US3236965A - Sealed switch for strong currents - Google Patents
Sealed switch for strong currents Download PDFInfo
- Publication number
- US3236965A US3236965A US302585A US30258563A US3236965A US 3236965 A US3236965 A US 3236965A US 302585 A US302585 A US 302585A US 30258563 A US30258563 A US 30258563A US 3236965 A US3236965 A US 3236965A
- Authority
- US
- United States
- Prior art keywords
- magnetic
- envelope
- contact
- supporting
- flat spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/28—Relays having both armature and contacts within a sealed casing outside which the operating coil is located, e.g. contact carried by a magnetic leaf spring or reed
- H01H51/287—Details of the shape of the contact springs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H36/00—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
- H01H36/0006—Permanent magnet actuating reed switches
Definitions
- the object of the present invention is a sealed switch for strong currents.
- a switch of this kind has been already revealed in our pending application in the United States, No. 302,583, filed on August 16,1963, and the present invention has the object to modify the preceding type of switch to obtain a new device which incorporates the known principle of the stored resilience in a metallic blade subjected to a mechanical temporary deformation, as already used in microswitch devices.
- the purpose of the present invention is then to provide a switch for a relay suitable for switching currents of greater intensity than that carried by the device revealed in the above mentioned patent and suitable to be used with higher operating voltages.
- a pair of stationary magnetic electrodes cooperate with a movable magnetic armature to which is secured the snap blade carrying the movable contact.
- FIG. 1 shows an enlarged view of a longitudinal cross section of a switch including all the features, according with the invention
- FIG. 2 is a side view of the switch illustrated in FIG. 1;
- FIG. 3 is an enlarged view of a longitudinal cross section of an alternative embodiment of the switch of FIG. 1;
- FIG. 4 is a side view of the switch of FIG. 3.
- a magnetically controlled switch structure is enclosed in a metallic container 1, of non-magnetic material (ii. of cylindrical form) closed at one end 2 and open at the opposite end thereof to accommodate a base or metal plug inherent to rethe movable contact by shocks and there- I ture and which faces parallel to the 3,236,965 Patented Feb. 22, 1966 3, which will be sealed to container 1 by welding or other known sealing methods.
- Plug 3 is provided with insulating insertions 4 of glass or ceramic to insulate and seal the connecting leads 5, 6, 7 forming part of the metallic structure of the switch, which protrude outside from side container to provide soldering terminals, for the external circuit (f.i. a printed circuit) or pins to plug-into suitable socket; and extending internally to the container 1 to support, as it will be described later, the various members, forming the switching structure.
- the lead 5 is flattened to place and weld thereon the end of a magnetic plate 8 the other end thereof carrying non-magnetic plate 9 which is welded to the latter.
- a magnetic member 10 has a plane portion welded to plate 9 in such a way that it lies in the plane of plate 8, leaving a gap between the facing edges of plate 8 and member 10 for the purpose described later.
- Magnetic member 10 is formed by a reversed L bent plate, with an end 11 tapered, to form a tooth directed toward base 3.
- a flat spring suitably bent, an upper part thereof coming in contact with the top of tooth 11 (FIGS. 1 and 2).
- This flat spring extends longitudinally within the envelope and is provided at the other end with a double contact button 14.
- the flat spring is of the microswitch type and is provided with a slot 15 containing an auxiliary corrugated flat spring 16 (FIG. 1) precompressed.
- a first stationary contact button 19 is secured to the end of lead 6 and a second stationary contact button 20 is welded to the end of lead 7, both protruding inside the container 1 from the base 3, in alignment therebetween and with the double movable contact button 14, leads 6 and 7 being insulated from said base.
- an external electric circuit is completed through lead 5, plate 8, strip 9, magnetic member 10, resilient spring 13, double button 14, stationary button 19 and lead 6.
- an external magnetic field which can be created by a coil surrounding the container 1
- the disc or armature 18 and pieces 8-10 will be drawn together, consequently flat spring 13 will be subjected to an inversion of its resilient action causing double button 14 to snap from contact 19 to contact 20 on which it will exert a constant pressure provided by the resilient force inherent to the material increased by the effect of the small corrugated auxiliary spring 16.
- FIG. 3 illustrates a modification of part of the magnetic structure in alternative to that shown in FIG. 1 to operate the resilient flat spring of microswitch type.
- lead 5 is flattened to receive by welding an end of a plate 8 of magnetic material, to the other end of which is welded, on the same side of terminal 5, a member 21, formed by a strip of non magnetic material bent in the form of a reversed L, the end 22 of which incorporates a tooth similar to that shown in FIG. 1.
- a member 21 formed by a strip of non magnetic material bent in the form of a reversed L, the end 22 of which incorporates a tooth similar to that shown in FIG. 1.
- an end 12 of a flat spring 23 suitably bent, part of which is contacting tooth 22 of member 21, for the scope already explained in connection with the preceding example.
- Flat spring 23 is provided, along the longitudinal direction thereof, with two ribs 25, 26 (visible in FIG. 4) and, at its free end, with a double contact button 14.
- a magnetic member 24 of any shape, but having a plane face in front and parallel to the plane portion of the magnetic piece 8.
- a stationary contact button 19 is welded to the end of lead 6 and a second stationary button 20 is welded to the end of lead 7, both leads projecting inside container 1 from base 3 in alignment therebetween and with the double contact button 14; all the leads being insulated from the base 3. The adjustments of the air gap and the contact pressure between the ditfer'ent members is made before inserting the structure inside the envelope 1.
- the resilient flat spring 23 which is shaped so that double button 14 thereon exerts a pressure against stationary button 19, is further loaded by slightly bending tooth 22 inward toward member 21. With this operation also air-gap between magnetic members 24-8 is drawn for the best sensitivity of operation.
- a switching relay comprising: I
- first, second and third conductive leads extending through said plug and sealed thereto to provide separately insulated contact leads extending both inside and outside said non-magnetic envelope, first and second magnetic members,
- said second one of said conductive leads supporting the first one of said single faced contact buttons within the envelope
- said third one of said conductive leads supporting the second one of said single faced contact buttons within the envelope causing it to occupy a position facing the first contact button
- a curved member having first and second ends
- a resilient fiat spring of the microswitch type having first and second ends
- said second end of said flat spring supporting a double faced contact button in a position between said first and second single faced contact buttons
- said fiat spring being mechanically biased at said first end to hold one face of said double faced contact button in contact with said first one of said single faced contact buttons
- said second magnetic member cooperating with said first magnetic member in the presence of a magnetic field to cause said flat spring to change its stored state of resilience to snap the second face of said double faced contact button into contact with said second one of said single faced contact buttons, said snap causing.
- said means for adjusting contact pressure including an extension of said curved member
- said extension being bendable to engage said flat spring to adjust the mechanical bias of the flat spring and thus said contact pressure.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electromagnets (AREA)
- Contacts (AREA)
- Switch Cases, Indication, And Locking (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT1720762 | 1962-08-30 | ||
IT1738062 | 1962-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3236965A true US3236965A (en) | 1966-02-22 |
Family
ID=26326925
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US302585A Expired - Lifetime US3236965A (en) | 1962-08-30 | 1963-08-16 | Sealed switch for strong currents |
US302583A Expired - Lifetime US3238325A (en) | 1962-08-30 | 1963-08-16 | Magnetically operated sealed switch unit |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US302583A Expired - Lifetime US3238325A (en) | 1962-08-30 | 1963-08-16 | Magnetically operated sealed switch unit |
Country Status (6)
Country | Link |
---|---|
US (2) | US3236965A (enrdf_load_stackoverflow) |
BE (1) | BE638325A (enrdf_load_stackoverflow) |
CH (2) | CH416836A (enrdf_load_stackoverflow) |
GB (2) | GB1048717A (enrdf_load_stackoverflow) |
IT (2) | IT678577A (enrdf_load_stackoverflow) |
NL (1) | NL297407A (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3329914A (en) * | 1965-02-26 | 1967-07-04 | Int Standard Electric Corp | Sealed magnetic contact device |
US3418608A (en) * | 1966-03-20 | 1968-12-24 | Electronic Controls Inc | Magnetically actuated miniature relay |
US3541482A (en) * | 1967-12-21 | 1970-11-17 | Gordos Corp | Folder reed switches |
US3544930A (en) * | 1968-02-29 | 1970-12-01 | Matsushita Electric Works Ltd | Electromagnetic multicontact relay |
US3711799A (en) * | 1971-08-20 | 1973-01-16 | Cherry Electrical Prod | Encapsulated magnetic proximity switch |
US3711749A (en) * | 1971-10-07 | 1973-01-16 | M Koblents | Reed switch |
US3980979A (en) * | 1974-03-25 | 1976-09-14 | Bestobell Mobrey Limited | Magnetically operated switch unit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2098552A6 (enrdf_load_stackoverflow) * | 1970-07-20 | 1972-03-10 | Telic | |
GB2342779A (en) * | 1998-08-14 | 2000-04-19 | Jacek Spoczynski | Sealed magnetic switch |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2037535A (en) * | 1933-09-27 | 1936-04-14 | Gen Electric | Vacuum apparatus |
US2180701A (en) * | 1936-11-21 | 1939-11-21 | Edison Inc Thomas A | Electric switch |
US2242636A (en) * | 1936-10-30 | 1941-05-20 | Edison Inc Thomas A | Electric switch |
US2693520A (en) * | 1951-02-15 | 1954-11-02 | Bruno Angel | Electric switch |
GB894378A (en) * | 1959-12-11 | 1962-04-18 | Standard Telephones Cables Ltd | Magnetically operated sealed contact relay for large currents |
US3118987A (en) * | 1960-06-10 | 1964-01-21 | Warner W Clements | Electromagnetic bistable relay |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2257900A (en) * | 1937-12-01 | 1941-10-07 | Honeywell Regulator Co | Tube switch |
US2892052A (en) * | 1956-02-15 | 1959-06-23 | G M Giannini & Co Inc | Magnetically operated sealed switch apparatus |
US2957961A (en) * | 1957-08-14 | 1960-10-25 | Clare & Co C P | Switching device |
US3001046A (en) * | 1958-05-07 | 1961-09-19 | Jennings Radio Mfg Corp | Vacuum relay |
US2993104A (en) * | 1959-01-21 | 1961-07-18 | Gen Electric | Electromagnetic relay |
US3146327A (en) * | 1962-11-06 | 1964-08-25 | Nippon Electric Co | Sealed magnetically operable switch |
-
0
- IT IT678587D patent/IT678587A/it unknown
- BE BE638325D patent/BE638325A/xx unknown
- NL NL297407D patent/NL297407A/xx unknown
- IT IT678577D patent/IT678577A/it unknown
-
1963
- 1963-08-16 US US302585A patent/US3236965A/en not_active Expired - Lifetime
- 1963-08-16 US US302583A patent/US3238325A/en not_active Expired - Lifetime
- 1963-08-23 GB GB33472/63A patent/GB1048717A/en not_active Expired
- 1963-08-26 CH CH1049563A patent/CH416836A/de unknown
- 1963-08-27 CH CH1055863A patent/CH416789A/de unknown
- 1963-08-30 GB GB34446/63A patent/GB1046519A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2037535A (en) * | 1933-09-27 | 1936-04-14 | Gen Electric | Vacuum apparatus |
US2242636A (en) * | 1936-10-30 | 1941-05-20 | Edison Inc Thomas A | Electric switch |
US2180701A (en) * | 1936-11-21 | 1939-11-21 | Edison Inc Thomas A | Electric switch |
US2693520A (en) * | 1951-02-15 | 1954-11-02 | Bruno Angel | Electric switch |
GB894378A (en) * | 1959-12-11 | 1962-04-18 | Standard Telephones Cables Ltd | Magnetically operated sealed contact relay for large currents |
US3118987A (en) * | 1960-06-10 | 1964-01-21 | Warner W Clements | Electromagnetic bistable relay |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3329914A (en) * | 1965-02-26 | 1967-07-04 | Int Standard Electric Corp | Sealed magnetic contact device |
US3418608A (en) * | 1966-03-20 | 1968-12-24 | Electronic Controls Inc | Magnetically actuated miniature relay |
US3541482A (en) * | 1967-12-21 | 1970-11-17 | Gordos Corp | Folder reed switches |
US3544930A (en) * | 1968-02-29 | 1970-12-01 | Matsushita Electric Works Ltd | Electromagnetic multicontact relay |
US3711799A (en) * | 1971-08-20 | 1973-01-16 | Cherry Electrical Prod | Encapsulated magnetic proximity switch |
US3711749A (en) * | 1971-10-07 | 1973-01-16 | M Koblents | Reed switch |
US3980979A (en) * | 1974-03-25 | 1976-09-14 | Bestobell Mobrey Limited | Magnetically operated switch unit |
Also Published As
Publication number | Publication date |
---|---|
BE638325A (enrdf_load_stackoverflow) | |
NL297407A (enrdf_load_stackoverflow) | |
CH416836A (de) | 1966-07-15 |
GB1048717A (en) | 1966-11-16 |
IT678587A (enrdf_load_stackoverflow) | |
CH416789A (de) | 1966-07-15 |
GB1046519A (en) | 1966-10-26 |
US3238325A (en) | 1966-03-01 |
IT678577A (enrdf_load_stackoverflow) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE25988E (en) | Electrical switching device and method for making | |
US3236965A (en) | Sealed switch for strong currents | |
US3331040A (en) | Miniature diaphragm relay | |
GB1198249A (en) | Magnetic Switching Devices | |
US3146327A (en) | Sealed magnetically operable switch | |
US5014027A (en) | Electromagnetic contactor | |
US3345593A (en) | Reed switch contact construction | |
US2987593A (en) | Magnetic switches | |
US3349352A (en) | Sealed magnetic snap switch | |
US3614353A (en) | Switching device having electro-magnetic means for increasing effective contact pressure | |
US3238324A (en) | Miniature hermetically sealed relay | |
US3068333A (en) | Control device | |
US3699486A (en) | High voltage miniaturized relay | |
US3668578A (en) | Lightweight electromagnetic relay | |
US3098907A (en) | Magnetic switches | |
US3307126A (en) | Encapsulated magnetic switch | |
US4019163A (en) | Reed contact unit | |
US3624323A (en) | Microswitch | |
US3467923A (en) | Miniature diaphragm relay | |
US3170053A (en) | Reed contact arranged within a protective envelope | |
US2933572A (en) | Relay | |
US3296568A (en) | Miniature electromagnetic relay | |
US3984794A (en) | Reed contact unit | |
GB1506372A (en) | Electrical switch | |
US3717739A (en) | Contact arrangement for vacuum switches |