US3270077A - Process for the production of acetylene-and ethylene-containing gases by the incomplete combustion of liquid hydrocarbons - Google Patents

Process for the production of acetylene-and ethylene-containing gases by the incomplete combustion of liquid hydrocarbons Download PDF

Info

Publication number
US3270077A
US3270077A US249014A US24901463A US3270077A US 3270077 A US3270077 A US 3270077A US 249014 A US249014 A US 249014A US 24901463 A US24901463 A US 24901463A US 3270077 A US3270077 A US 3270077A
Authority
US
United States
Prior art keywords
hydrocarbons
reaction chamber
acetylene
ethylene
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US249014A
Other languages
English (en)
Inventor
Tsutsumi Shigeru
Nagao Shiro
Ohashi Kumao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Kagaku Kogyo KK
Original Assignee
Toa Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Kagaku Kogyo KK filed Critical Toa Kagaku Kogyo KK
Application granted granted Critical
Publication of US3270077A publication Critical patent/US3270077A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/025Oxidative cracking, autothermal cracking or cracking by partial combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/924Reactor shape or disposition
    • Y10S585/926Plurality or verticality

Definitions

  • This invention relates to a process for the production of unsaturated hydrocarbons and particularly of acetylene and ethylene by the thermal cracking of liquid hydrocarbons.
  • a process for the production of acetyleneand ethylene-containing gases by the incomplete combustion of liquid hydrocarbons which comprises vaporising the liquid hydrocarbons, introducing the vaporised hydrocarbons and oxygen separately, namely without pre-mixing of the hydrocarbons with the oxygen, into a first refractory reaction chamber of a relatively small cross-sectional area which is mounted directly on top of a second refractory reaction chamber of a relatively large cross-sectional area in such a way that these first and second reaction chambers communicate directly with each other, the combustion flame being formed at that point in the first reaction chamber at which the vaporised hydrocarbons and oxygen are simultaneously introduced into said chamber, and maintaining the average total retention time of the gaseous cracking products Within the reaction chambers at a duration not exceeding 0.2 second and keeping the pressure prevailing in the second reaction chamber at a value not exceeding 460 mm.
  • This pressure of 460 mm. Hg absolute means the pressure which is determined on the basis of Torricel
  • the fuel gas and oxidant shall have been previously mixed together in a separate pre-mixing chamber before introduction into the combustion chamber.
  • the combustion of the fuel gas pre-mixed with the oxidant usually requires the use of a special burner and involves such risks that, in the event of incomplete combustion of methane and other hydrocarbons with the oxygen, unless the pressure and flow velocity of the mixture of the fuel and oxygen are kept constant, the flame of the combustion of the fuel gas may backfire into the pre-rnixing chamber, resulting in a considerable reduction in the total yield of acetylene and ethylene and possibly even in a break-down of the burner employed.
  • the present invention is essentially characterized in that the partial combustion is carried out in a furnace having the aforesaid special construction under the specific operating conditions and without any pre-mixing of the vaporised hydrocarbons with the oxygen prior to combustion.
  • the process of this invention not only avoids the above-mentioned drawbacks and risks but also provides a significantly higher total yield of acetylene and ethylene which is not obtained by the pre-mixing of the prior art. This is probably due to the synergistic effect which is involved in the process of the invention.
  • the process of the invention is particularly suitable for the production of acetylene and ethylene and readily increases the total yield of these products to 40-45% by weight of the hydrocarbons introduced.
  • a first reaction chamber of a relatively small cross-section area is vertically aligned immediately above a second reaction chamber of a relatively large cross-section area in such a way that they communicate directly with each other.
  • the reason for the employment of the cracking furnace of this vertical type through which the gas stream. passes downward according to the invention is that the total yield of acetylene 6 and ethylene is higher and the removal of carbon deposit can be much more easily effected in such a vertical furnace than in a horizontal one.
  • the removal of carbon deposit is one of the important problems in a thermal cracker for commercial use.
  • the cracking furnace shown is provided with the surrounding layers of refractory materials and mainly comprises a conduit for the supply of the vaporised hydrocarbons 1, a conduit for the supply of the oxygen 2, a pipe for the introduction of the vaporised hydrocarbons 3, a pipe for the introduction of the oxygen 4, a hole for insertion of a pilot burner 5, a first reaction chamber 6, a second reaction chamber 7 and a cooling chamber for the gaseous cracking products 8, the longitudinal axes of conduits 1 and 2 intersecting each other downwardly convergently in the shape of the letter V in the upper part of the first reaction chamber 1.
  • the intersecting angle a of the conduits 1 and 2 shown may be any angle in the vicinity of 90.
  • the pipe for the introduction of oxygen 4 is provided with an observation window 9 which may be formed from a heat-resistant glass plate.
  • the first reaction or cracking chamber 6 represents that portion of the furnace which is in the shape of a long and narrow cylinder extending between a and b.
  • the second reaction chamber 7 represents that portion of the furnace which is in the shape of a frustum of a cone extending between b and c.
  • the angle [3 formed at the apex of the cone may preferably be between 6 and 20.
  • the first reaction chamber 6 is particularly exposed to higher temperatures during the cracking reaction, and therefore the wall 10 of this chamber is made from a highly refractory material such as zirconia and the like.
  • the outside of the chamber wall 10 is further covered by a refractory aluminous layer 11 in order to effect the heatinsulation of the furnace.
  • the second reaction chamber 7 is also exposed to elevated temperatures but relatively lower than the first reaction chamber 6, and therefore the wall 12 of the second reaction chamber may be made from a highly aluminous material.
  • the outside of the second reaction chamber wall 12 is further covered by a refractory layer 13 in a suitable manner similarly to the first reaction chamber 6 in order to effect the heat-insulation of the furnace.
  • the bottom of the. refractory material layers surrounding the two reaction chambers are supported on a supporting member 14 fitted with a water-cooled jacket which is cooled by passing the cooling water therethrough from an inlet 15 to an outlet 16.
  • the wall of cooling chamber 8 is made of a metal and protected from higher temperatures by being wetted with the cooling water which is fed through an annular conduit 17 and perforations 18.
  • the cracking reaction of the hydrocarbons is carried out in the following way: liquid hydrocarbons to be cracked are first vaporised and the vaporised hydrocarbons which may have been properly pre-heated and, if desired, added with a quantity of steam are then supplied through the pipe 3 into the first reaction chamber 6. At the same time, oxygen is supplied through the pipe 4 separately into the first reaction chamber 6. The vaporised hydrocarbons and oxygen are ignited by means of a pilot burner which may be inserted through the hole 5, so that the flame is formed at the point of mixing of said gases within the first reaction chamber 6. Substantially all of the hydrocarbons supplied can be cracked at higher temperatures and for an extremely short time within the first reaction chamber 6.
  • the gaseous cracking products formed therein and unreacted hydrocarbons are subsequently passed down into the second reaction chamber 7 which is kept at relatively lower temperature of order of 600-l000 C.
  • the reaction for the formation of acetylene and ethylene is substantially completed in this second reaction chamber 7.
  • the gaseous cracking products are further passed down into the cooling chamber 8 and then recovered therethrough.
  • first and second reaction chambers used according to this invention are corresponding to the mixing chamber and the combustion chamber according to the prior art, respectively. According to the process of the invention, however, it is essential that the cracking reaction of the hydrocarbons should be carried out in such a way that the flame is formed in the interior of the first reaction chamber while the vaporised hydrocarbons and oxygen are introduced into this chamber without premixing of them.
  • the temperature prevailing in the first reaction chamber and the retention time of the gaseous cracking products within the first reaction chamber have a large influence on the total yield of acetylene and ethylene and particularly on the yield of acetylene.
  • the thermal cracking it is necessary to take such measure to insure that the cross-section area of the first reaction chamber may be reduced as small as possible in order to keep the inevitable loss of heat due to the radiation as low as possible and also that a large amount of heat energy may be fed to the reactants for a very short time while preventing the over-cracking of the useful gaseous cracking products.
  • the configuration of the transverse cross-section of the first reaction chamber may be either circular or triangular, quadrangular or other proper polygonal.
  • the first reaction chamber may be also in the form of a slightly tapered tube. In any case, however, it is essential to the invention that the crosssection area of the first reaction chamber should be smaller than that of the second.
  • this chamber is primarily provided in order to complete the cracking reaction which has not been yet completed in the first reaction chamber 6.
  • the second reaction chamber 7 may be generally maintained at temperatures of 600- 1000 C. as it is influenced by the highly endothermic reaction of formation of acetylene which takes place more vigorously than in the lower part of the first reaction chamber 6.
  • the retention time of the gaseous cracking products in the second reaction chamber should be substantially about 10-1000 times longer than that in the first reaction chamber and that the second reaction chamber should have a capacity enough to permit such a longer retention time of the cracking products to be obtained therein.
  • the second reaction chamber may be in the shape of frustum of a cone as shown in the accompanying drawing or may be properly polygonal in the configuration of its transverse cross-section. It is preferable, however, that the second reaction chamber has such a structure the transverse cross-section area of which gradually increases downwards, in order to reduce the resistance of the gases flowing therethrough and facilitate the removal of carbon deposit. For this reason, it is appropriate that the first reaction chamber is e.g.
  • the second reaction chamber is substantially in the shape of a frustum of a cone. It is most preferable for the second reaction chamber to have the shape of a frustum of such a cone which forms an angle 5 of 6-20 at the apex thereof.
  • this apex angle has a large influence on the total yield of acetylene and ethylene as well as on the consumption of oxygen. With an apex angle of more than 20, it has been found that a part of the gaseous cracking products flows in whirls and there is involved the formation of carbon deposit, resulting in an increase in the unfavourable tendency to reduce the yield of acetylene and the effective consumption of oxygen.
  • the second reaction chamber is substantially in the shape of a frustum of such a cone which forms an angle of 6-20 at the apex. It is not necessary, however, that the second reaction chamber is exactly in the shape of a frustum of such a cone.
  • the second reaction chamber in the shape of a frustum of a polygonal pyramid initially may be used, since the chamber in this shape becomes the chamber substantially having the shape of a frustum of a cone due to the wearing of the refractory material of the chamber wall which occurs during the service of the furnace.
  • the second reaction chamber also may have such a construction that the upper part of this chamber is substantially in the shape of a frustum of a cone but the lower part of said chamber, namely that portion of said chamber near to the cooling chamber is substantially in the shape of a cylinder as shown in the accompanying drawing.
  • the second reaction chamber also may have such a construction that the cross-section area of the lower end of this chamber is somewhat constricted downwards. It is also possible that the lower extremity of the second reaction chamber is provided with such a means which is able to prevent the heat radiations from taking place from the reaction chambers to the cooling chamber in order to keep the interior of the second reaction chamber at higher temperatures.
  • the first and second reaction chambers should be formed from refractory materials so that the heat loss of the furnace due to radiation may be reduced and the temperatures prevailing in the furnace may be kept high enough to carry out the thermal cracking of hydrocarbons and give a higher total yield of acetylene and ethylene.
  • the refractory materials available for building the reaction chambers of the cracking furnace used in the process of the invention include special refractory bricks of titania, zi-rconia .and/ or alumina. However, it is necessary to carefully select the refractory material used because the first reaction chamber and particularly the upper part thereof near to the conduits for the introduction of the vaporised hydrocarbons and oxygen can be exposed to higher temperature of 2000 C. or above. While, the second reaction chamber may be built up in practice by a refractory material which is able to be resistant to higher temperature of about 1000 C.
  • hydrocarbons which are liquid at normal temperature may be used in the process of the present invention but the use of extremely high boiling point hydrocarbons is not preferred since it is necessary to vaporise them before introducing them into the cracking furnace. It is appropriate that the hydrocarbons used have a dry point of 70180 C., a higher content of paraffins and lower contents of naphthenes and olefins. The use of a hydrocarbon fraction mainly consisting of straight chain hydrocarbons of 6-11 carbon atoms is preferred. It is desirable that the oxygen used for the partial combustion of the hydrocarbons be of a high purity. However, the use of extremely high boiling point hydrocarbons is not preferred since it is necessary to vaporise them before introducing them into the cracking furnace. It is appropriate that the hydrocarbons used have a dry point of 70180 C., a higher content of paraffins and lower contents of naphthenes and olefins. The use of a hydrocarbon fraction mainly consisting of straight chain hydrocarbons of 6-11 carbon atoms is preferred
  • oxygen is permitted to contain a small quantity of an inert gas such as nitrogen etc.
  • the vaporised hydrocarbons to be cracked and oxygen may be properly pre-heated, if desired, before their supply to the first reaction chamber. In order to improve the total yield of acetylene and ethylene, it is effective to preheat the hydrocarbons to be cracked to C.-500 C. and particularly to about 400 C.
  • a quantity of steam may be added to the vaporised hydrocarbons to be cracked and/ or the oxygen.
  • the quantity of steam added may be up to 30% by weight of the hydrocarbons fed.
  • the quantity of steam added may preferably be in the range of 1025% by weight. When the quantity of steam added is less than 5% 'by weight of the hydrocarbons, the effect of the addition of steam is negligible. When the quantity of steam added is more than 30% by weight of the hydrocarbons, the yield of the useful cracking products is reduced although the deposit of carbon may be suppressed.
  • the vaporised hydrocarbons to be cracked and oxygen which, if desired, may have properly pro-heated and/or added with a quantity of steam, are then separately introduced into the first reaction chamber through their introduction pipes and supply conduits which may intersect in the shape of the letter V as shown in the drawing.
  • the hydrocarbons are introduced through both the conduits 1 and 2 of the accompanying drawing and the oxygen through the conduit 5 of the drawing. In the latter case, of course, it becomes necessary to provide a hole for the insertion of the pilot burner elsewhere in the furnace.
  • a part of the vaporised hydrocarbons to be cracked supplementally into a zone at or near to the tip of the flame formed in the first reaction chamber through a tube (not shown) which is provided in the side wall of the second reaction chamber.
  • the part of the hydrocarbons supplementally introduced in this way may be the same as or different from the hydrocarbons which are supplied through the main supply conduit into the first reaction chamber.
  • the ratio by weight of the oxygen to the hydrocarbons supplied in the furnace should be properly varied depending on the operating conditions of the furnace, the composition of the gaseous cracking products desired and other considerations.
  • this object generally may be achieved by adjusting said ratio in a range of 0.4-0.7.
  • the cracked gases rich in acetylene it is generally desired to adjust said ratio in a range of 0.6-1.0.
  • the process of the invention is essentially characterized in that the vaporised hydrocarbons to be cracked and oxygen are separately introduced into the first reaction chamber without pre-mixing of them and that the hydrocarbons are ignited to form the flame at that point in the first reaction chamber at which the hydrocarbons and oxygen are introduced into this chamber.
  • the flame can be formed at said introduction point, if the flow velocity of the gases is kept at a value of up to 100 m./scc. within the first reaction chamber.
  • the formation of the flame at said introduction point is largely influenced by the ratio of the oxygen to the hydrocarbons, the degree of pre-heating of the starting materials, the temperature and pressure prevailing in the reaction chambers, the dimensions and shapes of the reaction chambers and the sort of the refractory materials used. Even when the flow velocity of the gases is higher than 100 m./sec. a stabilised flame can be maintained in the first reaction chamber if the above-mentioned factors are appropriately combined.
  • the average total retention time of the gaseous cracking products in the first and second reaction chambers should not exceed 0.2 second.
  • This average retention time is calculated on the basis of the volume of the gaseous cracking products which are at a temperature of 800 C. and under the pressure prevailing in the cracking furnace. It is particularly desirable that the average retention time is in a range of 0.05-0.005 second.
  • the above-mentioned average retention time does means the time of the gaseous cracking products staying in both the first and second reaction chambers.
  • the retention time in the first reaction chamber should be in a range of one-tenth to one-thousandth of said average total retention time of the cracking products in the first and second reaction chambers.
  • the gaseous cracking products may be exposed to very much higher temperatures for an extremely short time in the first reaction chamber, so that the reaction for the formation of acetylene and ethylene can advantageously proceed and the acetylene once produced may be re covered smoothly without being subjected to the overcracking.
  • the cracking reaction of the vaporised hydrocarbons involves an increase in the volumes of the gases, and it is theoretically advantageous that the partial pressures of acetylene and ethylene produced are reduced.
  • the pressure prevailing in the second reaction chamber should be substantially up to 460 mm. Hg absolute.
  • an extreme reduction in the prevailing pressure is not economic in practice due to an increase in the power cost required therefor, although it is favorable for the total yield of acetylene and ethylene.
  • the pressure prevailing in the second reaction chamber is higher than 460 rrnn. Hg. absolute, there are increased unfavourable tendencies to form the carbon deposit and reduce the total yield of acetylene and ethylene.
  • the portion of the furnace heated to very much higher temperatures is limited to a small area and the temperature of the gases leaving the furnace is relatively lower, so that particular water-quenching of the gaseous cracking products is not necessary.
  • the process of the invention is advantageous for the effective production of acetylene and ethylene over the processes of the prior art.
  • the by-product gases formed in the process of the invention are rich in hydrogen and carbon monoxide, and they are suitable for use in the synthesis of methanol. Accordingly, the process of the invention may advantageously be combined with a process for the synthesis of methanol.
  • the dimensions of the cracking furnace used in this example are as follows:
  • the intersecting angle a formed between the conduit for the supply of the vaporised hydrocarbons 1 and the conduit for the supply of oxygen 2 as shown in the accompanying drawing is
  • the first reaction chamber is in the shape of a cylinder of 240 mm. in the length and 25 mm. in the inner diameter.
  • the second reaction chamber is substantially in the shape of a frustum of a cone having an apex angle 3 of 12.5".
  • the inner diameter of this frustum is 25 mm. at the upper end and mm. at the lower end.
  • the height of this frusturn is 740 mm.
  • the conduits for the supply of the hydrocarbons and oxygen are 27 mm. in their inner diameters.
  • a pressure gauge aperture (not shown) in the chamber wall located midway between the top and bottom of the second reaction chamber.
  • the gaseous cracking products show the following composition.
  • Example 1 The process of Example 1 is repeated in the same way except that 70 l./hour of liquid hydrocarbons of specific gravity of 0.674 are supplied in the vapor phase into the first reaction chamber of the furnace with a ratio of oxygen/hydrocarbon of 0.7 and the cracking reaction is carried out under such diiferent pressures as set out in Table III below.
  • Example 8-12 The process of Example 1 is repeated in the same way except that an oxygen/hydrocarbon ratio of 0.7 is employed and the average retention time of the gaseous cracking products in the furnace is varied with-in a range tion for the formation of acetylene and ethylene.
  • the hydrocarbons and/or oxygen fed are added with steam in a quantity of 16.5% by weight of the hydrocarbons.
  • Table V The results obtained are shown in Table V below.
  • Example 14 The process of Example 14 is repeated in the same Way except that the ratio of oxygen/hydrocanbons fed is Table IV ample No 8 l 9 10 11 12 Supplied rate of hydrocarbons in 1./hour 80 33 18 9 .5 Retention time in sec 0 02 0 03 0.05 0.1 0.2 React-ion pressure in mm. Hg absolute.” 200 Concentration of acetylene in vol. percent. 8 .8 8.6 8.3 7 .8 6.9 Concentration of ethylene in vol. percent. 11.9 11.8 11.7 10.9 9 .3 Yield of acetylene in percent by weight.
  • a process of the class described comprising the steps of: vaporizing and preheating a mixture of normally liquid hydrocarbons to form a supply of a first gaseous reactant; providing substantially pure oxygen to form a supply of a second gaseous reactant; separately introducing said supplies of reactants into a first combustion zone; igniting said supplies of reactants within said first zone to form a sustained flame therein; confining said reactants in a generally cylindrical configuration open at its lower end and having a vertical axis, said configuration preventing upward and lateral movement of said reactants out of said first zone; maintaining a temperature in the upper portion of said first zone which is of the order of 2,000" C. and of the order from 1,000 C. to 1,500 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
US249014A 1962-01-08 1963-01-02 Process for the production of acetylene-and ethylene-containing gases by the incomplete combustion of liquid hydrocarbons Expired - Lifetime US3270077A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP25762 1962-01-08
JP25662 1962-01-08
JP694162 1962-02-27
JP694262 1962-02-27

Publications (1)

Publication Number Publication Date
US3270077A true US3270077A (en) 1966-08-30

Family

ID=27453129

Family Applications (1)

Application Number Title Priority Date Filing Date
US249014A Expired - Lifetime US3270077A (en) 1962-01-08 1963-01-02 Process for the production of acetylene-and ethylene-containing gases by the incomplete combustion of liquid hydrocarbons

Country Status (3)

Country Link
US (1) US3270077A (en(2012))
BE (1) BE626824A (en(2012))
DE (1) DE1468731A1 (en(2012))

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570028A (en) * 1984-04-06 1986-02-11 Atlantic Richfield Company Process for producing acetylene using a homogeneous mixture
US4832822A (en) * 1983-05-20 1989-05-23 Rhone-Poulenc Chimie De Base Steam cracking of hydrocarbons
WO2007082820A1 (de) * 2006-01-13 2007-07-26 Basf Aktiengesellschaft Verfahren zur herstellung von acetylen durch partielle oxidation von kohlenwasserstoffen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945074A (en) * 1958-05-05 1960-07-12 Dow Chemical Co Production of acetylene by the partial oxidation of hydrocarbons
US2985698A (en) * 1957-09-27 1961-05-23 Hoechst Ag Process for pyrolyzing hydrocarbons

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985698A (en) * 1957-09-27 1961-05-23 Hoechst Ag Process for pyrolyzing hydrocarbons
US2945074A (en) * 1958-05-05 1960-07-12 Dow Chemical Co Production of acetylene by the partial oxidation of hydrocarbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832822A (en) * 1983-05-20 1989-05-23 Rhone-Poulenc Chimie De Base Steam cracking of hydrocarbons
US4570028A (en) * 1984-04-06 1986-02-11 Atlantic Richfield Company Process for producing acetylene using a homogeneous mixture
WO2007082820A1 (de) * 2006-01-13 2007-07-26 Basf Aktiengesellschaft Verfahren zur herstellung von acetylen durch partielle oxidation von kohlenwasserstoffen

Also Published As

Publication number Publication date
DE1468731A1 (de) 1969-07-24
BE626824A (en(2012))

Similar Documents

Publication Publication Date Title
EP0178853B1 (en) Conversion process
US4340577A (en) Process for producing carbon black
DK174008B1 (da) Gasblander og -fordeler til reaktor
JPS62402B2 (en(2012))
RU2419599C2 (ru) Способ и устройство для получения ацетилена и синтез-газа путем быстрого смешения реагентов
US4952743A (en) Process and apparatus for the conversion of hydrocarbons
US20030182858A1 (en) Method for providing controlled heat to a process
NO133009B (en(2012))
US2941021A (en) Process and device for carrying out chemical reactions at high temperatures
AU575395B2 (en) Conversion process
US11168263B2 (en) Apparatus and method for preparing ethylene and/or acetylene using hydrocarbon
KR20020016575A (ko) 부분 산화 공정용 예비혼합 버너 블록
US3644555A (en) Process for the production of acetylene or acetylene and ethylene by pyrolysis of hydrocarbons
US1965770A (en) Production of acetylene
US3270077A (en) Process for the production of acetylene-and ethylene-containing gases by the incomplete combustion of liquid hydrocarbons
JP4009193B2 (ja) 加熱炉の運転方法
CN105473217B (zh) 用于制备乙炔和合成气的装置和方法
US3098883A (en) Process and apparatus for carrying out chemical reactions at high temperatures
NO306056B1 (no) Fremgangsmåte til fremstilling av et produktpulver omfattende en karbidforbindelse
EP4457313A1 (en) Autothermal cracking of hydrocarbons
US2870231A (en) Production of unsaturated hydrocarbons
JPS6047097A (ja) 炭化水素の水蒸気分解法
US6432149B1 (en) Burner-feed multi-zone molten metal syngas generator
CN106635123B (zh) 采用富氧燃烧的多程炉管的裂解炉
US5268525A (en) Process and apparatus for converting saturated hydrocarbons