US3299841A - Burner impeller - Google Patents

Burner impeller Download PDF

Info

Publication number
US3299841A
US3299841A US495461A US49546165A US3299841A US 3299841 A US3299841 A US 3299841A US 495461 A US495461 A US 495461A US 49546165 A US49546165 A US 49546165A US 3299841 A US3299841 A US 3299841A
Authority
US
United States
Prior art keywords
impeller
burner
fuel
pipe
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US495461A
Inventor
Fritz L Hemker
John R Mcwhorter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Babcock and Wilcox Co
Elsag Bailey Inc
Original Assignee
Babcock and Wilcox Co
Bailey Meter Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock and Wilcox Co, Bailey Meter Co filed Critical Babcock and Wilcox Co
Priority to US495461A priority Critical patent/US3299841A/en
Priority to GB45836/66A priority patent/GB1155296A/en
Application granted granted Critical
Publication of US3299841A publication Critical patent/US3299841A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L17/00Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/045Means for supervising combustion, e.g. windows by observing the flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2208/00Control devices associated with burners
    • F23D2208/10Sensing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2700/00Installations for increasing draught in chimneys; Specific draught control devices for locomotives
    • F23L2700/002Specific draught control devices for locomotives

Definitions

  • This invention relates to fuel burners and more particularly to burners utilizing a fuel capable of being projected into the combustion zone of a furnace in a fluent stream.
  • Our invention Will be used primarily in connection with pulverized fuel burners of the circular type wherein we arrange to discharge a fluent mixture of solid fuel particles into the center area of the burner.
  • our invention could be used in oil and gas burners but the advantages gained by its use will not be as outstanding.
  • Impellers of circular fuel burners provide even distribution of the fuel and primary air as the mixture enters the combustion area of a furnace. In addition, it disperses the fuel-primary air mixture into the secondary air flow and thereby promotes thorough mingling of the fuel and air priorto combustion.
  • the flame pattern of an impeller equipped circular fuel burner is in the form of a cone with the cone vertex in the impeller end. Unfortunately, the cone shaped flame of circular fuel burners sometimes creates an area immediately adjacent to the impeller end where the flame is not present.
  • the principal object of our invention is to provide an impeller that passes a small amount of fuel to the combustion zone of the furnace without deflection.
  • Another object of our invention is to provide an impeller having a series of pass-ages in the innermost vane to permit a small amount of fuel to pass into the combustion zone of a furnace without deflection.
  • Still another object of our invention is to provide an impeller that eliminates the flameless area created in circular burners and permits a small amount of fuel to enter the combustion zone immediately in front of the impeller pipe.
  • FIG. 1 is a sectional assembly view of a circular burner employing the impeller of our invention and an impellermounted detector;
  • FIG. 2 is an enlarged view in section of our impeller showing the inner vane passages
  • FIG. 3 is the end view of the impeller of FIG. 2 as seen from the furnace end.
  • FIG. 4 is the end view of the impeller of FIG. 2 with rectangular passages instead of circular.
  • FIG. I we show a burner in association with a furnace wall 1 of refractory material and forming part of a combustion zone 2.
  • the burner delivers fuel and air through a port 3 having circumferential wall surfaces converging inwardly to form a venturi-like passage providing a burner throat of restricted diameter.
  • Coal and primary air are supplied to the combustion zone 2 through a horizontally mounted fuel pipe 4 coaxially located with respect to the venturi-like passage.
  • Attached to the supply end of the fuel pipe 4 is an elbow 6 adapted to be connected to a suitable source of pulverized coal and primary air.
  • the pulverized coal and primary air mixture enters the pipe 4 after striking the 45 angle of the elbow 6 thereby developing a turbulent flow to provide a substantially uniform supply of fuel and air to the outlet of the fuel pipe 4 and to the combustion zone 2.
  • the volume of primary (or carrier) are mixed with the pulverized coal for purposes of transportation of said coal is insufficient to produce complete combustion.
  • secondary air is supplied to the burner throat by means of a windbox 8 connected by suitable ductwork to a source of pressurized air. Control of the secondary air is by means of a series of registers 9 also functioning to impart a whirling motion to the secondary air as it enters the burner throat and mixes with the pulverized coal-primary air mixture.
  • an impeller 11 is mounted on an adjustable horizontal impeller pipe 12 coaxially positioned Within the fuel pipe 4 by means of supports.
  • the impeller 11 is centrally positioned within the fuel pipe 4 and disposed in most part within said pipe at its discharge end.
  • a radiation detector Positioned within the impeller pipe 12, some distance from the furnace end, is a radiation detector, such as an ultra-violet sensitive tube 13, as part of a flame detection device, not shown.
  • FIG. 2 shows in greater detail the position of the ultra-violet tube 13 with respect to the impeller 11.
  • the ambient temperature surrounding the ultra-violet tube 13 is higher than its safe operating condition during furnace operation.
  • air is supplied through the impeller pipe 12 by means of an air connection. This air enters the impeller pipe 12, flows past and cools the ultra-violet tube 13 to a safe operating condition, and exits at the furnace end where it mixes with the small amount of coal not deflected by the impeller 11.
  • FIGS. 2 and 3 we show in detail the features of our impeller including a series of passages for allowing a portion of the pulverized coal-primary air miX- ture to enter the combustion zone 2 without being deflected.
  • the impeller pipe 12 centrally positioned within the fuel pipe 4 and having theimpeller 11 mounted at the discharge end.
  • the impeller itself consists of three vanes 14, 16 and 17, each formed substantially as the frustum of a hollow cone having its veltex at the side remote from the outlet of the fuel pipe 4. These vanes are supported in concentric spaced relationship by means of ribs 18, 19 and 21 mounted radially and equally spaced circumferentially around a hub 22.
  • Spacing of the impeller vanes and its distance from the fuel pipe end may be varied to suit particular operating conditions and characteristics of the fuel being used. For example, when using gas it probably will be desirable to 3 reduce the vane spacing as compared with the spacing when a fluent mixture of pulverized coal and air is used.
  • vane 14 has an inside diameter approximately equal to the outside diameter of the hub 22. Spaced approximately 120 apart are three circular passages 23, 24 and 26. These passages allow a fraction of the total pulverized coal-primary air mixture flowing through the fuel pipe 4 to enter the combustion zone 2 without deflection by the vanes of the impeller 11. The radial distance from the center of the impeller pipe 12 to the circular passages 23, 24 and 26 is approximately equal to the outside diameter of the hub 22.
  • a stream of pulverized coal and primary air passes through the fuel pipe 4 and is dispersed by impeller 11 so as to move in a diverging conical path through the burner port 3 into the combustion zone 2.
  • the impeller deflects most of the fuel particles into the stream of secondary air and thus an intimate mixing of coal and air is obtained.
  • Secondary air enters the registers 9 and passes therethrough in a highvelo'city stream to and through the burner port 3 for mixing with the pulverized coal-primary air stream.
  • the ultra-violet detection tube mounted within said pipe will be directly in line with the radiation emitted by said flame. Direct in-line observation of the flame enables the detector tube to be mounted in the cool end of the impeller pipe away from the furnace combustion zone. Mounting the ultra-violet detector tube away from the combustion zone improves its operation by: first, lowering the tubes operating temperature and second, restricting the view of the tube to the flame of only one burner, namely, the one in which it is mounted.
  • the amount of coal required to pass through the innermost vane 14 would vary with the application. Some influential factors would be: coal characteristics (high or low volatile), impeller pipe size, velocity of air through the impeller pipe and the burner rating. Thus, although we have described a 3-hole impeller, it is not necessarily the only or most desirable design for every application. We tried other hole configurations and arrangements, one such design had five substantially rectangular slots formed in a circular pattern around the outside diameter of the hub 22, such as shown in FIG. 4. If, however, too much coal axially enters the combustion zone 2 it will tend to coke-up the impeller pipe and innermost vane; incomplete combustion will result that may well block the ultraviolet wave lengths from the detector tube 13.
  • a fuel burner comprising:
  • a furnace wall formed with a burner port
  • furnace including a tubular burner nozzle adapted to pass a stream of fuel into said furnace and having its discharge end dis-posed adjacent to said burner port;
  • impeller attached to one end of said pipe at the discharge end of said nozzle, said impeller having'a series of stationary axially spaced annular vanes of progressively decreasing diameters, the innermost vane having a plurality of openings for passing undeflected a small amount of fuel into said furnace in an area immediately adjacent to the furnace end of said impeller pipe.
  • An impeller for a fuel burner comprising:
  • annular vanes attached to said hub, said annular vanes terminating in free outer circumferential edges of which said free edges are of progressively increasing diameters at progressively increasing distances from the end of said hub the innermost vane having a plurality of passages for passing undeflected a small amount of fuel to an area immediately adjacent the end of-said impeller pipe.
  • a fuel burner including a burner nozzle
  • a flame sensing device including a detector tubedisposed within said pipe and aimed at the burner end of said impeller pipe; and I an impeller attached to the burner end of said pipe,
  • vanes of decreasingly smaller diameter each formed substantially as the frustum of a hollow cone having its vertex at the side remote from the end of said hub to which they are mounted, said innermost vane having three circumferentially arranged equally spaced circular passages for passing an amount of fuel undeflected to an area at the end of said impeller pipe;
  • An impeller for a fuel burner comprising:

Description

Jan. 24, 1967 F. L. HEMKER ETAL 3,299,841
BURNER IMPELLER Filed Oct. 13, 1965 2 Sheets-Sheet 1 AIR INVENTORS FRITZ L. HEMKER F l BY JOHN R. MCWHORTER Jan. 24, 1967 F. L. HEMKER ETAL BURNER IMPELLER I 2 Sheets-Sheet 2 Filed Oct. 13, 1965 FIG.
M Du MET OKon TMO NEH HW v .c H WLM N Z 0 T W n MN .A H A; J
United States Patent 3,299,841 BURNER IMPELLER Fritz L. Hemker, Wadsworth, and John R. McWhorter, Willoughhy Hills, Ohio; said Hemlrer assignor to The Eahcoclr & Wilcox Company, a corporation of New Jersey, and said McWhorter assignor to Bailey Meter Companv, a corporation of Delaware Filed Oct. 13, 1965, Ser. No. 495,461
11 Claims. (Cl. 110-28) This invention relates to fuel burners and more particularly to burners utilizing a fuel capable of being projected into the combustion zone of a furnace in a fluent stream.
Our invention Will be used primarily in connection with pulverized fuel burners of the circular type wherein we arrange to discharge a fluent mixture of solid fuel particles into the center area of the burner. Of course our invention could be used in oil and gas burners but the advantages gained by its use will not be as outstanding.
Impellers of circular fuel burners provide even distribution of the fuel and primary air as the mixture enters the combustion area of a furnace. In addition, it disperses the fuel-primary air mixture into the secondary air flow and thereby promotes thorough mingling of the fuel and air priorto combustion. The flame pattern of an impeller equipped circular fuel burner is in the form of a cone with the cone vertex in the impeller end. Unfortunately, the cone shaped flame of circular fuel burners sometimes creates an area immediately adjacent to the impeller end where the flame is not present.
In the past it has proven extremely difficult to successfully monitor the cone shaped flame of a circular burner in a multiple burner furnace. Mounting the flame detection device outside the burner proper makes it difficult to distinguish the flame of one burner from another. With the detector mounted in the impeller pipe, there is either the problem of burner discrimination or lack of a flame for the detector to monitor. If the impeller-mounted detector is located close to the burner end of the impeller there exists the problem of discrimination. Mounting the detector back from the end of the impeller pipe limits its view to that area of the burner where no visible flame is present.
To eliminate the flameless area of the burner, we have modified the standard circular burner impeller, such as disclosed in US. Patent No. 2,380,463, to permit a small amount of fuel and primary air to pass into the furnace without deflection. This undeflected fuel-air mixture mixes with the air supplied through the impeller pipe to form a combustible mixture that burns in the area immediately in front of the impeller end. Thus, the principal object of our invention is to provide an impeller that passes a small amount of fuel to the combustion zone of the furnace without deflection.
Another object of our invention is to provide an impeller having a series of pass-ages in the innermost vane to permit a small amount of fuel to pass into the combustion zone of a furnace without deflection.
Still another object of our invention is to provide an impeller that eliminates the flameless area created in circular burners and permits a small amount of fuel to enter the combustion zone immediately in front of the impeller pipe.
Various other objects and advantages will be apparent from a reading of the following description taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a sectional assembly view of a circular burner employing the impeller of our invention and an impellermounted detector;
FIG. 2 is an enlarged view in section of our impeller showing the inner vane passages;
FIG. 3 is the end view of the impeller of FIG. 2 as seen from the furnace end.
FIG. 4 is the end view of the impeller of FIG. 2 with rectangular passages instead of circular.
Referring to FIG. I, we show a burner in association with a furnace wall 1 of refractory material and forming part of a combustion zone 2. The burner delivers fuel and air through a port 3 having circumferential wall surfaces converging inwardly to form a venturi-like passage providing a burner throat of restricted diameter.
Coal and primary air are supplied to the combustion zone 2 through a horizontally mounted fuel pipe 4 coaxially located with respect to the venturi-like passage. Attached to the supply end of the fuel pipe 4 is an elbow 6 adapted to be connected to a suitable source of pulverized coal and primary air. The pulverized coal and primary air mixture enters the pipe 4 after striking the 45 angle of the elbow 6 thereby developing a turbulent flow to provide a substantially uniform supply of fuel and air to the outlet of the fuel pipe 4 and to the combustion zone 2.
The volume of primary (or carrier) are mixed with the pulverized coal for purposes of transportation of said coal is insufficient to produce complete combustion. To insure complete combustion of the pulverized coal, secondary air is supplied to the burner throat by means of a windbox 8 connected by suitable ductwork to a source of pressurized air. Control of the secondary air is by means of a series of registers 9 also functioning to impart a whirling motion to the secondary air as it enters the burner throat and mixes with the pulverized coal-primary air mixture.
To insure a proper fuel-air mixture for complete and rapid combustion, an impeller 11 is mounted on an adjustable horizontal impeller pipe 12 coaxially positioned Within the fuel pipe 4 by means of supports. The impeller 11 is centrally positioned within the fuel pipe 4 and disposed in most part within said pipe at its discharge end. Positioned within the impeller pipe 12, some distance from the furnace end, is a radiation detector, such as an ultra-violet sensitive tube 13, as part of a flame detection device, not shown. FIG. 2 shows in greater detail the position of the ultra-violet tube 13 with respect to the impeller 11.
The ambient temperature surrounding the ultra-violet tube 13 is higher than its safe operating condition during furnace operation. To maintain the ambient temperature surrounding the tube below its maximum safe operating temperature, air is supplied through the impeller pipe 12 by means of an air connection. This air enters the impeller pipe 12, flows past and cools the ultra-violet tube 13 to a safe operating condition, and exits at the furnace end where it mixes with the small amount of coal not deflected by the impeller 11.
Referring to FIGS. 2 and 3, we show in detail the features of our impeller including a series of passages for allowing a portion of the pulverized coal-primary air miX- ture to enter the combustion zone 2 without being deflected. Again we show the impeller pipe 12 centrally positioned within the fuel pipe 4 and having theimpeller 11 mounted at the discharge end. The impeller itself consists of three vanes 14, 16 and 17, each formed substantially as the frustum of a hollow cone having its veltex at the side remote from the outlet of the fuel pipe 4. These vanes are supported in concentric spaced relationship by means of ribs 18, 19 and 21 mounted radially and equally spaced circumferentially around a hub 22. Spacing of the impeller vanes and its distance from the fuel pipe end may be varied to suit particular operating conditions and characteristics of the fuel being used. For example, when using gas it probably will be desirable to 3 reduce the vane spacing as compared with the spacing when a fluent mixture of pulverized coal and air is used.
Iartic'ular' attention is called to the innermost vane 14, vane 14 has an inside diameter approximately equal to the outside diameter of the hub 22. Spaced approximately 120 apart are three circular passages 23, 24 and 26. These passages allow a fraction of the total pulverized coal-primary air mixture flowing through the fuel pipe 4 to enter the combustion zone 2 without deflection by the vanes of the impeller 11. The radial distance from the center of the impeller pipe 12 to the circular passages 23, 24 and 26 is approximately equal to the outside diameter of the hub 22.
In operation of the burner described, a stream of pulverized coal and primary air passes through the fuel pipe 4 and is dispersed by impeller 11 so as to move in a diverging conical path through the burner port 3 into the combustion zone 2. The impeller deflects most of the fuel particles into the stream of secondary air and thus an intimate mixing of coal and air is obtained. Secondary air enters the registers 9 and passes therethrough in a highvelo'city stream to and through the burner port 3 for mixing with the pulverized coal-primary air stream. With the air streams and fuel entering the furnace as described, combustion of the fuel and air mixture will progress at a very rapid rate, which increases as the combined streams move into the furnace, with a stable cone shaped ignition zone formed immediately downstream of the impeller. Most of the fuel particles entering the combustion zone are deflected by the impeller into the stream of secondary air to form a turbulent coal-air mixing zone. There is, however, a small fraction of the total fuel entering the furnace passing undeflected through the passageways of the innermost vane 14 and mixed with air exiting from the impeller pipe 12. Combustion of this fuel-air mixture takes place adjacent to the open end of the impeller pipe in front of the ultra-violet detector tube 13. The fuel and air streams so mixed move into the furnace where combustion takes place at a rapid rate. The main flame, as mentioned, moves in a diverging conical path from the, impeller while the supplemental flame burns in an area immediately ahead of the furnace end of the impeller pipe 12.
When the small supplemental flame burns at the open end of the impeller pipe 12, the ultra-violet detection tube mounted within said pipe will be directly in line with the radiation emitted by said flame. Direct in-line observation of the flame enables the detector tube to be mounted in the cool end of the impeller pipe away from the furnace combustion zone. Mounting the ultra-violet detector tube away from the combustion zone improves its operation by: first, lowering the tubes operating temperature and second, restricting the view of the tube to the flame of only one burner, namely, the one in which it is mounted.
The amount of coal required to pass through the innermost vane 14 would vary with the application. Some influential factors would be: coal characteristics (high or low volatile), impeller pipe size, velocity of air through the impeller pipe and the burner rating. Thus, although we have described a 3-hole impeller, it is not necessarily the only or most desirable design for every application. We tried other hole configurations and arrangements, one such design had five substantially rectangular slots formed in a circular pattern around the outside diameter of the hub 22, such as shown in FIG. 4. If, however, too much coal axially enters the combustion zone 2 it will tend to coke-up the impeller pipe and innermost vane; incomplete combustion will result that may well block the ultraviolet wave lengths from the detector tube 13. If the velocity of the air exiting from the impeller pipe is too great, because of the large volume required to mix with :the undeflected fuel, it may blow-out the supplemental flame. On the other hand, too small a coal flow through the impeller causes the ultra-violet radiation level to diminish for low firing rates and ,a flame failure may be inclicated. Thus, it can be seen that many factors must be considered in designing the particular innermost vane to be used, a 3-hole version is but one variation.
We developed our invention using an impeller substantially as shown in FIGS. 2 and 3. Dimensionally, the three passages are /2 in diameter and have a total open area of 0.59 square inch; they are located apart. In the development of our 3-hole direct-flow impeller, we Worked with passageways ranging from A1" to A" in diameter and having a total open area varying from 0.15 square inch to 1.325 square inches. Although these lim1ts are not critical, we did find that with the A diameter passageways the supplemental flame was nearly extinguished at low rates of fuel flow. With the passageway size, the amount of air required to produce a combustible mixture was excessive.
In accordance with the patent statutes, we have described our invention in terms of a preferred embodiment. The invention may bepracticed otherwise than as described and still be within the scope of the appended claims.
What we claim as new and desire to secure by Letters Patent of theUnited States is:
1. A fuel burner, comprising:
a furnace wall formed with a burner port;
means for supplying fuel and com-bustion air to said.
furnace including a tubular burner nozzle adapted to pass a stream of fuel into said furnace and having its discharge end dis-posed adjacent to said burner port;
an impeller pipe concentrically mounted within said burner nozzle; and
an impeller attached to one end of said pipe at the discharge end of said nozzle, said impeller having'a series of stationary axially spaced annular vanes of progressively decreasing diameters, the innermost vane having a plurality of openings for passing undeflected a small amount of fuel into said furnace in an area immediately adjacent to the furnace end of said impeller pipe. p
2. A fuel burner as set forth in claim 1 wherein the total open area of the plurality of openings in said innermost vane varies between a lower limit of 0.15 square inch and an upper limit of 1.3 square inches.
3. An impeller for a fuel burner, comprising:
an impeller pipe;
a hub attached to the end of said impeller pipe; and
a plurality of stationary axially spaced annular vanes attached to said hub, said annular vanes terminating in free outer circumferential edges of which said free edges are of progressively increasing diameters at progressively increasing distances from the end of said hub the innermost vane having a plurality of passages for passing undeflected a small amount of fuel to an area immediately adjacent the end of-said impeller pipe.
4. An impeller for a fuel burner as set forth in claim 3 wherein the passages of said innermost vane are three.
equally spaced openings. 7
5. An impeller for a fuel burner as set forth in claim 4 wherein the three equally spaced openings of said innerrnost vane are circular in shape and have a' diameter vary ing between a lower limit of 0.25 inch to an upper limit of 0.75 inch.
6. An impeller for a fuel burner as set forth in claim 5 wherein the three circular shaped openings in said innermost vane are spaced 120 apart.
7. In combination:
a fuel burner including a burner nozzle;
means for supplying pulverized coal and combustion air to said burner;
an impeller pipe concentrically mounted within said burner nozzle;
a flame sensing device including a detector tubedisposed within said pipe and aimed at the burner end of said impeller pipe; and I an impeller attached to the burner end of said pipe,
a hub attached to the end of said impeller pipe; three vanes of decreasingly smaller diameter each formed substantially as the frustum of a hollow cone having its vertex at the side remote from the end of said hub to which they are mounted, said innermost vane having three circumferentially arranged equally spaced circular passages for passing an amount of fuel undeflected to an area at the end of said impeller pipe; and
three ribs radially mounted to said hub and equally spaced circumferentially for concentrically mounting said vanes to said hub.
8. The combination of claim 7 including means for passing air around said detector tube and out the burner 10 end of said impeller pipe to form a combustible mixture with the undeflected amount of fuel from said innermost vane.
9. The combination of claim 7 including means for adjusting the position of said detector tube to vary its v1ewmg area.
References Cited by the Examiner UNITED STATES PATENTS 10. The combination of claim 7 wherein the openings 233: of said innermost vane are rectangularly shaped and ar- 3256842 6/1966 gn g 22 ranged in a circular pattern.
11. An impeller for a fuel burner, comprising:
20 CHARLES J. MYHRE, Primary Examiner. an impeller plpe;

Claims (1)

  1. 7. IN COMBINATION: A FUEL BURNER INCLUDING A BURNER NOZZLE; MEANS FOR SUPPLYING PULVERIZED COAL AND COMBUSTION AIR TO SAID BURNER; AN IMPELLER PIPE CONCENTRICALLY MOUNTED WITHIN SAID BURNER NOZZLE; A FLAME SENSING DEVICE INCLUDING A DETECTOR TUBE DISPOSED WITHIN SAID PIPE AND AIMED AT THE BURNER END OF SAID IMPELLER PIPE; AND AN IMPELLER ATTACHED TO THE BURNER END OF SAID PIPE, SAID IMPELLER HAVING A SERIES OF STATIONARY AXIALLY SPACED ANNULAR VANES OF PROGRESSIVELY DECREASING DIAMETERS, THE INNERMOST VANE HAVING A PLURALITY OF OPENINGS FOR PASSING UNDEFLECTED A SMALL AMOUNT OF FUEL FOR COMBUSTION IN SAID BURNER, SAID DETECTOR TUBE SENSITIVE TO THE RADIATION EMITTED BY THE BURNING OF SAID UNDEFLECTED AMOUNT OF COAL.
US495461A 1965-10-13 1965-10-13 Burner impeller Expired - Lifetime US3299841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US495461A US3299841A (en) 1965-10-13 1965-10-13 Burner impeller
GB45836/66A GB1155296A (en) 1965-10-13 1966-10-13 Improvements in and relating to Pulverized Fuel Burners.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US495461A US3299841A (en) 1965-10-13 1965-10-13 Burner impeller

Publications (1)

Publication Number Publication Date
US3299841A true US3299841A (en) 1967-01-24

Family

ID=23968728

Family Applications (1)

Application Number Title Priority Date Filing Date
US495461A Expired - Lifetime US3299841A (en) 1965-10-13 1965-10-13 Burner impeller

Country Status (2)

Country Link
US (1) US3299841A (en)
GB (1) GB1155296A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486835A (en) * 1968-04-16 1969-12-30 Sun Ray Burner Mfg Corp Power conversion burner head
US3990835A (en) * 1974-07-26 1976-11-09 Occidental Petroleum Corporation Burner for igniting oil shale retort
US4026670A (en) * 1976-04-19 1977-05-31 Phillips Petroleum Company Apparatus for producing carbon black
US4147116A (en) * 1977-09-19 1979-04-03 Coal Tech Inc. Pulverized coal burner for furnace and operating method
WO1980000034A1 (en) * 1978-06-02 1980-01-10 Foerenade Fabriksverken Method and apparatus for dosing an air-fuel mixture in burners having evaporating tubes
US4220444A (en) * 1978-02-27 1980-09-02 John Zink Company Gas burner for flame adherence to tile surface
US4412496A (en) * 1982-04-27 1983-11-01 Foster Wheeler Energy Corp. Combustion system and method for a coal-fired furnace utilizing a low load coal burner
US4412810A (en) * 1981-03-04 1983-11-01 Kawasaki Jukogyo Kabushiki Kaisha Pulverized coal burner
US4445444A (en) * 1982-08-12 1984-05-01 Texaco Inc. Burner for combusting oxygen-coal mixture
US4455949A (en) * 1980-02-13 1984-06-26 Brennstoffinstitut Freiberg Burner for gasification of powdery fuels
US4493271A (en) * 1982-02-22 1985-01-15 Lafarge Conseils Et Etudes Coal or multifuel burner
US4525138A (en) * 1983-10-28 1985-06-25 Union Carbide Corporation Flame signal enhancer for post-mixed burner
US4531461A (en) * 1982-05-14 1985-07-30 T.A.S., Inc. Solid fuel pulverizing and burning system and method and pulverizer and burner therefor
US4556384A (en) * 1982-10-22 1985-12-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Burner for pulverized coal
US4595353A (en) * 1984-05-23 1986-06-17 Shell Oil Company Burner with ignition device
WO1986004664A1 (en) * 1985-02-12 1986-08-14 Dahlander Paer Nils Olof A method for the control of a burner equipped with an injector nozzle and an arrangement for executing the method
US4630554A (en) * 1982-05-14 1986-12-23 T.A.S., Inc. Pulverized solid fuel burner and method of firing pulverized fuel
US4638747A (en) * 1985-04-01 1987-01-27 Astec Industries, Inc. Coal-fired asphalt plant
US4644878A (en) * 1985-11-05 1987-02-24 The United States Of America As Represented By The United States Department Of Energy Slurry burner for mixture of carbonaceous material and water
US4924784A (en) * 1984-02-27 1990-05-15 International Coal Refining Company Firing of pulverized solvent refined coal
US5215259A (en) * 1991-08-13 1993-06-01 Sure Alloy Steel Corporation Replaceable insert burner nozzle
US5664944A (en) * 1994-12-05 1997-09-09 The Babcock & Wilcox Company Low pressure drop vanes for burners and NOX ports
US5755567A (en) * 1996-02-21 1998-05-26 The Babcock & Wilcox Company Low vortex spin vanes for burners and overfire air ports
US20030157451A1 (en) * 2001-12-13 2003-08-21 Mccabe Michael I. Low NOx particulate fuel burner
DE102006057086A1 (en) * 2006-12-04 2008-06-05 Minebea Co., Ltd. Fan for gas burner system, has electric motor integrated at center of impeller for driving impeller, and labyrinth seal provided in region of outside circumference between impeller and housing, which is made of plastics
US20140157790A1 (en) * 2012-12-10 2014-06-12 Zilkha Biomass Power Llc Combustor assembly and methods of using same
US9267686B1 (en) * 2013-03-07 2016-02-23 Zeeco, Inc. Apparatus and method for monitoring flares and flare pilots

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912872B (en) * 2014-03-21 2016-06-29 中国科学院过程工程研究所 A kind of coal burner with spout air-cooled structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380463A (en) * 1942-06-23 1945-07-31 Babcock & Wilcox Co Fluent fuel burner
US3208502A (en) * 1961-03-08 1965-09-28 Babcock & Wilcox Ltd Fuel burners having air control means
US3256842A (en) * 1963-04-02 1966-06-21 Babcock & Wilcox Ltd Multiple fuel burner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380463A (en) * 1942-06-23 1945-07-31 Babcock & Wilcox Co Fluent fuel burner
US3208502A (en) * 1961-03-08 1965-09-28 Babcock & Wilcox Ltd Fuel burners having air control means
US3256842A (en) * 1963-04-02 1966-06-21 Babcock & Wilcox Ltd Multiple fuel burner

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486835A (en) * 1968-04-16 1969-12-30 Sun Ray Burner Mfg Corp Power conversion burner head
US3990835A (en) * 1974-07-26 1976-11-09 Occidental Petroleum Corporation Burner for igniting oil shale retort
US4026670A (en) * 1976-04-19 1977-05-31 Phillips Petroleum Company Apparatus for producing carbon black
US4147116A (en) * 1977-09-19 1979-04-03 Coal Tech Inc. Pulverized coal burner for furnace and operating method
US4220444A (en) * 1978-02-27 1980-09-02 John Zink Company Gas burner for flame adherence to tile surface
US4364724A (en) * 1978-06-02 1982-12-21 Forenade Farbiksverken Method and apparatus for dosing an air-fuel mixture in burners having evaporating tubes
WO1980000034A1 (en) * 1978-06-02 1980-01-10 Foerenade Fabriksverken Method and apparatus for dosing an air-fuel mixture in burners having evaporating tubes
US4455949A (en) * 1980-02-13 1984-06-26 Brennstoffinstitut Freiberg Burner for gasification of powdery fuels
US4412810A (en) * 1981-03-04 1983-11-01 Kawasaki Jukogyo Kabushiki Kaisha Pulverized coal burner
US4493271A (en) * 1982-02-22 1985-01-15 Lafarge Conseils Et Etudes Coal or multifuel burner
US4412496A (en) * 1982-04-27 1983-11-01 Foster Wheeler Energy Corp. Combustion system and method for a coal-fired furnace utilizing a low load coal burner
US4630554A (en) * 1982-05-14 1986-12-23 T.A.S., Inc. Pulverized solid fuel burner and method of firing pulverized fuel
US4531461A (en) * 1982-05-14 1985-07-30 T.A.S., Inc. Solid fuel pulverizing and burning system and method and pulverizer and burner therefor
US4445444A (en) * 1982-08-12 1984-05-01 Texaco Inc. Burner for combusting oxygen-coal mixture
US4556384A (en) * 1982-10-22 1985-12-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Burner for pulverized coal
US4525138A (en) * 1983-10-28 1985-06-25 Union Carbide Corporation Flame signal enhancer for post-mixed burner
US4924784A (en) * 1984-02-27 1990-05-15 International Coal Refining Company Firing of pulverized solvent refined coal
US4595353A (en) * 1984-05-23 1986-06-17 Shell Oil Company Burner with ignition device
WO1986004664A1 (en) * 1985-02-12 1986-08-14 Dahlander Paer Nils Olof A method for the control of a burner equipped with an injector nozzle and an arrangement for executing the method
US4830601A (en) * 1985-02-12 1989-05-16 Dahlander Paer N O Method for the control of a burner equipped with an injector nozzle and an arrangement for executing the method
US4638747A (en) * 1985-04-01 1987-01-27 Astec Industries, Inc. Coal-fired asphalt plant
US4644878A (en) * 1985-11-05 1987-02-24 The United States Of America As Represented By The United States Department Of Energy Slurry burner for mixture of carbonaceous material and water
US5215259A (en) * 1991-08-13 1993-06-01 Sure Alloy Steel Corporation Replaceable insert burner nozzle
US5664944A (en) * 1994-12-05 1997-09-09 The Babcock & Wilcox Company Low pressure drop vanes for burners and NOX ports
US5755567A (en) * 1996-02-21 1998-05-26 The Babcock & Wilcox Company Low vortex spin vanes for burners and overfire air ports
US20030157451A1 (en) * 2001-12-13 2003-08-21 Mccabe Michael I. Low NOx particulate fuel burner
DE102006057086A1 (en) * 2006-12-04 2008-06-05 Minebea Co., Ltd. Fan for gas burner system, has electric motor integrated at center of impeller for driving impeller, and labyrinth seal provided in region of outside circumference between impeller and housing, which is made of plastics
DE102006057086B4 (en) * 2006-12-04 2008-10-30 Minebea Co., Ltd. Blower for a gas combustion system
DE102006057086B8 (en) * 2006-12-04 2009-01-29 Minebea Co., Ltd. Blower for a gas combustion system
US20140157790A1 (en) * 2012-12-10 2014-06-12 Zilkha Biomass Power Llc Combustor assembly and methods of using same
US9267686B1 (en) * 2013-03-07 2016-02-23 Zeeco, Inc. Apparatus and method for monitoring flares and flare pilots

Also Published As

Publication number Publication date
GB1155296A (en) 1969-06-18

Similar Documents

Publication Publication Date Title
US3299841A (en) Burner impeller
US2806517A (en) Oil atomizing double vortex burner
US2515845A (en) Flame pocket fluid fuel burner
US5199355A (en) Low nox short flame burner
EP0343767B1 (en) Burner for the combustion of pulverised fuel
KR100472900B1 (en) An Improved Pulverized Coal Burner
CN101082418B (en) Large diameter mid-zone air separation cone for expanding IRZ
US3775039A (en) Burners for liquid or gaseous fuels
JPS5858563B2 (en) How do you know what to do?
US4220444A (en) Gas burner for flame adherence to tile surface
US3049085A (en) Method and apparatus for burning pulverized coal
GB1137985A (en) Improvements in and relating to gaseous fuel burners
US3182712A (en) Gaseous fuel burner for producing radiant heat
US3922137A (en) Apparatus for admixing fuel and combustion air
JPH0515924B2 (en)
US3032097A (en) Method and apparatus for burning fluent fuel
US9841189B2 (en) Lean premix burner having center gas nozzle
TWI712761B (en) Solid fuel burner
US4285664A (en) Burner for a plurality of fluid streams
US2765621A (en) Combustion apparatus with toroidal eddy flame stabilizer
US6524098B1 (en) Burner assembly with swirler formed from concentric components
US5669766A (en) Fossil fuel burners
US3265113A (en) Gas burner apparatus
US2674846A (en) Combustion chamber with baffle means to control secondary air
US2635564A (en) Combustion system for pulverulent fuel