosive sensitive to a detonator | |
NO147556B (no) | Fenghette-foelsomt vann-i-olje-emulsjonssprengstoff | |
US3660182A (en) | Explosive compositions and method of preparation | |
NO127704B (enrdf_load_stackoverflow) | ||
US4600452A (en) | Eutectic microknit composite explosives and processes for making same | |
US3306789A (en) | Nitric acid explosive composition containing inorganic nitrate oxidizer and nitrated aromatic compound | |
US4746380A (en) | Explosive compound comprising ammonium nitrate and glycine | |
US4948438A (en) | Intermolecular complex explosives | |
US4453989A (en) | Solid sensitizers for water-in-oil emulsion explosives | |
US3356547A (en) | Water-in-oil explosive emulsion containing organic nitro compound and solid explosive adjuvant | |
US4401490A (en) | Melt explosive composition | |
US3294601A (en) | Hexamethylene tetramine and ammonium nitrate containing explosive composition | |
Oxley | The chemistry of explosives | |
US4032375A (en) | Blasting composition containing calcium nitrate and sulfur | |
US3994756A (en) | Castable composite explosive compositions containing a mixture of trinitrobenzene and trinitroxylene | |
US4936932A (en) | Aromatic hydrocarbon-based emulsion explosive composition | |
US3278350A (en) | Explosive-ammonium nitrate in phenol-aldehyde resin | |
US5670741A (en) | Method of preparing a cast solid explosive product | |
US3160535A (en) | Free flowing granular explosive composition of controlled particle size | |
US4434017A (en) | Explosive composition | |
US3966516A (en) | Slurry explosive composition containing a nitroparaffin and an amide | |
US4500370A (en) | Emulsion blasting agent | |
US4994124A (en) | Sensitized explosive | |
US3881970A (en) | Explosive composition having a liquid hydroxyalkyl nitrate as sensitizer |