US3253542A - Ink applicator - Google Patents
Ink applicator Download PDFInfo
- Publication number
- US3253542A US3253542A US389876A US38987664A US3253542A US 3253542 A US3253542 A US 3253542A US 389876 A US389876 A US 389876A US 38987664 A US38987664 A US 38987664A US 3253542 A US3253542 A US 3253542A
- Authority
- US
- United States
- Prior art keywords
- ink
- roller
- applicator
- plasticizer
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004014 plasticizer Substances 0.000 claims description 36
- 239000011347 resin Substances 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 9
- 239000004800 polyvinyl chloride Substances 0.000 claims description 9
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 239000003086 colorant Substances 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 239000000976 ink Substances 0.000 description 100
- 229920001944 Plastisol Polymers 0.000 description 17
- 239000004999 plastisol Substances 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 15
- 238000012546 transfer Methods 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 239000011148 porous material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 6
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 5
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- -1 alkyl aryl hydrocarbon Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000011833 salt mixture Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- LFZDEAVRTJKYAF-UHFFFAOYSA-L barium(2+) 2-[(2-hydroxynaphthalen-1-yl)diazenyl]naphthalene-1-sulfonate Chemical compound [Ba+2].C1=CC=CC2=C(S([O-])(=O)=O)C(N=NC3=C4C=CC=CC4=CC=C3O)=CC=C21.C1=CC=CC2=C(S([O-])(=O)=O)C(N=NC3=C4C=CC=CC4=CC=C3O)=CC=C21 LFZDEAVRTJKYAF-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- OCWMFVJKFWXKNZ-UHFFFAOYSA-L lead(2+);oxygen(2-);sulfate Chemical compound [O-2].[O-2].[O-2].[Pb+2].[Pb+2].[Pb+2].[Pb+2].[O-]S([O-])(=O)=O OCWMFVJKFWXKNZ-UHFFFAOYSA-L 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F31/00—Inking arrangements or devices
- B41F31/22—Inking arrangements or devices for inking from interior of cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N7/00—Shells for rollers of printing machines
- B41N7/06—Shells for rollers of printing machines for inking rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N2207/00—Location or type of the layers in shells for rollers of printing machines
- B41N2207/02—Top layers
Definitions
- ink applicator must apply the ink uniformly over the printing plate surface whenever the plate is actuated to perform its printing function. If the ink applicator, usually in the form of a roller, does not properly contact the printing plate, there may be too much or too little ink applied to the printing plate or a portion of the plate may remain uninked. Further, if the ink in the ink applicator does not flow properly to the ink transfer surface, the printing plate will be poorly inked when it is actuated. The resiliency and surface texture of the ink applicator should be maintained for the printing of good, uniform impressions. Such problems may occur if the ink tends to dry out on the applicator surface, or to set or harden thereon. In such cases ink will be unevenly transferred to the printing plate, if at all.
- Prior art business machines of this type have employed a roller having part of its outer surface immersed in an ink reservoir with an upper part of the roller surface positioned for contact with an intermediate transfer roller which, in turn, is in contact with the printing plate.
- rotation of the inking roller carries ink from the reservoir to the intermediate roller which, in turn, transfers it to the printing plate surface.
- Such prior art approaches have a number of drawbacks including the required periodic filling of the ink reservoir by the user of the machine.
- a further disadvantage was that atmospheric conditions, cleanliness of the ink transfer roller and like factors determined the amount and the uniformity of the ink which would be transferred from the reservoir to the printing plate.
- ink-impregnated rollers made in accordance with my invention eliminate the need for ink reservoirs in such business machines. Since the rollers are relatively inexpensive, they are disposable when their ink supply is depleted or, alternatively, such rollers can 3,253,542 Patented May 31, 1966 be impregnated with ink. I have further found that inkimpregnated porous rollers made in accordance with my invention 'will maintain their physical dimensions and characteristics over an extended period of time in use. My roller will not mat down at the surface, but will remain resilient with good ink transferring characteristics for thousands of ink transfer operations over an extended period of time.
- Another object of the invention is to provide an applicator of the above character which will maintain its physical dimensions and characteristics after extensive use and over an extended period of time.
- a further object of the invention is to provide an inkimpregnated applicator of the above character which is relatively inexpensive to manufacture.
- Another object of the invention is to provide an ink applicator of the above character wherein the porous structure is made of a resin.
- a further object of the invention is to provide an ink applicator of the above character in which the liquid vehicle of the ink with which the porous structure is impregnated is a plasticizer for the resin of the porous structure.
- Another object of the invention is to provide an inkimpregnated applicator of the above character which is in the form of a roller.
- the invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
- FIGURE 1 is a fragmentary side view of a printing I plate and an ink applicator such as are used in a postage metering machine.
- FIGURE 2 is a flow diagram of the process of making an ink-impregnated applicator.
- FIGURE 3 is a perspective view of an ink-impregnated porous roller made in accordance with the invention.
- a typical printing plate 10 such as is used in a postage metering machine may be secured to a drum 24 and has a curved surface12 carrying the information to be printed.
- the surface 12 bears against a porous roller 14 which is rotatably supported at 16 for rotation against the printing plate surface 12 as the printing plate is rotated.
- a porous roller is shown as the ink applicator, the invention is equally applicable to ink transfer structures having a fiat ink transfer surface.
- the ink roller is made by the following process.
- a powdered resin is mixed with a plasticizer (or combination of plasticizers) to form a plastisol of plasticizer and resin.
- Salt crystals are added to the plastisol in the proportion of two to twenty times as much salt, by weight, as plastisol.
- the salt crystals form the pores of the porous structure and accordingly, the size of the salt crystals will determine the average size of the pores.
- the plastisol and salt mixture is then molded in the desired shape under heat for a period of time.
- the mold may be in the shape of a roller to form a salt-filled roller.
- the salt is then leached from the molded roller by hot water, leaving a porous resin roller.
- the porous roller is then impregnated with ink by a vacuum process wherein air is evacuated from and around the roller while the latter is immersed in ink and then the immersed roller is exposed to the atmosphere whereby the pores fill with ink.
- the inked roller thus produced is then ready for use as an ink transfer mechanism in a printing machine such as a postage metering machine.
- the roller body 14 is provided with a shaft 16 which is journalled in support 18 (FIG- URE 1) to permit rotation of the roller when a printing plate or die rotatably contacts the roller surface.
- the ink-impregnated roller such as shown in FIGURE 3 should maintain its physical characteristics in dimension after thousands of ink transfer operations.
- the roller should not vary appreciably in diameter nor should the resilience or texture of its surface vary over an extended period of time or use. It has been found that the principal cause of change in the physical characteristics or dimensions of such rollers is due to the ink vehicle in the porous body.
- ink generally comprises a pigment or dye or combination thereof which is carried by a vehicle, the liquid medium with which the colorant is applied.
- polyvinyl chloride and plasticizer are mixed in equal parts to form the plastisol.
- Granulated sodium chloride preferably in cubicle form and of from 100-140 mesh in size, is then added to the plastisol in the proportion of two to twenty parts NaCl to 1 part plastisol, and preferably five to six parts NaCl to 1 part plastisol, by weight.
- the plastisol-salt mixture is then molded into the shape of a cylindrical roller at from 300 to 450 F. for a period of from twenty minutes to one hour.
- the molded salt filled roller is then removed from the mold and is soaked in hot water.
- the hot water leaches the salt from the salt filled roller leaving a porous roller remaining.
- the roller may be further rinsed and dried and is then put under a vacuum. While under a vacuum the roller is immersed in ink and is then exposed to atmospheric pressure which fills the roller body with ink.
- the ink vehicle is very important in maintaining the roller body in good condition to function as an ink applicator.
- Some ink vehicles tend to cause plasticizer migration, or to extract plasticizer or other constituents from the roller body.
- the use of improper ink vehicles may cause excessive swelling of the roller which accordingly affects contact of the ink roller and printing plate.
- Still other ink vehicles tend to set on the roller surface or to cause brittleness in the roller body itself at the roller surface.
- Such ink vehicles are unacceptable for use in many business machines since the inking roller must remain in good condition for a substantial period of time.
- the interference between the printing plate surface 12 and roller surface 20 at point 22 should be from .020 to .070 inch for uniform inking of the printing plate.
- the plate surface 12 deforms the roller surface 20 slightly at point 22 to insure good contact over the plate surface and to gently squeeze ink from the roller pores.
- roller If the roller swells excessively, the roller will interfere too much with the printing plate, resulting in excessive inking and accelerated deterioration of the inking roller. If the roller shrinks, the printing plate .will be unevenly inked, if at all. Hardening or setting of the roller surface 20 also results in closure of the roller pores and poor ink transfer because the pore squeezing action is adversely affected.
- an ideal ink vehicle should approximate the composition of the roller body plasticizer or plasticizers. In those cases where a combination of plasticizers are used, a substantial amount of at least one of the plasticizers should be present as the ink vehicle.
- ink vehicles which are the same as the plasticizer for the roller body are used, I have found that the surface texture and resiliency of the rollers, as well as the physical characteristics and dimensions, are unchanged after thousands of ink transfer operations and after many months of use.
- Example 1 One hundred parts of polyvinyl chloride resin were mixed with one hundred parts by weight of a plasticizer composed of dioctyl phthalate and 25% Conoco H-35.
- Conoco H-35 is a synthesized alkyl aryl hydrocarbon having a molecular weight of 280.
- 5 parts of tribasic lead sulfate (hydrous) was added thereto as a stabilizer.
- the plastisol thus formed was then combined with cubicle sodium chloride crystals of from 140 mesh in size (-150 microns) in the proportions 85% NaCl to 15% plastisol by weight.
- the plastisol-NaCl mixture was then molded in the form of a roller at 350 F. for forty-five minutes.
- the salt-filled roller was removed from the mold and leached with hot water to remove the salt and provide a porous roller body.
- the porous roller body was then filled with ink by vacuum.
- the ink vehicle was made up to 75% dioctyl phthalate and 25% Conoco H-35, the same constituents and proportions as used for the resin plasticizer.
- Example 2 The same procedure as in Example 1 was followed except that the plasticizer and ink vehicle were both composed of 80% dioctyl phthalate and 20% Mobilsol L, a petroleum fraction with an approximate molecular weight of 267, boiling range 520 F. to 769 F. and a carbon atom analysis weight percent of approximately C (aromatic) 12, C (naphthenic) 47 and C (parafiinie) 41.
- the plasticizer and ink vehicle were both composed of 80% dioctyl phthalate and 20% Mobilsol L, a petroleum fraction with an approximate molecular weight of 267, boiling range 520 F. to 769 F. and a carbon atom analysis weight percent of approximately C (aromatic) 12, C (naphthenic) 47 and C (parafiinie) 41.
- Example 3 The same procedure was followed as in Example 1 except that the plasticizer and ink vehicle were both composed of a combination of 75% dioctyl phthalate and 25% naphthenic mineral oil.
- Example 4 The same procedure was followed as in Example 1 above except that the plasticizer and ink vehicle were both composed of tricresyl phosphate.
- Inked rollers made in accordance with the above examples were then inserted into postage metering machines for testing.
- Each roller made in accordance with the examples above was tested for at least four thousand printing impressions and showed excellent ink transfer characteristics after four thousand impressions.
- the tested rollers showed only a slight degree of swelling but were Well within tolerable limits for such a use.
- the texture and resiliency of the roller surfaces of all four examples above remained substantially uniform over a period of several months with no setting or caking of the roller surface, and with no plasticizer migration or extraction evident in the roller body itself.
- an ink-impregnated roller made in accordance with the invention is particularly suitable for use in business machines. Further, as a matter of economics, such a roller may be disposable since thousands of printing impression can be made from a single roller.
- An ink applicator comprising, in combination,
- said body being made principally of po1yvinylchloride resin, and (2) a liquid plasticizer for said resin, B. an ink contained in the pores of said body,
- said ink having a colorant in a liquid vehicle, (a) said ink vehicle being of essentially the same composition as said plasticizer, whereby the physical dimensions and characteristics of said ink applicator are maintained within predetermined limits over a substantial period of use and time.
- An ink applicator comprising, in combination, A. an ink containing porous body,
- said body being made principally of polyvinylchloride resin, and (2) a liquid plasticizer system for said resin com- (a) a liquid plasticizer for said resin in combination with (b) a liquid hydrocarbon diluent, B. an ink contained in the pores of said body,
- said ink having a colorant in a liquid vehicle, (a) said ink vehicle being of essentially the same composition as said plasticizer system, whereby the physical dimensions and characteristics of said ink applicator are maintained within predetermined limits over a substantial period of use and time.
- An ink applicator comprising, in combination, A. an ink containing porous body,
- said porous body being made of a resin
- a liquid plasticizer for said resin containing a major portion taken from the group consisting of (a) dioctylphthalate and (b) tricresylphosphate B. an ink contained in the pores of said roller,
- said ink comprising,
- plasticizer includes a minor portion of a liquid hydrocarbon diluent in combination with said major portion of said plasticizer.
- liquid hydrocarbon diluent is an alkyl aryl hydrocarbon having a molecular weight of approximately 280.
- liquid hydrocarbon diluent is a petroleum fraction having an approximate molecular weight of 267 and a boiling range of approximately 520 to 769 F.
- said ink comprising a vehicle and a colorant in the vehicle
- the ink vehicle being of essentially the same composition as said plasticizer, G. and then subjecting the submerged porous body to atmospheric pressure to fill the pores of the body with said ink.
Landscapes
- Inks, Pencil-Leads, Or Crayons (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US389876A US3253542A (en) | 1964-08-17 | 1964-08-17 | Ink applicator |
| GB33882/65A GB1090229A (en) | 1964-08-17 | 1965-08-06 | Improvements in ink applicators for printing |
| BR172152/65A BR6572152D0 (pt) | 1964-08-17 | 1965-08-16 | Aplicador de tinta e processo para fabricar o mesmo |
| CH1145765A CH461543A (de) | 1964-08-17 | 1965-08-16 | Druckfarbenträger und Verfahren zu seiner Herstellung |
| DE1546790A DE1546790C3 (de) | 1964-08-17 | 1965-08-16 | Farbaufträger mit einem porösen Körper und ein Verfahren zu dessen Herstellung |
| SE10673/65A SE315611B (enrdf_load_stackoverflow) | 1964-08-17 | 1965-08-16 | |
| NL656510735A NL150052B (nl) | 1964-08-17 | 1965-08-17 | Werkwijze voor het vervaardigen van een inktopbrengorgaan en inktopbrengorgaan vervaardigd met deze werkwijze. |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US389876A US3253542A (en) | 1964-08-17 | 1964-08-17 | Ink applicator |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3253542A true US3253542A (en) | 1966-05-31 |
Family
ID=23540116
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US389876A Expired - Lifetime US3253542A (en) | 1964-08-17 | 1964-08-17 | Ink applicator |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3253542A (enrdf_load_stackoverflow) |
| BR (1) | BR6572152D0 (enrdf_load_stackoverflow) |
| CH (1) | CH461543A (enrdf_load_stackoverflow) |
| DE (1) | DE1546790C3 (enrdf_load_stackoverflow) |
| GB (1) | GB1090229A (enrdf_load_stackoverflow) |
| NL (1) | NL150052B (enrdf_load_stackoverflow) |
| SE (1) | SE315611B (enrdf_load_stackoverflow) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3625143A (en) * | 1970-11-18 | 1971-12-07 | Schwaab Label Co Inc The | Marking device |
| US3712215A (en) * | 1971-05-27 | 1973-01-23 | Royal Industries | Printing apparatus |
| US3895133A (en) * | 1973-04-20 | 1975-07-15 | Fibreboard Corp | Method of forming liquid reservoirs |
| US4057015A (en) * | 1976-03-04 | 1977-11-08 | Di/An Controls, Inc. | Bar code printing system |
| US4100853A (en) * | 1976-08-09 | 1978-07-18 | Arthur D. Little, Inc. | Method of forming a porous shaped body capable of retaining liquids therein |
| US4112151A (en) * | 1976-01-09 | 1978-09-05 | Monarch Marking Systems, Inc. | Impregnating porous articles |
| US4195570A (en) * | 1976-05-26 | 1980-04-01 | Dayco Corporation | Non-misting inking roll, method of making same, and ink for use therewith |
| US4226886A (en) * | 1979-02-16 | 1980-10-07 | Micro-Cel Systems, Inc. | Self-metering liquid retentive pad and process for producing same |
| US4246842A (en) * | 1979-08-03 | 1981-01-27 | Dayco Corporation | Printing roller |
| US4256845A (en) * | 1979-02-15 | 1981-03-17 | Glasrock Products, Inc. | Porous sheets and method of manufacture |
| DE3100361A1 (de) * | 1980-01-10 | 1981-11-19 | Bridgestone Tire Co. Ltd., Tokyo | Farbwalze und verfahren zu deren herstellung |
| US4383956A (en) * | 1981-01-30 | 1983-05-17 | American Optical Corporation | Method of a single element complete air filtering structure for a respirator filter cartridge |
| US4768437A (en) * | 1986-06-03 | 1988-09-06 | Porelon, Inc. | High contrast printing material |
| US4884505A (en) * | 1985-12-02 | 1989-12-05 | Porelon, Inc. | Method and apparatus for printing a light scannable image |
| US5185111A (en) * | 1991-02-13 | 1993-02-09 | Polypore, Inc. | Method of producing elastomeric open cell structures |
| US5970595A (en) * | 1995-07-19 | 1999-10-26 | Ncr Corporation | Porous inking members for impact printers and methods of making the same |
| US6389967B1 (en) * | 1999-08-10 | 2002-05-21 | Neopost Limited | Ink dispenser |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2371868A (en) * | 1940-09-09 | 1945-03-20 | Berg Herbert | Porous polyvinyl chloride compositions |
| US2392521A (en) * | 1942-02-12 | 1946-01-08 | Ncr Co | Porous resilient printing plate |
| US2620730A (en) * | 1951-02-10 | 1952-12-09 | Farrington Mfg Co | Printing apparatus |
| US2631358A (en) * | 1948-03-25 | 1953-03-17 | Edward D Hill | Ink carrier and method of making |
-
1964
- 1964-08-17 US US389876A patent/US3253542A/en not_active Expired - Lifetime
-
1965
- 1965-08-06 GB GB33882/65A patent/GB1090229A/en not_active Expired
- 1965-08-16 CH CH1145765A patent/CH461543A/de unknown
- 1965-08-16 BR BR172152/65A patent/BR6572152D0/pt unknown
- 1965-08-16 SE SE10673/65A patent/SE315611B/xx unknown
- 1965-08-16 DE DE1546790A patent/DE1546790C3/de not_active Expired
- 1965-08-17 NL NL656510735A patent/NL150052B/xx not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2371868A (en) * | 1940-09-09 | 1945-03-20 | Berg Herbert | Porous polyvinyl chloride compositions |
| US2392521A (en) * | 1942-02-12 | 1946-01-08 | Ncr Co | Porous resilient printing plate |
| US2631358A (en) * | 1948-03-25 | 1953-03-17 | Edward D Hill | Ink carrier and method of making |
| US2620730A (en) * | 1951-02-10 | 1952-12-09 | Farrington Mfg Co | Printing apparatus |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3625143A (en) * | 1970-11-18 | 1971-12-07 | Schwaab Label Co Inc The | Marking device |
| US3712215A (en) * | 1971-05-27 | 1973-01-23 | Royal Industries | Printing apparatus |
| US3895133A (en) * | 1973-04-20 | 1975-07-15 | Fibreboard Corp | Method of forming liquid reservoirs |
| US4112151A (en) * | 1976-01-09 | 1978-09-05 | Monarch Marking Systems, Inc. | Impregnating porous articles |
| US4057015A (en) * | 1976-03-04 | 1977-11-08 | Di/An Controls, Inc. | Bar code printing system |
| US4195570A (en) * | 1976-05-26 | 1980-04-01 | Dayco Corporation | Non-misting inking roll, method of making same, and ink for use therewith |
| US4100853A (en) * | 1976-08-09 | 1978-07-18 | Arthur D. Little, Inc. | Method of forming a porous shaped body capable of retaining liquids therein |
| US4256845A (en) * | 1979-02-15 | 1981-03-17 | Glasrock Products, Inc. | Porous sheets and method of manufacture |
| US4226886A (en) * | 1979-02-16 | 1980-10-07 | Micro-Cel Systems, Inc. | Self-metering liquid retentive pad and process for producing same |
| US4246842A (en) * | 1979-08-03 | 1981-01-27 | Dayco Corporation | Printing roller |
| DE3100361A1 (de) * | 1980-01-10 | 1981-11-19 | Bridgestone Tire Co. Ltd., Tokyo | Farbwalze und verfahren zu deren herstellung |
| US4383956A (en) * | 1981-01-30 | 1983-05-17 | American Optical Corporation | Method of a single element complete air filtering structure for a respirator filter cartridge |
| US4884505A (en) * | 1985-12-02 | 1989-12-05 | Porelon, Inc. | Method and apparatus for printing a light scannable image |
| US4768437A (en) * | 1986-06-03 | 1988-09-06 | Porelon, Inc. | High contrast printing material |
| US5185111A (en) * | 1991-02-13 | 1993-02-09 | Polypore, Inc. | Method of producing elastomeric open cell structures |
| US5970595A (en) * | 1995-07-19 | 1999-10-26 | Ncr Corporation | Porous inking members for impact printers and methods of making the same |
| US6389967B1 (en) * | 1999-08-10 | 2002-05-21 | Neopost Limited | Ink dispenser |
| US6687999B2 (en) | 1999-08-10 | 2004-02-10 | Neopost Limited | Method for manufacturing ink dispensing roller |
Also Published As
| Publication number | Publication date |
|---|---|
| DE1546790A1 (de) | 1970-10-22 |
| DE1546790B2 (de) | 1973-08-02 |
| CH461543A (de) | 1968-08-31 |
| BR6572152D0 (pt) | 1973-09-11 |
| NL6510735A (enrdf_load_stackoverflow) | 1966-02-18 |
| GB1090229A (en) | 1967-11-08 |
| SE315611B (enrdf_load_stackoverflow) | 1969-10-06 |
| DE1546790C3 (de) | 1974-03-14 |
| NL150052B (nl) | 1976-07-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3253542A (en) | Ink applicator | |
| US4336767A (en) | Surface layer structure of an ink transfer device | |
| US2777824A (en) | Process for making micro-reticulated material | |
| US2392521A (en) | Porous resilient printing plate | |
| US4212839A (en) | Process for preparing open-cell sponge rubber printing material having small and large interconnected cells | |
| US3413184A (en) | Transfer medium and method for making same | |
| US2655101A (en) | Planographic plate and method of making same | |
| US3019201A (en) | Methods of making porous applicator structures | |
| US4112151A (en) | Impregnating porous articles | |
| US3755517A (en) | Method of making porous applicator structures | |
| DE2312596C3 (de) | Zwischenträgerblatt für Vervielfältigungen im Klein-Offsetdruckverfahren | |
| US4100853A (en) | Method of forming a porous shaped body capable of retaining liquids therein | |
| US3797388A (en) | Apparatus for printing by reverse lithography | |
| US1376652A (en) | Process for the reproduction of oil-paintings | |
| US2342713A (en) | Art of planographic printing | |
| DE2421765A1 (de) | Poroeses gummimaterial fuer stempel | |
| US2041740A (en) | Inking device | |
| US2427836A (en) | Process for making porous rubber polychrome printing plates | |
| US2503679A (en) | Bonding planographic ink | |
| US2302816A (en) | Planographic printing | |
| US3502768A (en) | Method of making a dampening roller | |
| US2927346A (en) | Method of making an ink-carrier roller | |
| US417736A (en) | Printing | |
| US3484508A (en) | Process of making spongeous transfer medium for moderate impact applications | |
| US1231554A (en) | Method of preparing stencil emulsions. |