US3275525A - Nuclear fuel element incorporating helical fissionable wire - Google Patents
Nuclear fuel element incorporating helical fissionable wire Download PDFInfo
- Publication number
- US3275525A US3275525A US473538A US47353865A US3275525A US 3275525 A US3275525 A US 3275525A US 473538 A US473538 A US 473538A US 47353865 A US47353865 A US 47353865A US 3275525 A US3275525 A US 3275525A
- Authority
- US
- United States
- Prior art keywords
- wire
- fuel element
- varying
- helical
- fissionable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003758 nuclear fuel Substances 0.000 title claims description 11
- 239000000446 fuel Substances 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 17
- 239000000919 ceramic Substances 0.000 claims description 5
- 239000008188 pellet Substances 0.000 description 9
- 229910052778 Plutonium Inorganic materials 0.000 description 8
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical group [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003716 rejuvenation Effects 0.000 description 2
- OYEHPCDNVJXUIW-FTXFMUIASA-N 239Pu Chemical compound [239Pu] OYEHPCDNVJXUIW-FTXFMUIASA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- JFALSRSLKYAFGM-FTXFMUIASA-N uranium-233 Chemical compound [233U] JFALSRSLKYAFGM-FTXFMUIASA-N 0.000 description 1
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/16—Details of the construction within the casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- This invention relates to a heterogeneously enriched fuel element in which the concentration of fissile atom is variable. More specifically, this invention relates to a fuel element of the aforementioned type which is plutonium bearing.
- An object of the present invention is to provide a fuel element with a variable concentration of fissile atom. This fuel element is relatively cheap and easy to manufacture.
- the wire is shaped as a helix of varying pitch. Further according to the invention the wire may be a helix of varying diameter.
- FIG. 1 is a longitudinal sectional view of a fuel element having a helical wire of varying pitch extending through a stack of fuel pellets;
- FIG. '2 is a longitudinal sectional view of another fuel element having the helical wire of varying pitch extending through vibrationally compacted crushed fuel;
- FIG. 3 is a longitudinal sectional view of a fuel element provided with a helical wire varying in diameter.
- a fuel element 10 is provided with a plurality of annular sintered natural-uranium-dioxide pellets L1 stacked so as to have an axial opening 12 extending therethrough.
- the pellets 11 are enclosed in a Zircaloy-2 jacket 13 closed by end caps 14.
- a helical wire 15 of plutonium-containing material Within the pellets 1-1 is a helical wire 15 of plutonium-containing material.
- the helical wire 15 extends through the axial opening 12 in the stack of pellets 11 and varies in pitch from a maximum at a mid region of its length to a minimum at its ends. 'Both the wire diameter and the helix diameter are uniform.
- the ends of the wire 15 may be joined to end caps 14.
- the void space in the axial opening 12 not occupied by the wire 15 is filled with mass 16 of granular natural-uranium dioxide (20 mesh).
- the wire 15 may be of plutonium-15% zirconium alloy and may be bare or clad in a suitable protective material. It should be understood that in the fuel element of FIG. 1 as Well as those of the other figures the wire may contain not only plutonium-239, but uranium-233 or uranium- 235 instead.
- the simplest involves suspending the helix, with a weight attached to it, and allowing the helix to stretch to the desired length.
- the weight on each increment of the helix increases as the distance from the point of suspension de- 3,275,525 Patented Sept. 27, 1966 ICC creases, with a resulting change in pitch which is a function of helix composition, helix diameter, and wire diameter.
- the point of suspension will have to be a mid region of the length of the wire, and the suspension operation will have to be carried out twice, once for each half length of the helix.
- the decrease in pitch from the center to both ends of the helical wire 15 brings axial variation in enrichment, the advantages of which are obvious to those skilled in the art.
- the helical wire 15 brings such variation in enrichment to a fuel element of the type claimed in the aforesaid Mills et al. application.
- a fuel element 17 comprises the Zircaloy-2 jacket '13, end caps 14, and the plutoniumcontaining wire 15.
- the fuel element 17 also comprises a mass 18 of crushed vibrationally compacted naturaluranium dioxide.
- the vibrational compaction may be carried out as disclosed in Hauth Patent 3,042,594, dated July 3, 1964.
- the ends of the wire 15 are fastened to the end caps 14 so as to be held in tension.
- the wire 15 of the fuel element 17 of FIG. 2 has a relatively small diameter of helix and is well spaced radially from the interior of the jacket 1.3. 'It is Within the scope of the present invention to increase the diameter of helix so that the wire 15 engages the interior of the jacket 15. Such an arrangement is preferable in a compact power reactor, where the maximum heat flux per unit of area is desired.
- a fuel element 19 comprises the jacket 13, end caps 14, and a mass 18 of crushed vibrationally compacted natural-uranium dioxide.
- the fuel element 19 also includes a helical plutonium-containing wire 20 whose diameter of helix varies from a minimum at a mid region to a maximum at the ends. This arrangement brings a radial variation in the concentration of the fissile atom and tends to flatten the flux distribution along the fuel element 19. If the Wire 20 has uniform pitch, the amount of wire per unit of length of the fuel element 19 varies from a minimum at the center to a maximum at the ends, and so there is a corresponding variation in the concentration of the fissle atom longitudinally of the fuel element.
- the pitch of the wire 20 must vary from a minimum at the center to a maximum at the ends in the manner shown in FIG. 3, so that the amount of wire per unit of length is constant.
- the heat generation can be made optimum by enriching different fuel elements comprising the assembly with different amounts of plutonium. This is accomplished simply and economically by forming a helix of constant pitch and diameter, and using different lengths of helix (corresponding to the different amounts of plutonium required) which are stretched to the same final length, with or Without a continuous pitch variation in the final product. This simple method of enriching fuel elements to varying degrees would facilitate assembly of balanced reactor core loadings.
- Still another form of the present invention may involve the application of a helical plutonium-containing wire of varying pitch to the exterior of the fuel-element jacket.
- a helical plutonium-containing wire of varying pitch to the exterior of the fuel-element jacket.
- Such a wire may serve to provide initial enrichment of a fuel element or to re-enrich or rejuvenate the fuel element after radiation.
- the helical wire might be formed of a stainless-steel or Zircaloy-2 tube of small diameter, a plutonium-containing wire within the tube, and a filler of magnesium oxide.
- the externally applied helical wire may serve to space the fuel element to which it is applied from other fuel elements. If the external wire is applied for rejuvenation of the fuel element, there is a separation of the plutonium used for rejuvenation from that originally applied to the interior of the fuel element Whether straight or helical.
- the fuel element is relatively cheap and easy to manufacture, because the enriched wire thereof, being of uniform diameter, is low in cost and is easily bent into a helix.
- a nuclear-fuel element comprising a long mass of ceramic fuel containing a relatively low amount of a material fissionable by neutrons of thermal energy and a varying helical wire of a metallic fuel containing a relatively high amount of a material fissionable by neutrons of thermal energy extending axially of the mass, wherein the varying helical wire is a helical wire of pitch varying from a maximum at a mid region to a minimum at the ends of the wire.
- a nuclear-fuel element comprising a long mass of ceramic fuel containing a relatively low amount of a material fissionable by neutrons of thermal energy and a varying helical wire of metallic fuel containing a relatively high amount of a material fissionable by neutrons of thermal energy extending axially of the mass, wherein the varying helical wire is a helical wire of a diameter of helix varying from a minimum at a mid region in the length of the Wire to a maximum at the ends of the wire.
- a nuclear-fuel element comprising a stack of annular sintered pellets of fuel containing a relatively low amount of a material fissionable by neutrons of thermal energy, and a helical wire of metallic fuel containing a relatively high amount of a material fissionable by neutrons of thermal energy, extending through the stack of pellets, the helical pitch of the wire varying from a maximum at a mid region in the length of the wire to a minimum at the ends of the wire.
- a nuclear-fuel element comprising a long mass of vibrationally compacted crushed fuel containing a relatively low amount of a material fissionable by neutrons of thermal energy, and a helical wire of metallic fuel containing a relatively high amount of a material fissionable by neutrons of thermal energy extending axially through the mass, the helical pitch of the wire varying from a maximum at a mid region in the length of the wire to a minimum at the ends of the wire.
- a nuclear-fuel element comprising a long mass of vibrationally compacted crushed fuel containing a relatively low amount of a material fissionable by neutrons of thermal energy, and a helical wire of metallic fuel containing a relatively high amount of a material fissionable by neutrons of thermal energy extending axially through the mass, the diameter of helix of the wire varying from a minimum at a mid region in the length of the wire to a maximum at its ends.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US473538A US3275525A (en) | 1965-07-20 | 1965-07-20 | Nuclear fuel element incorporating helical fissionable wire |
GB19170/66A GB1110657A (en) | 1965-07-20 | 1966-05-02 | Nuclear fuel elements |
FR68671A FR1510843A (fr) | 1965-07-20 | 1966-07-08 | élément combustible pour réacteur nucléaire |
BE684239D BE684239A (enrdf_load_stackoverflow) | 1965-07-20 | 1966-07-15 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US473538A US3275525A (en) | 1965-07-20 | 1965-07-20 | Nuclear fuel element incorporating helical fissionable wire |
Publications (1)
Publication Number | Publication Date |
---|---|
US3275525A true US3275525A (en) | 1966-09-27 |
Family
ID=23879948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US473538A Expired - Lifetime US3275525A (en) | 1965-07-20 | 1965-07-20 | Nuclear fuel element incorporating helical fissionable wire |
Country Status (4)
Country | Link |
---|---|
US (1) | US3275525A (enrdf_load_stackoverflow) |
BE (1) | BE684239A (enrdf_load_stackoverflow) |
FR (1) | FR1510843A (enrdf_load_stackoverflow) |
GB (1) | GB1110657A (enrdf_load_stackoverflow) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3378458A (en) * | 1965-10-19 | 1968-04-16 | Gen Electric | Nuclear reactor fuel element |
US3407116A (en) * | 1966-12-19 | 1968-10-22 | Atomic Energy Authority Uk | Nuclear reactor fuel elements |
US3421979A (en) * | 1965-12-23 | 1969-01-14 | Atomic Energy Authority Uk | Nuclear reactor fuel elements |
US3620835A (en) * | 1968-06-14 | 1971-11-16 | Kernenergieverwert Ges Fuer | Method of making nuclear fuel elements |
US3713975A (en) * | 1969-12-02 | 1973-01-30 | Nl Industries Inc | Nuclear reactor fuel element |
US3933582A (en) * | 1968-09-26 | 1976-01-20 | General Electric Company | Plutonium fuel adjacent burnable poison |
US4054487A (en) * | 1974-06-04 | 1977-10-18 | Tokyo Shibaura Denki Kabushiki Kaisha | Nuclear fuel rods |
US4224106A (en) * | 1977-07-22 | 1980-09-23 | Commissariat A L'energie Atomique | Plate-type nuclear fuel element |
US4229258A (en) * | 1976-09-25 | 1980-10-21 | Hitachi, Ltd. | Fuel assembly |
US4244784A (en) * | 1976-09-25 | 1981-01-13 | Hitachi, Ltd. | Construction of nuclear reactor core |
US4251321A (en) * | 1967-12-15 | 1981-02-17 | General Electric Company | Nuclear reactor utilizing plutonium |
EP0132911A3 (en) * | 1983-05-06 | 1985-07-31 | The Babcock & Wilcox Company | Annular fuel rods for nuclear reactors |
US4853177A (en) * | 1983-05-06 | 1989-08-01 | The Babcock & Wilcox Company | Void plug for annular fuel pellets |
US5991354A (en) * | 1996-01-30 | 1999-11-23 | Siemens Power Corporation | Nuclear fuel pellet |
US6002735A (en) * | 1996-01-30 | 1999-12-14 | Siemens Power Corporation | Nuclear fuel pellet |
US6233299B1 (en) * | 1998-10-02 | 2001-05-15 | Japan Nuclear Cycle Development Institute | Assembly for transmutation of a long-lived radioactive material |
US20110255651A1 (en) * | 2007-12-26 | 2011-10-20 | Thorium Power, Inc. | Nuclear reactor (alternatives), fuel assembly of seed-blanket subassemblies for nuclear reactor (alternatives), and fuel element for fuel assembly |
RU2672256C1 (ru) * | 2018-01-15 | 2018-11-13 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2518300B1 (fr) * | 1981-12-11 | 1987-10-16 | Framatome Sa | Crayon contenant un materiau consommable pour le pilotage d'un reacteur nucleaire |
JPH0519078A (ja) * | 1991-07-15 | 1993-01-26 | Power Reactor & Nuclear Fuel Dev Corp | 原子炉用燃料棒 |
FR2853759B1 (fr) * | 2003-04-09 | 2005-05-13 | Commissariat Energie Atomique | Combustible nucleaire a fils tresses et son procede de realisation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2879216A (en) * | 1954-02-05 | 1959-03-24 | Jr Henry Hurwitz | Neutronic reactor |
US2947080A (en) * | 1953-01-29 | 1960-08-02 | Leonard W Kates | Method for making fuel elements |
US2968601A (en) * | 1957-12-10 | 1961-01-17 | Thomas C Evans | Fuel element for neutronic reactors |
US3043761A (en) * | 1958-09-23 | 1962-07-10 | Gen Electric | Nuclear reactor fuel |
US3230151A (en) * | 1964-04-20 | 1966-01-18 | Loring E Mills | Fuel element for a nuclear reactor |
-
1965
- 1965-07-20 US US473538A patent/US3275525A/en not_active Expired - Lifetime
-
1966
- 1966-05-02 GB GB19170/66A patent/GB1110657A/en not_active Expired
- 1966-07-08 FR FR68671A patent/FR1510843A/fr not_active Expired
- 1966-07-15 BE BE684239D patent/BE684239A/xx unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2947080A (en) * | 1953-01-29 | 1960-08-02 | Leonard W Kates | Method for making fuel elements |
US2879216A (en) * | 1954-02-05 | 1959-03-24 | Jr Henry Hurwitz | Neutronic reactor |
US2968601A (en) * | 1957-12-10 | 1961-01-17 | Thomas C Evans | Fuel element for neutronic reactors |
US3043761A (en) * | 1958-09-23 | 1962-07-10 | Gen Electric | Nuclear reactor fuel |
US3230151A (en) * | 1964-04-20 | 1966-01-18 | Loring E Mills | Fuel element for a nuclear reactor |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3378458A (en) * | 1965-10-19 | 1968-04-16 | Gen Electric | Nuclear reactor fuel element |
US3421979A (en) * | 1965-12-23 | 1969-01-14 | Atomic Energy Authority Uk | Nuclear reactor fuel elements |
US3407116A (en) * | 1966-12-19 | 1968-10-22 | Atomic Energy Authority Uk | Nuclear reactor fuel elements |
US4251321A (en) * | 1967-12-15 | 1981-02-17 | General Electric Company | Nuclear reactor utilizing plutonium |
US3620835A (en) * | 1968-06-14 | 1971-11-16 | Kernenergieverwert Ges Fuer | Method of making nuclear fuel elements |
US3933582A (en) * | 1968-09-26 | 1976-01-20 | General Electric Company | Plutonium fuel adjacent burnable poison |
US3713975A (en) * | 1969-12-02 | 1973-01-30 | Nl Industries Inc | Nuclear reactor fuel element |
US4054487A (en) * | 1974-06-04 | 1977-10-18 | Tokyo Shibaura Denki Kabushiki Kaisha | Nuclear fuel rods |
US4229258A (en) * | 1976-09-25 | 1980-10-21 | Hitachi, Ltd. | Fuel assembly |
US4244784A (en) * | 1976-09-25 | 1981-01-13 | Hitachi, Ltd. | Construction of nuclear reactor core |
US4224106A (en) * | 1977-07-22 | 1980-09-23 | Commissariat A L'energie Atomique | Plate-type nuclear fuel element |
EP0132911A3 (en) * | 1983-05-06 | 1985-07-31 | The Babcock & Wilcox Company | Annular fuel rods for nuclear reactors |
US4853177A (en) * | 1983-05-06 | 1989-08-01 | The Babcock & Wilcox Company | Void plug for annular fuel pellets |
US5991354A (en) * | 1996-01-30 | 1999-11-23 | Siemens Power Corporation | Nuclear fuel pellet |
US6002735A (en) * | 1996-01-30 | 1999-12-14 | Siemens Power Corporation | Nuclear fuel pellet |
US6233299B1 (en) * | 1998-10-02 | 2001-05-15 | Japan Nuclear Cycle Development Institute | Assembly for transmutation of a long-lived radioactive material |
US20110255651A1 (en) * | 2007-12-26 | 2011-10-20 | Thorium Power, Inc. | Nuclear reactor (alternatives), fuel assembly of seed-blanket subassemblies for nuclear reactor (alternatives), and fuel element for fuel assembly |
US8654917B2 (en) * | 2007-12-26 | 2014-02-18 | Thorium Power, Inc. | Nuclear reactor (alternatives), fuel assembly of seed-blanket subassemblies for nuclear reactor (alternatives), and fuel element for fuel assembly |
RU2672256C1 (ru) * | 2018-01-15 | 2018-11-13 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах |
Also Published As
Publication number | Publication date |
---|---|
GB1110657A (en) | 1968-04-24 |
FR1510843A (fr) | 1968-01-26 |
BE684239A (enrdf_load_stackoverflow) | 1966-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3275525A (en) | Nuclear fuel element incorporating helical fissionable wire | |
US3145149A (en) | Boiling nuclear reactor and fuel element therefor | |
US3147191A (en) | Nuclear reactor fuel | |
EP2267726A2 (en) | Light water reactor core and fuel assembly | |
SE503596C2 (sv) | Bränslepatron för kärnreaktor | |
US20120002777A1 (en) | Triuranium disilicide nuclear fuel composition for use in light water reactors | |
US3594275A (en) | Method for the production of cobalt-60 sources and elongated hollow coiled wire target therefor | |
JPH0519078A (ja) | 原子炉用燃料棒 | |
US3211627A (en) | Fuel element for a coolant-moderator nuclear reactor | |
JP2016535259A (ja) | 原子炉用の燃料集合体 | |
US2968601A (en) | Fuel element for neutronic reactors | |
US3212991A (en) | Continuous support fuel rod spacer system | |
US3081247A (en) | Moderator elements for uniform power nuclear reactor | |
US3215607A (en) | Multi-region neutronic fuel element | |
JPH0250437B2 (enrdf_load_stackoverflow) | ||
JPH04143694A (ja) | 燃料集合体 | |
CA1068832A (en) | Target for production of molybdenum-99 | |
US4914678A (en) | Reactor core in a nuclear reactor and initial core in a nuclear reactor | |
JP3079609B2 (ja) | 燃料集合体 | |
Choi et al. | A small modular reactor core design with annular UO2 and FCM fuel rods | |
US3575808A (en) | Fuel subassembly for a liquid-metalcooled,fast breeder reactor | |
US3318778A (en) | Nuclear fuel element | |
JPH0345354B2 (enrdf_load_stackoverflow) | ||
JPS5821194A (ja) | 高速増殖炉燃料集合体 | |
JPH041593A (ja) | 燃料集合体 |