US3279031A - Manufacture of quad cables - Google Patents

Manufacture of quad cables Download PDF

Info

Publication number
US3279031A
US3279031A US327170A US32717063A US3279031A US 3279031 A US3279031 A US 3279031A US 327170 A US327170 A US 327170A US 32717063 A US32717063 A US 32717063A US 3279031 A US3279031 A US 3279031A
Authority
US
United States
Prior art keywords
core
grooves
quad
conductors
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US327170A
Other languages
English (en)
Inventor
Eyraud Ivan
Delorme Maurice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Compagnie Generale dElectricite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale dElectricite SA filed Critical Compagnie Generale dElectricite SA
Application granted granted Critical
Publication of US3279031A publication Critical patent/US3279031A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/005Quad constructions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/449Twisting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0214Stranding-up by a twisting pay-off device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/067Insulating coaxial cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling

Definitions

  • FIGA A first figure.
  • the object of this invention is also a device for the continuous manufacture of the new quad cable.
  • the crosstalk between the two actual circuits of a telephone star-quad cable is primarily dependent upon the geometry of the quad. If the four condue-tors forming the quad are, on their whole length, arranged at the vertices of a perfect square, the capacity unbalances and magnetic couplings will be nil. If the conductors are identical and the insulation homogeneous, the crosstalk will be very weak between the two actual circuits of the quad which, consequently, can be used for high frequency carrier currents.
  • the qualities of the quad must be the following:
  • the raw materials, labour and tooling used significantly affect the cost of the quads. It is therefore advantageous to manufacture the quads from raw materials with mechanical and electrical characteristics comparatively constant under the mean conditions of utilization, which are inexpensive and can be easily processed.
  • the manufacture of the quads must be carried out, as far as possible, in a continuous single operation.
  • the continuous manufacture requires specially constructed equipment; and it is advantageous to be able to adapt to this end, existing machinery used for the manufacture of other cables.
  • the object of the present invention is a quad which meets the greatest number of conditions required by the utilization of this type of cables.
  • Another object of the invention is a manufacturing device for such a quad.
  • the quad as described in the present invention consists of a core formed by an insulating material stern internally reinformed by a glass fiber cord and incorporating helical grooves precisely milled on its surface, so that the conductors which are imbedded in it may be arranged,
  • the utilization of a glass fiber cord increases the mechanical strength of the device, particularly the resistance to lengthening, when pulling during the manufacture, while the flexibility and the lightness are preserved allowing the device to be performed.
  • the insulating material must be resistant enough to allow a correct and accurate milling of the grooves as it is specified in the present invention. It is impossible to practice to get sufiicient accuracy by extrusion.
  • the conductors can be laid down directly in the grooves made in such manner by a single operation without being insulated.
  • the conductors are supported by the stem at each point of the cable along its length instead of being held apart from place to place by distinct spreading disks as in conventional quads.
  • the object of this invention is also a device which allows the continuous single operation manufacture of such a quad.
  • This device can be mounted on an existing machine or be the object of a special design.
  • the device as described in the present invention comprises a plate which supports a set of four electrically driven precision spindles carrying slot cutters whose active surfaces are oriented in order to cut four grooves arranged at the four corners of a square in the surface of an insulating stem which is moving forward and passing through a guide fitted at the centre of the said plate.
  • the device of the invention is described in combination with a cage type cable spinning machine; but it is clear that the limits of the invention are not exceeded if the device is mounted on any other existing cable machine or any known machine modified for the particular combination of this invention.
  • FIGURE 1 a cross section of a quad as described in the invention
  • FIGURE 2 a view of a piece of cable showing clearly the helical shape of the grooves
  • FIGURE 3 a longitudinal section of the manufacturing device for the quad
  • FIGURE 4 an upper view of the cutter head, showing clearly the arrangement of the cutters
  • FIGURE 5 an elevation view of a sector of the cutter head fitted with one of the mills
  • FIGURE 6 an upper view of a sector of the cutter head provided with one of the mills.
  • the quad is formed by four conductors 12 arranged at the vertices of a square; the conductors are embedded in a core formed by an insulating material stem 14.
  • the stem is internally reinforced by a glass fiber cord 15, this cord having a resistance to elongation much higher than that of the material stem.
  • Grooves 27 containing conductors 12 are obtained by milling the circular section stem 14.
  • the grooves are helically milled in the surface of the stern (FIGURE 2), the distance between the grooves being strictly the same at any point.
  • the depth of grooves 27 roughly corresponds to the diameter of conductors 12, in order not to alter too much the cylindrical structure of the assembly.
  • the obtained quad can be bound with one or more insulating tapes as shown by the reference numeral 16. It is then coated with an insulating plastic material sheath, and covered with any of the conventional means used for the protection of the telephone cables, such as screen, metal sheathing, etc.
  • the four grooves 27 are simultaneously machined by means of adequately shaped slot cutters carried by four milling sets which can be precisely adjusted.
  • the grooves are subjected, at regular intervals, to a circular permutation in relation to the cutters.
  • each groove will have the form of a continuous helix, the stem having periodically a circular groove due to the rotation of the drilling device as it will be seen more clearly in the course of the detailed description of functioning of the drilling device.
  • any other permutation method can be choosen in order to improve the precision regarding the positioning of the grooves, for example, a series of permutations of 90, 180, 90", 180 and 90 may give the wanted compensation of the defects.
  • the completed quad will have a length multiple of 4L.
  • FIGURES 3, 4, 5, 6, The device for the manufacture of the cable concerned is shown in FIGURES 3, 4, 5, 6, as an example.
  • the below described device has been fitted on a cage type cable spinning machine. It can be mounted in any suitable machine or to be the object of a special design.
  • the cable spinning machine provided with the device as described in the present invention is shown longitudinal section, in FIGURE 3.
  • Stem 14 introduced in cylinder 29 is guided by device 30 carrying dogs 9 which can stop the longitudinal motion of the stem.
  • a second guide 3 ensures the guidage of the stem during the milling, this guide comprising, in addition, four oblique slots which allow the passage of cutters 18.
  • the stem then passes through a suction chamber 10 connected to cylinder 29 by a duct 24 ending in a revolving joint 31.
  • the suction chamber is integral with a ring 5.
  • Rotary brushes 11 are then arranged around the stem.
  • the cage of the cable spinning machine is formed by plates 32, 33, 34, 35, free to rotate around an axis parallel to the axis of stem 14.
  • This cage is driven by a device not shown in the figure.
  • the cage comprises coils 41 of conductors 12; the conductors are led, by means of a system of pulleys, to the cabling point where a die. 13 ensures their positioning in the grooves milled in stem 14.
  • a plate 1 together with the devices it supports can rotate around the axis of the cage, through rollers 4 inside a roller-ring secured to the cage of the cable spinning machine.
  • a mooring finger 6 permits the locking of the said ring with plate 1.
  • the motors arranged on plate 1 are supplied with power through slip-rings 7 and brushes 8.
  • the slip-rings are. placed on a hollow cylinder 36, integral with ring 5.
  • a ball bearing 37 is interposed between plate 1 and device 30 which is secured to hollow cylinder 36.
  • Plate 1 which represents one of the characteristics of the device as described in the invention is shown in FIG- URE 4, in projection on a planperpendicular to the rotation axis.
  • FIGURE 4 shows clearly the arrangement of the four milling sets 2: cutters 18 are carried by spindles 17 driven by electric motor 19.
  • This device allows the milling. of grooves 27 which are arranged substantially at the four vertices of a square.
  • a circular permutation of the cutters is periodically carried out by rotating plate 1 in relation to ring 5 integral with the cage, by
  • FIGURE 5 is an elevation view of one of the four milling sets arranged on plate 1.
  • Convex shaped cutter 18 is borne by a precision spindle 17 which is driven by an electric motor 19.
  • the spindle and the motor are secured to a carriage 20 movable longitudinally to the direction of the spindle.
  • Carriage 20 is itself supported by a second carriage 21, movable transversally to the direction of spindle 17.
  • Both carriages 20 and 21 are moved by the action of micrometric screws '22 and are held by means of a tie, brace or strut (lardon) and a screw lock, not shown in the figure.
  • Transversal carriage 21 can rotate around a pivot 23.
  • the angle of the spindle in relation to the plate can he therefore adjusted owing to a toothed quadrant 38 and a tangent screw 39.
  • FIGURE 6 is an upper view of a sector of the plate provided with one of the mills already shown in elevation, in FIGURE 5.
  • the processing and assembling device for the quads is above described only as an example of carrying out, in order to'understand better the invention. Many alternatives can be used without going beyond the limits of the invention, specially as regard the arrangement of the adjusting elements of the cutter and the control of the cutter head rotation, the arrangement of secondary elements such as the brushes, the chip suction systems. So it is with the shape of the assembling cage, since the cutter head as described in this invention can be used jointly with a large number of types of cages generally used in the cable spinning industries.
  • the operation of the manufacturing device for the quads is the following:
  • Plate 1 being made integral with ring 5 by finger 6 is rotated by the cage of the spinner.
  • the material stem accurately calibrated, is drawn by a capstan (not illustrated in the figures) and passes through the hollow cylinder, dog 9 which is open.
  • the cutters which have been precisely adjusted, dig the four helical grooves.
  • the chips are sucked at the suction chamber 10 that ensures a coarse cleaning of the grooves, cleaning which is completed by rotating brushes 11.
  • Copper wires 12, delivered by the coils carried by the cage, are brought to the point of wiring, where a die 13 ensures their positioning in the grooves.
  • one or more insulating tapes can be placed by a taping head before passage on the capstan and reception at the spinning wheel.
  • the wiring pitch is given by the combination of the forward movement of the stem and the rotation of the cage. The angle of the cutters in relation to the longitudinal axis of the stem is adjusted according to this pitch.
  • the quad manufactured in this'way is subsequently sheathed with an insulating layer, then, according to the case, with a screen, a metal sheathing, an armour, etc.
  • this type of cable shows the mechanical qualities peculiar to the quad, i.e. lightness and flexibility.
  • this new quad can be used with high frequency currents. The utilization for carrier currents authorizing a large number of communication channels is therefore possible.
  • the quad as described in the present invention can be manufactured very easily. It is not necessary to secure the conductor in the groove milled in the centre core, since this groove is machined with a great precision according to the dimensions of said conductor. In the same way, no torsion is applied to the core, since the groove has already the desired helical shape.
  • the device as described in the present invention can be readily adapted to most of the cage type cable spinning machines; consequently, the cost of the required machines is comparatively low. So it is with the cost of the cable which can be manufactured continuously and semiautomatically without intermediary operations, by using a new material particularly easy to process.
  • An apparatus for continuous manufacture of a cable having a core and a plurality of electrical conductors comprising:
  • a supporting means including means accommodating the passage of the core therethrough, for supporting a plurality of electrically driven precision spindles carrying cutter means for drilling a plurality of grooves in the outer surface of the core, said grooves being positioned at the corners of a regular polygon, said supporting means being mounted rotatably about the axis of the core such that each cutter is substituted for another cutter in its position upon rotation of said supporting means, and means for posltromng electric conductors in said grooves.
  • An apparatus comprising driving means operatively connected with said means for positioning the conductors and said means for drilling the grooves for eifecting rotation thereof at the same speed.
  • said plurality of spindles consist in four spindles carrying cutters operable to drill four grooves positioned respectively at the corners of a square.
  • Apparatus according to claim 1 wherein said supplying means are operable to continuously supply an insulating core having a circular cross section.
  • Apparatus according to claim 1 comprising means for aspirating the chips produced by drilling the grooves in the core.
  • Apparatus according to claim 1 comprising brush means operable to remove the chips produced by drilling the grooves in the core.
  • said supporting means comprises rollers engaging a roller ring secured to said positioning means mounted rotatably about the axis of the core, said supporting means thus being mounted free in rotation about the same axis, said supporting means further comprising removable fingers engaging said' roller ring for securing the supporting means thereto.
  • Apparatus according to claim 1 comprising separate electrical motors for driving each spindle and adjustable securing means for securing said motors to said supporting means, said securing means being operable to adjust the position of the spindle along a line parallel to the direction of this spindle.
  • Apparatus according to claim 15, wherein said securing means comprises adjusting means for precise adjustment of the position of the assembly of each spindle and its driving motor.
  • Apparatus according to claim 14 comprising means for rotating said securing means about an axis parallel to the axis of the core.
  • An apparatus for continuous manufacture of a cable including conductors positioned in grooves provided in a core the relative position of said grooves being exactly and periodically repeated along the length of the core, comprising:
  • means for drilling four grooves in the outer surface of said core said grooves being positioned at the corners of a square, comprising a supporting member, mounted in said apparatus, having means for allowing the passage of the core therethrough, mounted rotatably about the axis of said core and supporting four spindles carrying cutters and four electric motors for driving said spindles,
  • means for positioning electric conductors within said grooves including a cage having means for allowing the passage of the core therethrough and mounted rotatable about the axis of said core, and removable locking means, connected with said cage and said supporting means for securing each to another, said lock ng means being operable to drive said supporting member about said axis upon rotation of said cage, said supporting member being further 0perable to rotate about the same axis and relative to said cage upon removal of said locking means, in such a manner that each cutter is substituted for another cutter in its position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Processing Of Terminals (AREA)
  • Insulated Conductors (AREA)
US327170A 1962-11-27 1963-11-26 Manufacture of quad cables Expired - Lifetime US3279031A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR916784A FR1350724A (fr) 1962-11-27 1962-11-27 Perfectionnements aux quartes et procédé de fabrication

Publications (1)

Publication Number Publication Date
US3279031A true US3279031A (en) 1966-10-18

Family

ID=8791663

Family Applications (1)

Application Number Title Priority Date Filing Date
US327170A Expired - Lifetime US3279031A (en) 1962-11-27 1963-11-26 Manufacture of quad cables

Country Status (7)

Country Link
US (1) US3279031A (xx)
BE (1) BE640137A (xx)
DE (1) DE1440931A1 (xx)
FR (1) FR1350724A (xx)
GB (2) GB1061980A (xx)
LU (1) LU44850A1 (xx)
NL (1) NL301013A (xx)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117943A1 (en) * 1982-12-15 1984-09-12 Stc Plc Method of manufacturing a communication cable
US20110192647A1 (en) * 2010-02-10 2011-08-11 Li-Wen Liu Parallel structure high conductibility cable with conductor keeper
CN106098211A (zh) * 2016-08-24 2016-11-09 成都大唐线缆有限公司 一种星绞对称电缆

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2341187A1 (fr) * 1976-02-16 1977-09-09 Chavanoz Sa Cable de telecommande
EP0002976B1 (fr) 1978-01-04 1982-03-10 Lignes Telegraphiques Et Telephoniques L.T.T. Dispositif d'usinage en continu de rainures en hélice sur une tige cylindrique
FR2456959A1 (fr) * 1979-05-15 1980-12-12 Lignes Telegraph Telephon Poste d'usinage pour ligne de fabrication d'elements de cables a fibres optiques et ligne de fabrication l'incorporant
FR2500678A1 (fr) * 1981-02-20 1982-08-27 Lignes Telegraph Telephon Cable, notamment cable mixte, comprenant au moins une paire symetrique
AU8288887A (en) * 1987-06-22 1988-12-22 W.L. Gore & Associates, Inc. Controlled electrical performance miniature multi-conductor cable
DE8911686U1 (de) * 1989-09-27 1990-10-31 Siemens AG, 1000 Berlin und 8000 München Flexible elektrische Leitung
DE19948566A1 (de) * 1999-10-08 2001-04-19 Alcatel Sa Kabel zur Leistungsübertragung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US716155A (en) * 1901-09-21 1902-12-16 Julius Henrik West Electric cable.
US1751549A (en) * 1923-09-06 1930-03-25 United Shoe Machinery Corp Machine for operating upon blanks of sheet material
US2234435A (en) * 1939-12-23 1941-03-11 Frederick H Johnson Conducting cable
US2677313A (en) * 1951-05-26 1954-05-04 Mergenthaler Linotype Gmbh Channel forming machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US716155A (en) * 1901-09-21 1902-12-16 Julius Henrik West Electric cable.
US1751549A (en) * 1923-09-06 1930-03-25 United Shoe Machinery Corp Machine for operating upon blanks of sheet material
US2234435A (en) * 1939-12-23 1941-03-11 Frederick H Johnson Conducting cable
US2677313A (en) * 1951-05-26 1954-05-04 Mergenthaler Linotype Gmbh Channel forming machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117943A1 (en) * 1982-12-15 1984-09-12 Stc Plc Method of manufacturing a communication cable
US4600268A (en) * 1982-12-15 1986-07-15 Standard Telephones And Cables Public Limited Co. Cable for telecommunications purposes and a method of manufacturing the same
AU576190B2 (en) * 1982-12-15 1988-08-18 Stc Plc Cable manufacture
US20110192647A1 (en) * 2010-02-10 2011-08-11 Li-Wen Liu Parallel structure high conductibility cable with conductor keeper
US8586868B2 (en) * 2010-02-10 2013-11-19 Li-Wen Liu Parallel structure high conductibility cable with conductor keeper
CN106098211A (zh) * 2016-08-24 2016-11-09 成都大唐线缆有限公司 一种星绞对称电缆

Also Published As

Publication number Publication date
DE1440931A1 (de) 1969-01-16
GB1061980A (en) 1967-03-15
FR1350724A (fr) 1964-01-31
LU44850A1 (xx) 1965-05-20
GB1061979A (en) 1967-03-15
BE640137A (xx) 1964-05-19
NL301013A (xx)

Similar Documents

Publication Publication Date Title
US3279031A (en) Manufacture of quad cables
US3025656A (en) Method and apparatus for making communication cable
US4731134A (en) Methods of manufacturing electric cable for transporting very high current at low voltage
US6378283B1 (en) Multiple conductor electrical cable with minimized crosstalk
US4620412A (en) Process and apparatus for inserting optical fibers in helical grooves of a cable core
US4471161A (en) Conductor strand formed of solid wires and method for making the conductor strand
US3385140A (en) Flat multi-conductor stripping apparatus
US9484132B2 (en) Coaxial cables with shaped metallic conductors
US5457877A (en) Apparatus and method for cutting through cable sheathings
DE2459844A1 (de) Elektrische leitung
CN210245153U (zh) 一种用于电缆线的绞合成缆设备
US1958598A (en) Machine for preshaping and applying tapes
EP0034353A2 (de) Einrichtung für die SZ-Verseilung von Verseilelementen
US2556164A (en) Apparatus for making stranded wire structures
CN109036724B (zh) 一种z型线绞线装置及绞线机
DE1490076A1 (de) Elektrische Leitung,insbesondere fuer Fernmeldenetze,sowie Verfahren zu deren Herstellung
US3044244A (en) Lay plate for electric cable
JP2797116B2 (ja) ケーブルの被覆部材排除装置
GB835873A (en) Improvements in or relating to the manufacture of multicore electric cables
US4549335A (en) Method of manufacturing multiconductor cables
GB2078810A (en) Apparatus and method for the manufacture of electrical cables
US3263271A (en) Extrusion apparatus
CN118659261A (zh) 一种刀架结构和电缆加工装置
CN110877423A (zh) 破条机主轴组件
CA1233969A (en) Two-stage twisting device for communication cables