US3238010A - Method of reacting cellulose paper and specific non-ionic latices containing hydrogen and hydroxy groups in the polymer chain with polyisocyanate adducts - Google Patents
Method of reacting cellulose paper and specific non-ionic latices containing hydrogen and hydroxy groups in the polymer chain with polyisocyanate adducts Download PDFInfo
- Publication number
- US3238010A US3238010A US102085A US10208561A US3238010A US 3238010 A US3238010 A US 3238010A US 102085 A US102085 A US 102085A US 10208561 A US10208561 A US 10208561A US 3238010 A US3238010 A US 3238010A
- Authority
- US
- United States
- Prior art keywords
- paper
- weight
- parts
- latex
- ionic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 36
- 229920000642 polymer Polymers 0.000 title claims description 35
- 239000001257 hydrogen Substances 0.000 title claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 17
- 239000001913 cellulose Substances 0.000 title claims description 6
- 229920002678 cellulose Polymers 0.000 title claims description 6
- 229920001228 polyisocyanate Polymers 0.000 title claims description 6
- 239000005056 polyisocyanate Substances 0.000 title claims description 6
- 229920000126 latex Polymers 0.000 title description 60
- 125000002887 hydroxy group Chemical group [H]O* 0.000 title description 14
- 239000004816 latex Substances 0.000 claims description 59
- 229920001577 copolymer Polymers 0.000 claims description 29
- 239000000839 emulsion Substances 0.000 claims description 27
- -1 HYDROXY GROUPS Chemical group 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 16
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 16
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 11
- 230000000704 physical effect Effects 0.000 claims description 11
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- OWIKHYCFFJSOEH-UHFFFAOYSA-N Isocyanic acid Chemical group N=C=O OWIKHYCFFJSOEH-UHFFFAOYSA-N 0.000 claims 7
- 239000012948 isocyanate Substances 0.000 description 67
- 150000002513 isocyanates Chemical class 0.000 description 65
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 20
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 18
- 238000005470 impregnation Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 11
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 10
- 239000007795 chemical reaction product Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229940035422 diphenylamine Drugs 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 230000001143 conditioned effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- QORUGOXNWQUALA-UHFFFAOYSA-N N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 QORUGOXNWQUALA-UHFFFAOYSA-N 0.000 description 6
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 229940071162 caseinate Drugs 0.000 description 5
- 230000001687 destabilization Effects 0.000 description 5
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 4
- 239000004606 Fillers/Extenders Substances 0.000 description 4
- 125000002877 alkyl aryl group Chemical group 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- RWYGQIQKHRMKFH-UHFFFAOYSA-N naphthalene;sulfuric acid Chemical compound OS(O)(=O)=O.C1=CC=CC2=CC=CC=C21 RWYGQIQKHRMKFH-UHFFFAOYSA-N 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical class [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- FDYWJVHETVDSRA-UHFFFAOYSA-N 1,1-diisocyanatobutane Chemical compound CCCC(N=C=O)N=C=O FDYWJVHETVDSRA-UHFFFAOYSA-N 0.000 description 1
- GIMDPFBLSKQRNP-UHFFFAOYSA-N 1,1-diphenylethanol Chemical group C=1C=CC=CC=1C(O)(C)C1=CC=CC=C1 GIMDPFBLSKQRNP-UHFFFAOYSA-N 0.000 description 1
- PFUKECZPRROVOD-UHFFFAOYSA-N 1,3,5-triisocyanato-2-methylbenzene Chemical compound CC1=C(N=C=O)C=C(N=C=O)C=C1N=C=O PFUKECZPRROVOD-UHFFFAOYSA-N 0.000 description 1
- PQDIQKXGPYOGDI-UHFFFAOYSA-N 1,3,5-triisocyanatobenzene Chemical compound O=C=NC1=CC(N=C=O)=CC(N=C=O)=C1 PQDIQKXGPYOGDI-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- BVDLLMUTPXVOBX-UHFFFAOYSA-N 2-isocyanato-4-[(3-isocyanato-4-methylphenyl)methyl]-1-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC=C1CC1=CC=C(C)C(N=C=O)=C1 BVDLLMUTPXVOBX-UHFFFAOYSA-N 0.000 description 1
- 229940054266 2-mercaptobenzothiazole Drugs 0.000 description 1
- BDCFWIDZNLCTMF-UHFFFAOYSA-N 2-phenylpropan-2-ol Chemical group CC(C)(O)C1=CC=CC=C1 BDCFWIDZNLCTMF-UHFFFAOYSA-N 0.000 description 1
- HNVRRHSXBLFLIG-UHFFFAOYSA-N 3-hydroxy-3-methylbut-1-ene Chemical group CC(C)(O)C=C HNVRRHSXBLFLIG-UHFFFAOYSA-N 0.000 description 1
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229920013646 Hycar Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical group CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- MNFORVFSTILPAW-UHFFFAOYSA-N azetidin-2-one Chemical compound O=C1CCN1 MNFORVFSTILPAW-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- SAGQAGNYQSLIAR-UHFFFAOYSA-L disodium;naphthalene;sulfate Chemical group [Na+].[Na+].[O-]S([O-])(=O)=O.C1=CC=CC2=CC=CC=C21 SAGQAGNYQSLIAR-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 238000013035 low temperature curing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003336 secondary aromatic amines Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- LZTRCELOJRDYMQ-UHFFFAOYSA-N triphenylmethanol Chemical group C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C1=CC=CC=C1 LZTRCELOJRDYMQ-UHFFFAOYSA-N 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/07—Nitrogen-containing compounds
- D21H17/08—Isocyanates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/35—Polyalkenes, e.g. polystyrene
Definitions
- This invention relates to a method of treating paper to improve the physical properties of the same.
- the basic difliculty with this process is that it was found necessary, in each and every case, to dissolve the isocyanate in a non-reactive solvent in order to use the isocyanate in the treatment of paper. If this is not done, the isocyanate, when used for treatment, reacts predominantly at a fairly rapid rate, with the active hydrogens present in the latex system, forming insoluble di-urea compounds. When this happens, a substantial quantity of the isocyanate is consumed and thereby becomes unavailable to cross-link the elastomeric polymer and the paper.
- our process comprises treating a sheet of paper with a latex containing a polyfunctional isocyanate in unreactive form, and then regenerating the isocyanate in active form, while in contact with the paper.
- a polyfunctional isocyanate in unreactive form, and then regenerating the isocyanate in active form, while in contact with the paper.
- all polyfunctional isocyanates are herein referred to as isocyanate.
- our process comprises impregnating a sheet of paper with a latex containing an isocyanate in unreactive form, drying the paper at a temperature below 140 C., and heating the impregnated paper to a temperature above 140 C. to regenerate the isocyanate in a form which is reactive to both the cellulosic fibers in the paper and the elastomeric chain in the latex.
- an isocyanate in unreactive form is incorporated into the aqueous latex most generally by means of an emulsion.
- the isocyanate is one in which the reactive groups of the isocyanate molecule have been rendered inactive at ordinary temperatures by the formation of a chemical complex, which complex when heated, decomposes to regenerate the isocyanate molecule in the freely reactive form. Paper is thus impregnated with latex containing this isocyanate in unreactive form. Subsequently, this treated sheet is dried and then is heated and the isocyanate groups contained therein are thereby regenerated.
- cmpounds which contain free isocyanate groups are, most generally, very reactive compounds and that the free isocyanate groups of these types of compounds will react with practically any active hydrogen compound, i.e. a compound containing a hydrogen which may normally be replaced with sodium.
- the free isocyanate groups even react with the hydrogen and hydroxyl groups present in the cellulosic chain of the paper and in the elastomeric chain of the polymer.
- the cellulosic fibers appear to be interconnected to each other by means of elastorneric chains which tie the fibers into a network wherein the elastomeric chains are bonded to the cellulosic fibers by means of urethane bonds.
- ISOCYANATES There are many organic molecules containing isocyanate groups which will react with the polymer in the latex and with the cellulose fibers in the paper. In general, any of the polyisocyanates in the following classes, due to their chemical nature are reactive With groups containing e: an active hydrogen.
- Suitable isocyanates include the aliphatic diisocyanates such as ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, propylene- 1,2 butylene-1,2, butylene-2,3, butylene-1,3, ethylidene, and butylidene diisocyanate; the aromatic diisocyanates such as m-phenylene, p-phenylene, 4,4-diphenyl, 1,5- naphthalene, and 1,4-naphthalene diisocyanate; the cycloalkylene diisocyanates such as cyclopentylene-l,3, cyclohexylene-l,4, and cyclohexylene-1,2; the aliphatic aromatic diisocyanates such as 4,4-diphenylene methane, 2,4- tolylene, 4,4-tolidene, and 1,4-xylylene diisocyanate; the nuclear substituted aromatic isocyanates such as
- the active isocyanate group is reacted with a chemical agent which renders the isocyanate group inactive at ordinary temperatures, but which degenerates thereby regenerating the isocyanate, in active form, upon heating to temperatures above about 140 C.
- a chemical agent which renders the isocyanate group inactive at ordinary temperatures, but which degenerates thereby regenerating the isocyanate, in active form, upon heating to temperatures above about 140 C.
- aceto-acetic ester diethylmalonate
- mercaptans such as 2-mercapto-benzothiazole
- lactams such as epsilon-caprolactams, delta-valerolactam, gamma-butyrolactam, and beta-propiolactam
- imides such as succinimide and phthalimide
- tertiary alcohols such as ter-amyl, tertiary butyl, dimethyl ethenyl carbinol, dimethyl phenyl carbinol, methyl diphenyl carbinol, triphenyl carbinol, 1- nitro tertiary butyl carbinol, l-chlorotertiary butyl carbinol, and triphenyl silinol
- secondary aromatic amines such as diphenyl-amine
- diaryl compounds such as diphenylamine, o-ditolyl amine, m-
- the polymeric latices used in this treatment must be non-ionic in nature. It has been found that the stability of the blocked isocyanate to premature cleavage is excellent in non-ionic latices and poor in either anionic or cationic latices.
- the polymeric systems, which are used, however, must contain labile hydrogen or hydroxy groups with which the isocyanate, when regenerated in active form, may react.
- the polymeric latices which are preferably used are polymers which can be made in non-ionic systems. Examples of non-ionic latices are those containing polyvinyl acetate, copolymers of vinyl acetate, and copolymers of butadiene-acrylonitrile such as that commercially available under the trade name of Hycar 1872.
- the reactivity of the polymeric system may be further enhanced by increasing the number of labile hydrogen or hydroxy groups present in the system. This may be accomplished, in the case of polyvinyl acetate, by a partial hydrolysis of the system. It may also be accomplished, in the case of both polymers and copolymers of vinyl acetate, by introducing reactive groups into the molecule during the polymerization of the monomer, such as by incorporating hydroxy bearing emulsifying agents into the reactive charge during the emulsion polymerization of the monomer. It has been noted that only about 50% of such hydroxy bearing material has been recovered after the polymerization reaction has been completed indicating that the hydroxy bearing material, which has not been recovered, had been incorporated into the polymer. There are a number of hydroxy bearing materials which may be used for this grafting technique, such as polyvinyl alcohol, hydroxy-ethyl cellulose and carboxymethyl cellulose.
- the paper which is to be treated by this method should be sufficiently porous that the ingredients of the impregnating composition will not be filtered out by the paper during treatment.
- the minimum degree of necessary porosity is controlled by the particle size of the particular polymer present in the latex. Particle size, of course, varies depending not only on the method of producing the polymer but also on the specific monomers used in the process. Since the method of producing suitable porous papers is an art itself which is well known to the paper industry it is not considered necessary to consider this subject in detail.
- the isocyanate material in the unreactive or blocked state is introduced into the latex in the form of a dispersion or of an emulsion in water.
- a dispersion in water may be formed by ball milling the blocked isocyanates in the presence of water and a dispersion agent.
- a rather satisfactory emulsion may be formed by dissolving the blocked isocyanate in ethyl acetate, and then adding the solution to a warm aqueous solution containing sodium alkyl naphthalene sulfate, alkyl aryl sodium sulfonate, and ammonium caseinate.
- the ammonium caseinate functions as a stabilizer for the emulsion
- the sodium naphthalene sulfate functions as a wetting agent for the system
- the alkyl aryl sodium sulfonate functions as a dispersing agent for the organic phase.
- the paper may be impregnated with the impregnation compound in a number of ways. These include beater impregnation, wet web impregnation and dry web impregnation. For convenience the examples that follow were made by dry web impregnation by passing paper through a bath containing the latex solution in which the blocked isocyanate was dispersed. After impregnation, the paper was further processed by passing the same through a conventional press or calender in order to squeeze out the excess impregnant. Subsequently, this paper was heated at a low temperature to substantially dry it and then heated to a temperature between about 100 C. and 180 C.
- the following examples show how various blocked isocyanates are dispersed in a vinyl acetate copolymer latex and how these dispersions are used to treat paper. All formulations given herein are on the dry base for all ingredients. The treated sheets were then conditioned by maintaining them at a temperature of about F. and a relative humidity of about 50% for 14 to 16 hours. After conditioning, the treated sheets were tested to determine their tensile strength.
- Example I a blocked isocyanate was emulsified and then dispersed in a vinyl acetate copolymer latex which was later used to treat paper.
- Example I 50 parts by weight of the reaction product of toluene, 2,4-diisocyanate, trimethylol propane and phenol were ground into a coarse powder and disolved in ethyl acetate. This solution was then emulsified in another solution containing 3 parts by weight of ammonium caseinate, 5 parts by weight of sodium alkyl naphthalene sulfate, and 0.5 part by weight of alkyl aryl sodium sulfonate dissolved in 23 parts by weight of warm water. The emulsion was then homogenized and stirred until the temperature of the emulsion was below about 110 F.
- Table I sets forth the results obtained when the amount of blocked isocyanate in the system is varied.
- the papers were impregnated at a level of about 20 parts by weight of polymer per 100 parts by weight of paper. It is clear that the wet tensile strength and wet elongation of the impregnated paper increase as the amount of blocked isocyanate in the impregnant is increased. The increase in wet tensile is quite rapid as the amount of isocyanate is increased to 20 parts by weight. The optimum amount of isocyanate in the impre'gnant is between and parts by weight. The wet tensile strength of a sheet treated with such an impregnant would be 8 to 9 times that of a control sheet which was not treated with isocyanate. Also, the effect on elongation closely follows that of the tensile.
- Example 11 10 parts by weight of the reaction product of toluene 2,4-diisocyanate, trimethylol propane and phenol were emulsified as set forth in Example I. This emulsion was then added to 100 parts by weight of a mixture which contained varying ratios of a vinyl acetate copolymer latex (same as that used in Example I) and a resinous material commercially available under the tradename of Piccopale N-2. Sheets of impregnated base paper were then treated, conditioned and tested as heretofore set forth.
- Dry Dry Wet 1 Expressed as parts by weight of impregnant. 2 Expressed as pounds per inch. 3 Expressed as percent.
- Example 111 5 parts by weight of the reaction product of toluene 2,4-diisocyanate, trimethylol propane, and phenol was emulsified as set forth in Example I. This emulsion was then added to 100 parts by weight of a polyvinyl acetate latex (same as that used in Example I). Sheets of impregnated paper were then treated at various levels of impregnation, conditioned and tested as heretofore set forth.
- Example IV Varying amounts of the reaction product of toluene 2,4-diisocyanate, trimethylol propane, and phenol were dispersed in 100 parts by weight of a vinyl acetate copolymer latex by means of a ball mill.
- the latex used was the same as that described in Example I. Sheets of impregnation base paper were then treated with this dispersion, conditioned and tested as heretofore described.
- Example IV the wet tensile strength of sheets treated by the emulsion technique (set forth in Example I) were compared with sheets treated by the technique used in Example IV.
- the significant difference between these two methods is the manner in which the blocked isocyanate is dispersed in the latex.
- These papers were impregnated at a level of about 22 parts by weight per It appears that no matter which technique is used the wet tensile strength of 21 treated sheet is greater than that of a control sheet which did not contain isocyanate.
- the method of dispersing the isocyanate in the latex appears to have a significant effect on the Wet tensile strength of the sheet.
- the wet tensile strength of a sheet treated according to procedure set forth in Example I is greater than a sheet treated by this procedure because the blocked isocyanate is more finely distributed in the latex when it is in emulsified form.
- Example V the diphenylamine adduct of toluene 2,4-diisocyanate was prepared, emulsified and then dispersed in a vinyl acetate copolymer latex which was later used to treat paper.
- Example V 17.4 grams toluene 2,4-diisocyanate were dissolved in 1000 ml. of toluene, 34 grams of diphenylamine were then added to this solution and it was stirred for 2 hours and then allowed to stand for 12 hours. The toluene was then distilled from the liquid at which time the liquid was cooled to 20 C. and filtered to separate the precipitate.
- Example II 4 parts by weight of this isocyanate emulsion (parts in this case meaning emulsion solids) was then added to a non-ionic vinyl acetate copolymer latex containing 100 parts by weight of polymer.
- This latex was the same as that utilized in Example I.
- the sheets were tested for wet strength (as in Example I), conditioned and tested as heretofore described and the results appear in Table V. It clearly appears that the wet tensile of an impregnated sheet increases as the level of impregnation is raised.
- Example VI the morpholine adduct of 4,4-methylene di-o-tolylisocyanate was prepared, emulsified, and then dispersed in a vinyl acetate copolymer latex which was later used to treat paper.
- Example VII 28 grams of 4,4-methylene di-o-tolylisocyanate and grams of morpholine were mixed in 200 m1. of methyl ethyl ketone. The exothermic reaction which resulted was maintained at 40 C. after which a yellowish white precipitate was filtered off.
- this precipitate (which was the morpholine adduct of 4,4-methylene di-o-tolylisocyanate) was dissolved in 47 /2 parts by weight of methyl Cellosolve. This solution was then added to 50 parts by weight of water and the isocyanate was precipitated in the form of a fine dispersion.
- Recom- Blocked Isocyanate mended Proportion 1. Bis phenyl adduct of methylene bis(4-phenyllsocyanate) 8. 3 2. Reaction product of phenol and triphenyl methane triisocyanate 6. 7 3. Reaction product of morpholine and triphenyl methane triisocyanate 6. 5 4. Reaction product of diphenylamine and triphenyl methane triisocyanate 9.0 5. Reaction product of aceto-acetic ester and triphenyl methane triisocyanare 7. 9 6. Morphollne adduct of methylene bis(4-phenylisocyanate). 6. 4 7.
- the tensile-product of the paper is of prime importance rather than the tensile alone.
- the tensile-product is the product of the tensile per inch width of the paper multiplied by the percent elongation.
- High tensile-products may be accomplished by varying the ingredients in the formulation which is used to treat the paper.
- the elongation and tensile strength of a treated sheet may be varied when synthetic polymeric systems, such as butadiene-styrene and butadiene acrylonitrile are incorporated into the compound.
- the addition polymer must be non-ionic in nature. If, however, it is not possible to use a non-ionic system for the polymer, a system should be used wherein each of the components, in and of itself, is stable.
- the component which initially functions as a carrier for the isocyanate must be non-ionic in nature, while the other component may contain a material which is ionic in nature. When mixed, these two components will form an unstable system due to the effect of the ionic component upon the blocked isocyanate.
- this fluid system is used to treat paper in the manner heretofore described. Normal take up of the compound by the paper during treatment will consume the compound before substantial destabilization takes place and further destabilization will then proceed after the polymer is in place in the paper.
- Example VIII A typical two component system is set up in Example VIII.
- Example VIII Component A.4 parts by weight of the reaction product of toluene 2,4diisocyanate, trimethylol propane and phenol were emulsified in a manner similar to that in Example I. This emulsion and 0.2 part by weight of a modified sodium polyacrylate were then dispersed in 30 parts by weight of a vinyl acetate copolymer latex. This latex was the same as that in Example I.
- Component B 0.5 part by weight of ammonium caseinate was added, with stirring, to 70 parts by weight of a 50:50 butadiene styrene synthetic rubbery polymeric latex. Subsequently 2 parts by weight of an antioxidant and 0.3 part by weight of the sodium salt of tetraacetic acid ethylenediamine was added to this liquid. The systern was mixed and 1% of ammonia (based on the wet wet of the system) was added thereto with stirring.
- Component A was uniformly dispersed in Component B and the resulting fluid mixture was used to treat paper in the manner heretofore described.
- wet tensile strength is obtained when a 50:50 copolymer of buta diene-styrene synthetic polymer is substituted for the vinyl copolymer acetate latex in the basic formulations.
- a higher level of wet tensile may be obtained when mixtures of the vinyl acetate copolymer with 50:50 butadiene styrene copolymer are used.
- the mixed system in any case, however, is stable for at least 24 hours after mixing. Therefore, the paper may be impregnated with the polymeric system (including the isocyanate) and destabilization will take place while the polymer is in place in the paper. It has been found that when a twocomponent system is used that a satisfactory cure may be obtained at temperatures as low as about 120 F. in as little as 3 days. This is especially adaptable to paper making practices because the paper may be treated, rolled warm, and held for several days prior to shipment.
- a method of improving the physical properties of cellulose paper which comprises: impregnating said paper with a composition consisting essentially of a substantially non-ionic polymeric vinyl acetate latex wherein the chain portion of the vinyl acetate polymer contains hydrogen and hydroxy groups as substituents on said chain, said groups being capable of reacting with isocyanate groups, and an aqueous emulsion of a polyisocyanate adduct which is stable in the presence of the non-ionic latex and non-reactive until heated to a temperature which regenerates free isocyanate groups in reactive form, substantially drying the treated paper at a temperature below the temperature at which free isocyanate groups are regenerated, and heating the dried paper to a temperature above about 140 C. for a period of time sufficient to provide free isocyanate groups which react with the hydrogen and hydroxy groups in the paper and the polymer.
- a method of improving the physical properties of cellulose paper which comprises: impregnating said paper with a composition consisting essentially of a substantially non-ionic polymeric vinyl acetate latex wherein the chain portion of the vinyl acetate polymer contains hydrogen and hydroxy groups as substituents on said chain, said groups being capable of reacting with isocyanate groups, and an aqueous emulsion of between 2.5 and 123 parts by weight based on 100 parts by weight of said polymeric latex solids, of a polyisocyanate adduct selected from the groups consisting of the phenol adducts of triphenyl methane triisocyanate, toluene-2, 4-diisocyanate, and 4,4-methylene di-o-tolylisocyanate; the aceto-acetic ester adducts of methylene bis(4-phenylisocyanate), triphenyl methane triisocyanate, toluene-2,4-diisocyanate, and
- polymeric component of the latex is comprised of a vinyl acetate-dibutyl maleate copolymer.
- adduct is the morpholine adduct of 4,4'-methylene di-o-tolylisocyanate.
- adduct is the adduct of toluene-2,4-diisocyanate, trimethylol propane and phenol.
- a method of improving the physical properties of cellulose paper which comprises: impregnating said paper with a composition comprised of between 50 to 100 parts by weight of substantially non-ionic vinyl acetate copolymer latex solids wherein the vinyl acetate chain portion of said copolymer contains hydrogen and hydroxy groups as substituents on said chain capable of reacting with isocyanate groups, an aqueous emulsion of about 4 parts by weight of the adduct of toluene-2,4-diisocyanate, trimethylol propane and phenol, said adduct being stable in the presence of the non-ionic latex and non-reactive until heated to a temperature which regenerates free isocyanate groups in reactive form, and up to 50 parts by weight of a substantially non-ionic butadiene-styrene copolymer latex; substantially drying the treated paper at a temperature below the temperature at which free isocyanate groups are regenerated; and heating the dried paper to a temperature in the range of about 120 F.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polyurethanes Or Polyureas (AREA)
- Paper (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB940771D GB940771A (enrdf_load_stackoverflow) | 1959-06-02 | ||
DEG29738A DE1165987B (de) | 1959-06-02 | 1960-05-23 | Verfahren zur Verbesserung der physikalischen Eigenschaften von Papierbahnen |
FR828845A FR1258646A (fr) | 1959-06-02 | 1960-06-01 | Amélioration de la résistance du papier par traitement avec des isocyanates polyfonctionnels |
US102085A US3238010A (en) | 1959-06-02 | 1961-03-31 | Method of reacting cellulose paper and specific non-ionic latices containing hydrogen and hydroxy groups in the polymer chain with polyisocyanate adducts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81748859A | 1959-06-02 | 1959-06-02 | |
US102085A US3238010A (en) | 1959-06-02 | 1961-03-31 | Method of reacting cellulose paper and specific non-ionic latices containing hydrogen and hydroxy groups in the polymer chain with polyisocyanate adducts |
Publications (1)
Publication Number | Publication Date |
---|---|
US3238010A true US3238010A (en) | 1966-03-01 |
Family
ID=26798983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US102085A Expired - Lifetime US3238010A (en) | 1959-06-02 | 1961-03-31 | Method of reacting cellulose paper and specific non-ionic latices containing hydrogen and hydroxy groups in the polymer chain with polyisocyanate adducts |
Country Status (3)
Country | Link |
---|---|
US (1) | US3238010A (enrdf_load_stackoverflow) |
DE (1) | DE1165987B (enrdf_load_stackoverflow) |
GB (1) | GB940771A (enrdf_load_stackoverflow) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413144A (en) * | 1965-03-23 | 1968-11-26 | Union Carbide Corp | Polyurethane coated articles |
US3492081A (en) * | 1965-06-08 | 1970-01-27 | Container Corp | Method of treating paper with isocyanates blocked with cyclohexanol |
US3505001A (en) * | 1965-11-26 | 1970-04-07 | Hooker Chemical Corp | Process for treating cellulosic materials |
US3529990A (en) * | 1966-09-24 | 1970-09-22 | Bayer Ag | Process of finishing textile materials |
US3531429A (en) * | 1965-06-17 | 1970-09-29 | Standard Brands Chem Ind Inc | Method for producing modified rubbery latices |
US3639157A (en) * | 1968-07-18 | 1972-02-01 | Bayer Ag | Process for finishing textile materials with a polymer of a vinyl compound and the reaction product of a polyol and an organic polyisocyanate |
US3887427A (en) * | 1971-07-15 | 1975-06-03 | Kema Nord Ab | Process for sizing cellulose fibers |
US3989458A (en) * | 1973-04-16 | 1976-11-02 | Commonwealth Scientific And Industrial Research Organization | Compositions containing bisulphite adducts of polyisocyanates and method of use |
DE2612783A1 (de) * | 1976-03-25 | 1977-09-29 | Hoechst Ag | Blockierte polyisocyanate aus biuretgruppenhaltigem polyisocyanat und acetessigsaeurealkylester |
US5576382A (en) * | 1996-05-05 | 1996-11-19 | Arco Chemical Technology, L.P. | Aqueous polyurethane dispersions based on polyether polyols of low monol content |
US5747392A (en) * | 1996-11-19 | 1998-05-05 | Hi-Tex, Inc. | Stain resistant, water repellant, interpenetrating polymer network coating-treated textile fabric |
US6143132A (en) * | 1992-04-06 | 2000-11-07 | Bayer Aktiengesellschaft | Process for imparting wet strength to paper |
US6207250B1 (en) | 1995-03-21 | 2001-03-27 | Hi-Tex, Inc. | Treated textile fabric |
US6251210B1 (en) | 1996-08-07 | 2001-06-26 | Hi-Tex, Inc. | Treated textile fabric |
US6488813B2 (en) * | 2000-08-01 | 2002-12-03 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Blocked urethane prepolymers as paper wet strength agent |
US6492001B1 (en) | 1996-08-07 | 2002-12-10 | Hi-Tex, Inc. | Treated textile fabric |
US20030083427A1 (en) * | 2001-10-31 | 2003-05-01 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Composition for increasing wet strength of paper including water-soluble blocked urethane prepolymers |
US20070021019A1 (en) * | 2005-07-21 | 2007-01-25 | Hi-Tex, Inc. | Treated textile fabric |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2288179B (en) * | 1992-11-11 | 1997-06-11 | Jujo Paper Co Ltd | Aqueous polyolefin resin composition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570253A (en) * | 1946-10-25 | 1951-10-09 | Minnesota Mining & Mfg | Stable aqueous dispersions of copolymers of vinyl esters, neutral ethylenic polyesters, and acrylic acid, and method of making |
US2897094A (en) * | 1954-05-11 | 1959-07-28 | Grace W R & Co | Process of treating latex impregnated paper with an isocyanate and resultant article |
US2994672A (en) * | 1957-11-06 | 1961-08-01 | Du Pont | Adhesive comprising aqueous dispersion of water soluble polymer and phenolisocyanate adduct, cellulosic structure coated with same and process of preparing same |
US2994671A (en) * | 1956-10-17 | 1961-08-01 | Du Pont | Coating linear condensation polymers with a polyisocyanate adduct |
US3001957A (en) * | 1957-11-08 | 1961-09-26 | Celanese Corp | Aqueous latex comprising vinyl acetate polymer and amino ether of starch and method of coating fibrous sheet material therewith |
US3005728A (en) * | 1956-10-19 | 1961-10-24 | Tee Pak Inc | Cellulosic laminates |
US3092601A (en) * | 1959-10-01 | 1963-06-04 | Union Carbide Corp | Latex coating compositions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE897625C (de) * | 1940-01-17 | 1953-11-23 | Bayer Ag | Verfahren zur Herstellung von hochmolekularen Polykondensationsprodukten |
DE929322C (de) * | 1942-03-15 | 1955-06-23 | Hoechst Ag | Verfahren zur Herstellung von Polyurethanen |
-
0
- GB GB940771D patent/GB940771A/en active Active
-
1960
- 1960-05-23 DE DEG29738A patent/DE1165987B/de active Pending
-
1961
- 1961-03-31 US US102085A patent/US3238010A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570253A (en) * | 1946-10-25 | 1951-10-09 | Minnesota Mining & Mfg | Stable aqueous dispersions of copolymers of vinyl esters, neutral ethylenic polyesters, and acrylic acid, and method of making |
US2897094A (en) * | 1954-05-11 | 1959-07-28 | Grace W R & Co | Process of treating latex impregnated paper with an isocyanate and resultant article |
US2994671A (en) * | 1956-10-17 | 1961-08-01 | Du Pont | Coating linear condensation polymers with a polyisocyanate adduct |
US3005728A (en) * | 1956-10-19 | 1961-10-24 | Tee Pak Inc | Cellulosic laminates |
US2994672A (en) * | 1957-11-06 | 1961-08-01 | Du Pont | Adhesive comprising aqueous dispersion of water soluble polymer and phenolisocyanate adduct, cellulosic structure coated with same and process of preparing same |
US3001957A (en) * | 1957-11-08 | 1961-09-26 | Celanese Corp | Aqueous latex comprising vinyl acetate polymer and amino ether of starch and method of coating fibrous sheet material therewith |
US3092601A (en) * | 1959-10-01 | 1963-06-04 | Union Carbide Corp | Latex coating compositions |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413144A (en) * | 1965-03-23 | 1968-11-26 | Union Carbide Corp | Polyurethane coated articles |
US3492081A (en) * | 1965-06-08 | 1970-01-27 | Container Corp | Method of treating paper with isocyanates blocked with cyclohexanol |
US3531429A (en) * | 1965-06-17 | 1970-09-29 | Standard Brands Chem Ind Inc | Method for producing modified rubbery latices |
US3505001A (en) * | 1965-11-26 | 1970-04-07 | Hooker Chemical Corp | Process for treating cellulosic materials |
US3529990A (en) * | 1966-09-24 | 1970-09-22 | Bayer Ag | Process of finishing textile materials |
US3639157A (en) * | 1968-07-18 | 1972-02-01 | Bayer Ag | Process for finishing textile materials with a polymer of a vinyl compound and the reaction product of a polyol and an organic polyisocyanate |
US3887427A (en) * | 1971-07-15 | 1975-06-03 | Kema Nord Ab | Process for sizing cellulose fibers |
US3989458A (en) * | 1973-04-16 | 1976-11-02 | Commonwealth Scientific And Industrial Research Organization | Compositions containing bisulphite adducts of polyisocyanates and method of use |
DE2612783A1 (de) * | 1976-03-25 | 1977-09-29 | Hoechst Ag | Blockierte polyisocyanate aus biuretgruppenhaltigem polyisocyanat und acetessigsaeurealkylester |
US6143132A (en) * | 1992-04-06 | 2000-11-07 | Bayer Aktiengesellschaft | Process for imparting wet strength to paper |
US6207250B1 (en) | 1995-03-21 | 2001-03-27 | Hi-Tex, Inc. | Treated textile fabric |
US20030008585A1 (en) * | 1995-03-21 | 2003-01-09 | Hi-Tex, Inc. | Treated textile fabric |
US6884491B2 (en) | 1995-03-21 | 2005-04-26 | Hi-Tex, Inc. | Treated textile fabric |
US5576382A (en) * | 1996-05-05 | 1996-11-19 | Arco Chemical Technology, L.P. | Aqueous polyurethane dispersions based on polyether polyols of low monol content |
US6541138B2 (en) | 1996-08-07 | 2003-04-01 | Hi-Tex, Inc. | Treated textile fabric |
US6492001B1 (en) | 1996-08-07 | 2002-12-10 | Hi-Tex, Inc. | Treated textile fabric |
US20040018787A1 (en) * | 1996-08-07 | 2004-01-29 | Hi-Tex, Inc. | Treated textile fabric |
US6251210B1 (en) | 1996-08-07 | 2001-06-26 | Hi-Tex, Inc. | Treated textile fabric |
US5747392A (en) * | 1996-11-19 | 1998-05-05 | Hi-Tex, Inc. | Stain resistant, water repellant, interpenetrating polymer network coating-treated textile fabric |
US6488813B2 (en) * | 2000-08-01 | 2002-12-03 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Blocked urethane prepolymers as paper wet strength agent |
US20030083427A1 (en) * | 2001-10-31 | 2003-05-01 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Composition for increasing wet strength of paper including water-soluble blocked urethane prepolymers |
US7008508B2 (en) * | 2001-10-31 | 2006-03-07 | Dai Ichi Kogyo Seiyaku Co. | Composition for increasing wet strength of paper including water-soluble blocked urethane prepolymers |
US20070021019A1 (en) * | 2005-07-21 | 2007-01-25 | Hi-Tex, Inc. | Treated textile fabric |
US7531219B2 (en) | 2005-07-21 | 2009-05-12 | Hi-Tex, Inc. | Treated textile fabric |
Also Published As
Publication number | Publication date |
---|---|
DE1165987B (de) | 1964-03-19 |
GB940771A (enrdf_load_stackoverflow) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3238010A (en) | Method of reacting cellulose paper and specific non-ionic latices containing hydrogen and hydroxy groups in the polymer chain with polyisocyanate adducts | |
US2430479A (en) | Bonding of laminates by means of isocyanates | |
US3539483A (en) | Anionic polyurethane dispersions and a process for the production thereof | |
US3756992A (en) | Polyurethane polyelectrolytes and process for preparing same | |
US3686108A (en) | Light fast quaternized or amine salt polyurethanes from 2-alkyl - 2 - dialkylaminomethyl-1,3-propane diols | |
EP0212511B1 (de) | Verwendung von stabilen Dispersionen fester, feinteiliger Polyisocyanate in Pigmentdruckpasten und Färbeflotten | |
US3963710A (en) | Finely divided blocked isocyanates prepared in the presence of surfactants | |
DE3234590C2 (enrdf_load_stackoverflow) | ||
US4305857A (en) | Process for the preparation of stable dispersions of polyisocyanate-polyaddition products in hydroxyl containing compounds | |
US3836493A (en) | Aqueous dispersions of epichlorhydrin modified polyurethane prepolymer-polyamine product | |
DE1694152B2 (de) | Verfahren zur Herstellung von mikroporösen Flächengebilden | |
US3971764A (en) | Process for producing a cationic polyurethane | |
US4211683A (en) | Process for the preparation of aqueous dispersions of polyurethanes | |
DE3102038A1 (de) | Polyurethanpolymeraminsalz als papieradditiv | |
JPS6075699A (ja) | 紙のサイズ方法 | |
US3789027A (en) | Microporous sheet structure | |
US4016120A (en) | Aqueous cationic polyurethane having blocked NCO groups and process | |
US3007763A (en) | Cross-linking fibers with diisocyanates in dimethylsulfoxide | |
US3933677A (en) | Preparation of aqueous dispersions of blocked aromatic polyisocyanates | |
US3325333A (en) | Adhesion of polyester materials to a rubber compound | |
US4008196A (en) | Process for preparation of amphoteric resinous aqueous emulsions | |
GB1428531A (en) | Process for producing microporous polyurethane structures | |
US3991026A (en) | Process for the preparation of anionic thermosetting resin emulsions | |
US3817918A (en) | Terpolymer of a polyisocyanate a polyhydroxyphenol and an epoxy resin | |
IL46283A (en) | Cationic polyurethanes their production and paper sizing agents containing them |