US3256414A - Operating mechanism for electrical circuit breaker of the gas blast type - Google Patents
Operating mechanism for electrical circuit breaker of the gas blast type Download PDFInfo
- Publication number
- US3256414A US3256414A US268887A US26888763A US3256414A US 3256414 A US3256414 A US 3256414A US 268887 A US268887 A US 268887A US 26888763 A US26888763 A US 26888763A US 3256414 A US3256414 A US 3256414A
- Authority
- US
- United States
- Prior art keywords
- rod
- gas
- valve member
- valve
- breaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/53—Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
- H01H33/56—Gas reservoirs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/28—Power arrangements internal to the switch for operating the driving mechanism
- H01H33/30—Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
- H01H33/32—Power arrangements internal to the switch for operating the driving mechanism using fluid actuator pneumatic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/86—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid under pressure from the contact space being controlled by a valve
Definitions
- This invention relates to an improvement in an operating mechanism for a gas blast circuit-breaker with one or more interruption points where the valves for the pneumatic operation of the arc extinction chambers are located on live parts of the breaker and are controlled from the earthed lower part of the breaker by way of insulated rods.
- Airblast circuit-breakers are known where the valves for the pneumatic operation of the switching elements are located in the immediate vicinity of the switching cont-acts and are thus on the live part of the breaker. This results in short switching times and a low consumption of pressure gas, because the supply pipes and chambers between the live parts and'the e-arthed lower part of the breaker which have to be filled with compressed air can be dispensed with.
- the valves are actuated either pneumatically or hydraulically ,by way of control pipes or mechanically with insulated rods.
- the constant increase in the system short-circuit currents results in an endeavor to construct the ciruit-breaker so as to reduce as much as possible the switching times, particularly the breaking time of the circuit-breaker.
- FIG. 1 shows a constructional example of the new arrangement, the device at the lower part of the breaker being a differential piston.
- FIG. 2 shows the device at the lower part of the breaker in the form of a spring loaded pressure gas piston.
- FIG. 3 shows a further modified form where the device at the lower part of the breaker is constructed as an interlock.
- FIG. 1 shows a gas blast circuit-breaker the lower part of which is constructed in the form of a pressure gas container.
- the pressure gas container 1 is in pneumatic communication with the intermediate container 3.1 which is under voltage.
- Reference number 4.1 indicates the actuating device for the switching point or points which are not shown and are associated with the container 3.1.
- the actuating device 4.1 comprises a casing 5.1 in which a piston 6.1 is located which by means of a piston rod 7.1 is connected to a movable switch contact, not shown in the drawing.
- Casing 5.1 has a chamber 8.1 which communicates with the atmosphere by way of openings 9.1 and 10.1.
- the inlet conduit 11.1 connects container 3.1 with chamber 8.1 and in the position shown in the figure is closed by the disc 12.1 of the switching valve.
- Valve disc 12.1 is connected to the insulating rod 17.1 and 17.2 at the point 16.1 byway of the valve rod 13.1 and lever 15.1 which is pivoted at 14.1.
- Valve rod 13.1 is also provided with a spring plate 18.1 against which a recall spring 19.1 abuts.
- a further intermediate container 3.2 is provided above container 3.1.
- Container 3.2 contains like container 3.1 a driving device 4.2, casing 5.2 with piston 6.2, piston rod 7.2, chamber 8.2, openings 9.2 and 10.2, as well as a switching valve with a valve disc 12.2 which closes the inlet conduit 11.2 and is linked by way of valve rod 13.2 and lever 15.2, pivoted at 14.2, to the insulating rod 17.2 at the point 16.2.
- Valve rod 13.2 carries the spring plate 18.2 against which spring 19.2 abuts.
- the switching points which are not shown and are associated withcontainers 3.1 and 3.2 can be connected electrically in series in a known manner, whereby multiple interruption is obtained.
- the insulating rod 17.1 which for instance consists of a flexible synthetic material with glass fibre reinforcement, has at its lower end a holder 16.3 by means of which it is connected to the differential piston 22' located in casingv 21.
- the space above the differential piston 22 is connected by a pipe 23 to the pressure gas container 1, whilst the space underneath the piston 22 can be shut off by the sleeve valve 27 and is in communication with container 1 by way of pipe 24;
- Sleeve valve 27 carries a pin 28 to which a double-armed lever 29 pivoted at 30 is connected.
- the sleeve valve 27 is actuated by rodding indicated at 31 and connected in a known manner to a control device which is not shown.
- the differential piston 22 has a narrow hole 25 through which air can enter or leave the chamber 26.
- the insulating rods 17.1 and 17.2 are arranged inside the hollow insulators 32.1 and 32.2.
- valve discs 12.1 and 12.2 is thus suspended.
- This closing force in the closing position of the breaker, starting from piston 22.subjected on its upper side to pressure gas from pipe 23, is transmitted by way of elastically prestressed insulating rods 17.1 and 17.2, levers 15.1 and 15.2, valve rods 13.1 and 13.2 to valve discs 12.1 and 12.2.
- the pressure gas in containers 3.1 and 3.2 thus acts through conduits 11.1 and 11.2 on valve discs 12.1 and 12.2 in thedownward direction with increasing speed, whereby chambers 8.1 and 8.2 are filled and pistons 6.1 and 6.2 are moved to the leftso that the switch contacts are opened.
- valve discs 12.1 and 12.2 close the openings 9.1 and 9.2 by means of which chambers 8.1 and 8.2 were previously in pressure-free communication with the atmosphere by wayof openings 10.1 and 10.2.
- insulating rods 17.1 and 17.2 move upwards whereby their flexible prestressing can be equalized to the extent that the differential piston 22 to which they are connected follows.
- the acceleration of piston 22 is assisted by the excess surface, because the narrowborehole 25 only enables space .26 to be filled appreciably towards the end of the movement, a compression damping effect being achieved during the last part of the stroke.
- valve discs 12.1 and 12.2 which in their lower limiting position close the openings 9.1 and 9.2 maintain a certain flexible prestressing of the insulating rods by way of the valve rods 13.1 and 13.2 and levers 15.1, 15.2.
- sleeve valve 27 For closing the circuit breaker, sleeve valve 27 is "moved upwards -by means of rodding 31 andlever 29 back into the position shown in the drawing. The space below. the larger surface of piston 22 is thus connected to the at mosphere and relieved of its gas pressure. Due to the pressure prevailing on the upper smaller surface of piston 22 and partly due to the pressure in space 26, the piston moves downwards and by means of insulating. rods 17.1 and 17.2 causes levers 15.1 and 15.2, valve rods 13.1 and 13.2, and valve discs 12.1 and 12.2 to return to the position shown. Chambers 81 and 8.2 are exhausted, so that pistons 6.1 and 6.2 can move to the right and the switch contacts are closed by suitable means, such as for instance springs.
- the return springs 19.1 and '19.2. can be comparatively weak, so that they have practically no retarding effect on the switching operations.. They merely serve to ensure that when the breaker is filled with pressure gas, e.g. initial assembly or afteran'overhauL-the valve discs 12.1 and 12.2 are certain to be in the upper end position so that pressure gas cannot escape, for instance through the openings 9.1, 10.1 and 9.2, 10.2.
- valve27 For outdoor installations it is advisable to arrange the valve27, as well as elements 28 to 31 correspond to those of FIG. 1.
- the method of operation is as follows:
- the insulating rod 17.1 is flexibly prestressed by the pressure spring 33.
- sleeve valve 27 moves into the lower end position in the manner already described in connection with FIG. 1, whereupon piston 32 moves upwards due to the effect of the incoming pressure gas.
- sleeve valve 27 is returned to its former position whereby the space below the piston 32 is exhausted, so that the piston and insulating rod, due to the effect of spring 33, are returned to the position shown in the figure.
- This arrangement enables a simple form of piston to be used and the pipe 23 shown in FIG. 1 can be dispensed with.
- By limiting the stroke of the piston 32 it is possible, as in the case of FIG. 1, to maintain the insulating rod elastically prestressed when in the opening position.
- FIG. 3 shows a further modified form of operating mechanism on the lower part of the breaker.
- the insulating rod 17.1 is pivotally connected by way of the holder 16.3 to a retaining latch 34.
- This latch 34 Y is provided with a recess which engages a fixed pin 35 insulating rods 17.1 and 17.2 inside the hollow insulators 32.1 and 32.2 which'are expediently filled with compressed gas.
- Levers 15.1 and 15.2 for instance on a common shaft, which is supported in a pressure-tight manner inside a fitting of the hollow insulators, can then be constructed with laterally displaced arms in such a manner that one arm is outside the fitting in the open-air and the other :arm inside the pressure-gas filled fitting.
- FIG. 2 Another form of device in accordance with the invention at the lower part of the circuit-breaker for actuating the insulating rods is illustrated in FIG. 2.
- the insulating rod 17.1 is connected by means of the holder 16.3 to a piston 32 which is located in a casing 21 and is subjected to the pressure of a spring 33.
- the space below the piston is .connected to container 1 by means of a pipe 24.
- Sleeve and in the interlocking position is held there by an arm of an angle-lever 36.
- the other arm of the angle-lever 36 is connected by a rod 37 to a tripping device, not shown, which can for instance be an electro-magnetic tripping mechanism.
- a lever 38 supported on a pivot' 39 is connected to the holder 16.3, this lever being connected to a recall device 40 which in this case is shown as a pressure gas piston.
- a circuit breaker of the gas blast type including a hollow insulator column having one end in communication with a supply container of pressurized gas and the other in communication with a container structure housing gas pressure responsive actuating means for the circuit breaker contacts, and wherein said containerstructure is under voltage and continuously filled with the pressurized gas from said supply'container, of an operating mechanism for controlling said gas pressure responsive contact actuating means, said operating mechanism comprising a normally closed switching valve supported by said container structure, said' switching valve including a movable valve member having one side there-- of continuously subject to the gas pressure within said container structure and which always tends to move said valve member in the valve opening direction which is likewise the direction which gas flows through said valve to effect operation of said gas pressure responsive contact actuating means, a rod of insulating material, means applying a-tension force to said rod, linkage means interconnecting said rod with said movable valve member, saidlinkage means translating .said tension force in said rod to a force acting on said movable valve member in such
- said means for applying and for releasing said tension force on said insulating rod is comprised of a fluid motor of the piston-cylinder type, said piston being connected to said insulating rod and being also a differential piston having one smaller end face thereof in I continuous communication with said pressurized gas supply container and the opposite larger end face thereof communicable with said pressurized supply container through a control valve to effect movement of said differential piston in the rod tension releasing direction.
Landscapes
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Fluid-Driven Valves (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH392962A CH392664A (de) | 1962-03-30 | 1962-03-30 | Druckgasschalter mit einer oder mehreren Unterbrechungsstellen |
CH502762A CH403927A (de) | 1962-03-30 | 1962-04-26 | Druckgasschalter mit einer oder mehreren Unterbrechungsstellen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3256414A true US3256414A (en) | 1966-06-14 |
Family
ID=25694201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US268887A Expired - Lifetime US3256414A (en) | 1962-03-30 | 1963-03-29 | Operating mechanism for electrical circuit breaker of the gas blast type |
Country Status (7)
Country | Link |
---|---|
US (1) | US3256414A (de) |
AT (1) | AT245092B (de) |
BE (1) | BE630254A (de) |
CH (2) | CH392664A (de) |
DE (1) | DE1515387A1 (de) |
FR (1) | FR1352413A (de) |
GB (1) | GB971294A (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420972A (en) * | 1965-06-01 | 1969-01-07 | Asea Ab | High voltage gas blast circuit breaker |
US3457530A (en) * | 1966-03-30 | 1969-07-22 | Westinghouse Electric Corp | High-speed operating mechanism for a circuit breaker |
US3513277A (en) * | 1968-02-13 | 1970-05-19 | Gen Electric | Electric circuit breaker comprising series-connected interrupting units |
US3632929A (en) * | 1969-11-12 | 1972-01-04 | Gen Electric Canada | Operating mechanism for a multiple interrupter unit circuit breaker |
US3683142A (en) * | 1970-05-27 | 1972-08-08 | Asea Ab | Operating means for electric switching apparatus for high voltage |
US3699289A (en) * | 1970-10-02 | 1972-10-17 | Asea Ab | Operating device for electric switching apparatus for high voltage |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2429475C3 (de) * | 1974-06-20 | 1984-10-18 | Siemens AG, 1000 Berlin und 8000 München | Stange oder Rohr aus glasfaserverstärktem Kunststoff für einen Hochspannungs-Leistungsschalter |
US4209680A (en) * | 1978-06-26 | 1980-06-24 | Gould Inc. | High speed actuating mechanism |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2491112A (en) * | 1947-07-05 | 1949-12-13 | Allis Chalmers Mfg Co | Gas blast breaker having two tanks and a tank interconnecting valve |
US2783338A (en) * | 1955-09-21 | 1957-02-26 | Gen Electric | Operating mechanism for a fluid-blast circuit breaker |
DE1052502B (de) * | 1958-04-24 | 1959-03-12 | Licentia Gmbh | Hochspannungsschalter mit pneumatischer Betaetigung der Schaltkontakte |
US3037738A (en) * | 1960-03-11 | 1962-06-05 | Charles I Jackson | Rotor valve |
US3075060A (en) * | 1957-10-30 | 1963-01-22 | Westinghouse Electric Corp | Circuit interrupters |
-
0
- BE BE630254D patent/BE630254A/xx unknown
-
1962
- 1962-03-30 CH CH392962A patent/CH392664A/de unknown
- 1962-04-26 CH CH502762A patent/CH403927A/de unknown
- 1962-05-17 DE DE19621515387 patent/DE1515387A1/de active Pending
-
1963
- 1963-03-28 GB GB12275/63A patent/GB971294A/en not_active Expired
- 1963-03-28 FR FR929601A patent/FR1352413A/fr not_active Expired
- 1963-03-28 AT AT251463A patent/AT245092B/de active
- 1963-03-29 US US268887A patent/US3256414A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2491112A (en) * | 1947-07-05 | 1949-12-13 | Allis Chalmers Mfg Co | Gas blast breaker having two tanks and a tank interconnecting valve |
US2783338A (en) * | 1955-09-21 | 1957-02-26 | Gen Electric | Operating mechanism for a fluid-blast circuit breaker |
US3075060A (en) * | 1957-10-30 | 1963-01-22 | Westinghouse Electric Corp | Circuit interrupters |
DE1052502B (de) * | 1958-04-24 | 1959-03-12 | Licentia Gmbh | Hochspannungsschalter mit pneumatischer Betaetigung der Schaltkontakte |
US3037738A (en) * | 1960-03-11 | 1962-06-05 | Charles I Jackson | Rotor valve |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420972A (en) * | 1965-06-01 | 1969-01-07 | Asea Ab | High voltage gas blast circuit breaker |
US3457530A (en) * | 1966-03-30 | 1969-07-22 | Westinghouse Electric Corp | High-speed operating mechanism for a circuit breaker |
US3513277A (en) * | 1968-02-13 | 1970-05-19 | Gen Electric | Electric circuit breaker comprising series-connected interrupting units |
US3632929A (en) * | 1969-11-12 | 1972-01-04 | Gen Electric Canada | Operating mechanism for a multiple interrupter unit circuit breaker |
US3683142A (en) * | 1970-05-27 | 1972-08-08 | Asea Ab | Operating means for electric switching apparatus for high voltage |
US3699289A (en) * | 1970-10-02 | 1972-10-17 | Asea Ab | Operating device for electric switching apparatus for high voltage |
Also Published As
Publication number | Publication date |
---|---|
DE1515387A1 (de) | 1969-07-31 |
CH403927A (de) | 1965-12-15 |
AT245092B (de) | 1966-02-10 |
CH392664A (de) | 1965-05-31 |
GB971294A (en) | 1964-09-30 |
BE630254A (de) | |
FR1352413A (fr) | 1964-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2665351A (en) | Arrangement in air blast circuit breaker provided with damping resistance | |
US2153400A (en) | Electrical switch gear | |
US3052783A (en) | Compressed-gas circuit interrupters | |
US2686243A (en) | Gas blast circuit breaker | |
US2783338A (en) | Operating mechanism for a fluid-blast circuit breaker | |
US3256414A (en) | Operating mechanism for electrical circuit breaker of the gas blast type | |
US2292096A (en) | Circuit-breaker operating system | |
US2290320A (en) | Circuit breaker mechanism | |
US2908788A (en) | Arrangement in electric air blast circuit breakers | |
US3075060A (en) | Circuit interrupters | |
GB1091302A (en) | Gas-blast circuit breaker | |
US2275885A (en) | Electric circuit breaker | |
US2364254A (en) | Gas blast circuit breaker | |
US3045086A (en) | Circuit interrupters | |
US2667554A (en) | Operating mechanism for electric circuit breakers | |
US2969446A (en) | Air blast circuit breakers | |
US3275778A (en) | Compressed-gas circuit interrupter with pressurized arcing chamber and downstream blast valve | |
US2536270A (en) | Fluid pressure operated circuit breaker | |
US3257533A (en) | Fluid-blast circuit interrupters with two selectively-operated fluid-blast sources | |
US2924690A (en) | Circuit interrupters | |
US2581571A (en) | Circuit interrupter | |
US3379849A (en) | Dual-pressure gas-blast circuit breaker with piston means and interrupting unit in closed tank | |
US2310130A (en) | Valve system | |
US3118996A (en) | Contact operating means for air blast circuit breaker | |
US3440379A (en) | Gas-blast circuit breaker with multiple interruption |