US3231127A - Alloy coated steel article - Google Patents

Alloy coated steel article Download PDF

Info

Publication number
US3231127A
US3231127A US331599A US33159963A US3231127A US 3231127 A US3231127 A US 3231127A US 331599 A US331599 A US 331599A US 33159963 A US33159963 A US 33159963A US 3231127 A US3231127 A US 3231127A
Authority
US
United States
Prior art keywords
tin
steel
coating
zinc
key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US331599A
Inventor
Virzi Donald Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primerica Inc
Original Assignee
American Can Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Can Co filed Critical American Can Co
Priority to US331599A priority Critical patent/US3231127A/en
Application granted granted Critical
Publication of US3231127A publication Critical patent/US3231127A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D17/00Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions
    • B65D17/52Attachment of opening tools, e.g. slotted keys, to containers
    • B65D17/523Attachments of slotted keys to preserving cans or tins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • Y10S428/935Electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component

Definitions

  • This invention relates to a metal alloy coated steel member and more particularly to a steel member, coated with tin-zinc alloy, coupled to a tin-coated steel article.
  • keys for these key-open cans are generally made from zinc-coated steel wire. This zinc coating provides physical and anodic protection for the steel basis metal when exposed to a corrosive environment, such as is commonly found in the processing and storage of canned comestibles.
  • the zinc-coated key is generally coupled to a tin-coated steel container, the zinc not only offers anodic protection to the steel, which it covers, but also .to any exposed steel basis metal of the tinplate.
  • Zinc which has an electrode potential of -
  • Another object of the invention is to provide a coated steel article whose coating will electrochemically protect the steel from corrosion.
  • Still another object of the invention is to provide a coating for steel which will not form white rust when exposed to a humid environment.
  • a further object of the invention is to provide a corrosion-resistant coating for steel keys that are conductively attached to a tin-coated steel container.
  • the above objects are accomplished by providing an article of manufacture having a tin-zinc alloy coated steel member, wherein tin is the major constituent of the tinzinc alloy.
  • the alloy-coated member is coupled to a tin-coated steel article, whereby the alloy coating is electrochemically sacrificial to the steel and the tin coating, and the alloy coating prevents the formation of white corrosion products on the member and the red rusting of any exposed steel in the steel member when exposed to moisture.
  • FIGURE 1 is a top plan view showing a container with an opening key attached to the end thereof;
  • FIG. 2 is an enlarged sectional view taken substantially along the line 2--2 in FIG. 1;
  • FIG. 3 is an enlarged fragmentary sectional view taken substantially along the line 33 in FIG. 1;
  • FIG. 4 is an enlarged sectional view taken substantially along the line 4-4 in FIG. 1.
  • FIG. 1 illustrates a container end 11 secured to the body of a container (not shown) by means of a conventional double seam 12.
  • a key 14 is utilized in opening the container.
  • Both the end 11 and the key 14 are made of steel basis metal coated with a suitable corrosionresistant metallic coating which will be described more fully hereinafter.
  • the end 11 is formed from conventional tinplate stock having a steel basis metal 16 coated with a layer of tin 18.
  • This tin deposit is generally applied by means of electrodeposition, followed by a flow-brightening procedure well known to those skilled in the art.
  • the coating of tin will generally have a thickness from 6X10 to 90 1O inch.
  • Preferably the tin deposit will have a thickness from l5 10- to 60X 10- inch.
  • the electrodeposition and subsequent flowbrightening technique of applying the tin coating is preferred, such methods as vacuum deposition, gaseous deposition, or hot dipping may also be used.
  • the key 14 is formed from a piece of steel wire 19 and is bent to form a handle 20 and a shank 22.
  • a major portion 24 of the shank 22 is flattened and provided with a slot 26 through which the tongue of the container-opening strip (not shown) is adapted to enter, when it is desired to open the container,
  • the wire 19, from which the key is made, is preferably a low-carbon steel.
  • a tin-zinc binary alloy coating 30 is preferably applied to the wire 28 by suitable means, such as hot dipping, prior to forming the key 14. When hot dipping is used to apply the alloy coating30,- a
  • ternary alloy layer 32 of tin, zinc, and iron is formed between the outer coating 30 and the steel wire 19.
  • the composition of the alloy coating 30 will vary to some degree. However, in no case will less than 50% tin be present in the alloy. It has been found that the tinzinc alloy coating 30 will exhibit the most satisfactory resistance to corrosion when the tin is in the amount of to 96%, with the optimum corrosion-resistant properties obtained when the tin is from to 92%, with the balance being zinc. If less than 4% zinc is present, red rust may form on any exposed steel.
  • the melting point of the alloy is 390 R, which is more than adequate to resist melting when the filled container, to which the key 14 is attached, is heated during a canning process.
  • the key 14 is generally formed from pre-coated wire stock.
  • the slot 26 is punched after forming the key 14.
  • the inner surface 33 of the slot is not covered with the tin-zinc coating 30, but is, in fact, bare steel.
  • the ends 34, 36 are also generally true. It is thus apparent that the sacrificial anodic properties of the coating 30 are most important to prevent rusting of the exposed steel surface 33 and the ends 34, 36.
  • the key 14 is preferably conductively attached to the end 11 by suitable means well known to those skilled in the art, such as welding or soldering.
  • suitable means well known to those skilled in the art, such as welding or soldering.
  • the key 14 be attached to the end 11 by spot resistance welding, thereby forming a conductive weld nugget 38 integral with both the key 14 and the end 11. The reason for the conductive attachment of the key 14 to the end 11 will be explained more fully hereinafter.
  • the tin-zinc coating will dissolve anodically in trying to electrochemically protect the container and bare steel present on the inner surface 33 of the slot 26 and the bare steel exposed on the ends 34, 36. Both the container and the bare steel react as a cathode.
  • the tin-zinc coating has a potential very close to the tin 18 of the end 11, the degree of dissolution of the coating 30 is very slight. However, there is suflicient electrochemical current flow present to prevent rust from forming on any exposed steel. In addition, no white corrosion products, such as are found in the case of zinc coatings, are formed on the tin-zinc coating 30.
  • the key 14 be conductively attached to the end 11 by means hereinbefore described, it may, in certain cases, be desirable to attach the key 14 by means of some nonconductive substance such as an organic adhesive. In such case the tin-zinc alloy 30 will not anodically protect the tin-coated steel of the end 11, since no electrical connection will lie therebetween.
  • a chromate coating on the surface of the alloy 30 by dipping the key 14 into a chromate or dichromate passivating solution, Well known to those skilled in the art.
  • An article of manufacture comprising: a tin-zinc alloy coated member, said tin-zinc alloy having tin as the major constituent; and a tin-coated steel article to which said alloy-coated member is coupled, whereby said alloy coating is electrochemically sacrificial to said tin coating and said alloy coating prevents the formation of corrosion products on said member and the red-rusting of any exposed iron in said member when exposed to a corrosive environment.
  • a one-piece wire opening key for metal cans comprising: a handle and a shank; said key having thereon a coating of a tin-Zinc binary alloy wherein tin is in the amount of from 75 to 96%; said coating having a thickness of from 1 to 8.5 X 10- inch; and a slot in said shank through which a tongue of a container-opening strip is adapted to enter, the inner surface of said slot being bare steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

Jan. 25, 1966 D. R. VlRZl ALLOY COATED STEEL ARTICLE Filed Dec. 18, 1963 INVENTOR. flfl/MLD PUBEETWPZ/ ATTOF/I/[y United States Patent Office 3,231,127 Patented Jan. 25, 1966 3,231,127 ALLOY COATED STEEL ARTICLE Donald Robert Virzi, Oak Park, Ill., assignor to American glan Company, New York, N.Y., a corporation of New ersey Filed Dec. 18, 1963, Ser. No. 331,599
. 8 Claims. (Cl. 220-52) This invention relates to a metal alloy coated steel member and more particularly to a steel member, coated with tin-zinc alloy, coupled to a tin-coated steel article.
A great many metal containers are made today that utilize a metal key to open the container by removing an integral metal trear strip. An example of such a container is shown in US. Patent No. 3,055,539.
The usual procedure is to attach the metal key to an end of the container by some suitable means such as soldering or welding. Thus the key is available and easily removable from the container when needed for opening. At present, keys for these key-open cans are generally made from zinc-coated steel wire. This zinc coating provides physical and anodic protection for the steel basis metal when exposed to a corrosive environment, such as is commonly found in the processing and storage of canned comestibles.
However, while providing the anodic protection for the steel basis metal a white corrosion product often forms on the surface of the zinc. This corrosion product is commonly called white rust and is probably a carbonate or oxide of zinc.
Since the zinc-coated key is generally coupled to a tin-coated steel container, the zinc not only offers anodic protection to the steel, which it covers, but also .to any exposed steel basis metal of the tinplate.
Because zinc is more electropositive than both iron and tin, it thus galvanically protects not only the iron, but also the tin. Zinc, which has an electrode potential of -|-0.7618, compared to the potential of +0136 for tin, is more active than tin and is therefore sacrificial to tin.
In addition to its anodic protection of the steel, some of the zinc generally alloys with the iron of the steel basis metal to form a' black colored deposit. This black deposit and the white corrosion product are quite unsightly and, hence, are very undesirable, since the consumer finds them objectionable.
It is therefore an object of the present invention to provide a coating for steel which will not develop an unsightly appearance when subjected to a" corrosive environment.
Another object of the invention is to provide a coated steel article whose coating will electrochemically protect the steel from corrosion.
Still another object of the invention is to provide a coating for steel which will not form white rust when exposed to a humid environment.
A further object of the invention is to provide a corrosion-resistant coating for steel keys that are conductively attached to a tin-coated steel container.
Numerous other objects and advantages of the invention will be apparent as it is better understood from the following description, which, taken in connection with the accompanying drawing, discloses a preferred embodiment thereof.
The above objects are accomplished by providing an article of manufacture having a tin-zinc alloy coated steel member, wherein tin is the major constituent of the tinzinc alloy. The alloy-coated member is coupled to a tin-coated steel article, whereby the alloy coating is electrochemically sacrificial to the steel and the tin coating, and the alloy coating prevents the formation of white corrosion products on the member and the red rusting of any exposed steel in the steel member when exposed to moisture.
Referring to the drawing:
FIGURE 1 is a top plan view showing a container with an opening key attached to the end thereof;
FIG. 2 is an enlarged sectional view taken substantially along the line 2--2 in FIG. 1;
FIG. 3 is an enlarged fragmentary sectional view taken substantially along the line 33 in FIG. 1; and
FIG. 4 is an enlarged sectional view taken substantially along the line 4-4 in FIG. 1.
As a preferred or exemplary embodiment of the instant invention, FIG. 1 illustrates a container end 11 secured to the body of a container (not shown) by means of a conventional double seam 12. Conductively attached to the end 11, by means which will be explained more fully hereinafter, is a key 14. This key 14 is utilized in opening the container.
Both the end 11 and the key 14 (FIGS. 2 and 3) are made of steel basis metal coated with a suitable corrosionresistant metallic coating which will be described more fully hereinafter.
The end 11 is formed from conventional tinplate stock having a steel basis metal 16 coated with a layer of tin 18. This tin deposit is generally applied by means of electrodeposition, followed by a flow-brightening procedure well known to those skilled in the art. The coating of tin will generally have a thickness from 6X10 to 90 1O inch. Preferably the tin deposit will have a thickness from l5 10- to 60X 10- inch.
Although the electrodeposition and subsequent flowbrightening technique of applying the tin coating is preferred, such methods as vacuum deposition, gaseous deposition, or hot dipping may also be used.
The key 14 is formed from a piece of steel wire 19 and is bent to form a handle 20 and a shank 22. A major portion 24 of the shank 22 is flattened and provided with a slot 26 through which the tongue of the container-opening strip (not shown) is adapted to enter, when it is desired to open the container,
The wire 19, from which the key is made, is preferably a low-carbon steel. A tin-zinc binary alloy coating 30 is preferably applied to the wire 28 by suitable means, such as hot dipping, prior to forming the key 14. When hot dipping is used to apply the alloy coating30,- a
ternary alloy layer 32 of tin, zinc, and iron is formed between the outer coating 30 and the steel wire 19.
On the other hand, if the tin-zinc coating 30 is applied by means of electrodeposition, vacuum deposition, gaseous reduction, or mechanical plating, no intermediate alloy layer 32 is formed. The presence of the alloy layer 32 has not been found to be essential. A satisfactory electroplating technique is described on page 390 in the Metal Finishing Guidebook Directory, 1962 edition.
The composition of the alloy coating 30 will vary to some degree. However, in no case will less than 50% tin be present in the alloy. It has been found that the tinzinc alloy coating 30 will exhibit the most satisfactory resistance to corrosion when the tin is in the amount of to 96%, with the optimum corrosion-resistant properties obtained when the tin is from to 92%, with the balance being zinc. If less than 4% zinc is present, red rust may form on any exposed steel.
At the eutectic composition, 91% tin-9% zinc, the melting point of the alloy is 390 R, which is more than adequate to resist melting when the filled container, to which the key 14 is attached, is heated during a canning process.
As the tin content of the tin-zinc alloy increases, the resistance to white rusting also increases. However, the
resistance to red rusting decreases with increasing tin content. The hereinbefore mentioned composition range has been found to provide the best balance in providing adequate overall corrosion resistance.
It should be noted that the key 14 is generally formed from pre-coated wire stock. The slot 26 is punched after forming the key 14. Thus the inner surface 33 of the slot is not covered with the tin-zinc coating 30, but is, in fact, bare steel. This is also generally true of the ends 34, 36. It is thus apparent that the sacrificial anodic properties of the coating 30 are most important to prevent rusting of the exposed steel surface 33 and the ends 34, 36.
Although the thickness of the coating 30 may vary to a considerable degree, it should be no less than 1X10- inch and preferably no greater than 8.5 inch. It is to be understood that the maximum thickness is not critical, this maximum being controlled far more by economic factors than by corrosion factors. The preferred thickness is about 3.3 =10 inch.
The key 14 is preferably conductively attached to the end 11 by suitable means well known to those skilled in the art, such as welding or soldering. For the purposes of this invention and in the interests of manufacturing economy and speed, it is preferred that the key 14 be attached to the end 11 by spot resistance welding, thereby forming a conductive weld nugget 38 integral with both the key 14 and the end 11. The reason for the conductive attachment of the key 14 to the end 11 will be explained more fully hereinafter.
When the key 14 and the end 11, to which it is conductively attached, are placed in a corrosive environment,
such as a hot brine solution, used in the processing of canned meats, the tin-zinc coating will dissolve anodically in trying to electrochemically protect the container and bare steel present on the inner surface 33 of the slot 26 and the bare steel exposed on the ends 34, 36. Both the container and the bare steel react as a cathode.
Since the tin-zinc coating has a potential very close to the tin 18 of the end 11, the degree of dissolution of the coating 30 is very slight. However, there is suflicient electrochemical current flow present to prevent rust from forming on any exposed steel. In addition, no white corrosion products, such as are found in the case of zinc coatings, are formed on the tin-zinc coating 30.
Although it is preferred that the key 14 be conductively attached to the end 11 by means hereinbefore described, it may, in certain cases, be desirable to attach the key 14 by means of some nonconductive substance such as an organic adhesive. In such case the tin-zinc alloy 30 will not anodically protect the tin-coated steel of the end 11, since no electrical connection will lie therebetween.
In order to provide additional corrosion protection to the tin-zinc alloy 30 it may also be desirable to form a chromate coating on the surface of the alloy 30 by dipping the key 14 into a chromate or dichromate passivating solution, Well known to those skilled in the art.
It is thought that the invention and many of its attendant advantages will be understood from the foregoing description, and it will be apparent that various changes may be .made in the form, construction, and arrangement of the parts Without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form hereinbefore described being merely a preferred embodiment thereof.
I claim:
1. An article of manufacture, comprising: a tin-zinc alloy coated member, said tin-zinc alloy having tin as the major constituent; and a tin-coated steel article to which said alloy-coated member is coupled, whereby said alloy coating is electrochemically sacrificial to said tin coating and said alloy coating prevents the formation of corrosion products on said member and the red-rusting of any exposed iron in said member when exposed to a corrosive environment.
2. The article of claim 1 wherein said tin in said tinzinc alloy is in the amount of from to 96%.
3. The article of claim 2 wherein said tin is in the amount of to 92%.
4. The article of claim 1 wherein said tin-zinc alloy coated steel member is a wire opening key utilized for removing a tear strip in opening a container.
5. The article of claim 4 wherein said tin-coated steel article is an end of a tin-coated steel container.
6. The article of claim 5 wherein said tin-zinc coated steel member is welded to said tin-coated article.
7. The article of claim 5 wherein said tin-zinc coated steel member is soldered to said tin-coated article.
8. A one-piece wire opening key for metal cans, comprising: a handle and a shank; said key having thereon a coating of a tin-Zinc binary alloy wherein tin is in the amount of from 75 to 96%; said coating having a thickness of from 1 to 8.5 X 10- inch; and a slot in said shank through which a tongue of a container-opening strip is adapted to enter, the inner surface of said slot being bare steel.
References Cited by the Examiner UNITED STATES PATENTS 2,229,275 1/ 1941 Burns 220-52 2,258,610 10/1941 Hothersall 22052 THERON E, CONDON, Primary Examiner.

Claims (1)

  1. 8. A ONE-PIECE WIRE OPENING KEY FOR METAL CANS, COMPRISING: A HANDLE AND A SHANK; SAID KEY HAVING THEREON A COATING OF A TIN-ZINC BINARY ALLOY WHEREIN TIN IS IN THE AMOUNT OF FROM 75 TO 96%; SAID COATING HAVING A THICKNESS OF FROM 1 TO 8.5X10-4 INCH; AND A SLOT IN SAID SHANK THROUGH WHICH A TONGUE OF A CONTAINER-OPENING STRIP IS ADAPTED TO ENTER, THE INNER SURFACE OF SAID SLOT BEING BARE STEEL.
US331599A 1963-12-18 1963-12-18 Alloy coated steel article Expired - Lifetime US3231127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US331599A US3231127A (en) 1963-12-18 1963-12-18 Alloy coated steel article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US331599A US3231127A (en) 1963-12-18 1963-12-18 Alloy coated steel article

Publications (1)

Publication Number Publication Date
US3231127A true US3231127A (en) 1966-01-25

Family

ID=23294613

Family Applications (1)

Application Number Title Priority Date Filing Date
US331599A Expired - Lifetime US3231127A (en) 1963-12-18 1963-12-18 Alloy coated steel article

Country Status (1)

Country Link
US (1) US3231127A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857684A (en) * 1971-05-10 1974-12-31 Usui Kokusai Sangyo Kk Corrosion-resistant double-coated steel material
US4999258A (en) * 1987-05-20 1991-03-12 Nippon Steel Corporation Thinly tin coated steel sheets having excellent rust resistance and weldability
US5401586A (en) * 1993-04-05 1995-03-28 The Louis Berkman Company Architectural material coating
US5429882A (en) * 1993-04-05 1995-07-04 The Louis Berkman Company Building material coating
US5455122A (en) * 1993-04-05 1995-10-03 The Louis Berkman Company Environmental gasoline tank
US5480731A (en) * 1992-03-27 1996-01-02 The Louis Berkman Company Hot dip terne coated roofing material
US5489490A (en) * 1993-04-05 1996-02-06 The Louis Berkman Company Coated metal strip
US5491036A (en) * 1992-03-27 1996-02-13 The Louis Berkman Company Coated strip
US5491035A (en) * 1992-03-27 1996-02-13 The Louis Berkman Company Coated metal strip
US5597656A (en) * 1993-04-05 1997-01-28 The Louis Berkman Company Coated metal strip
US6080497A (en) * 1992-03-27 2000-06-27 The Louis Berkman Company Corrosion-resistant coated copper metal and method for making the same
US6652990B2 (en) 1992-03-27 2003-11-25 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
US6794060B2 (en) 1992-03-27 2004-09-21 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
US20040214029A1 (en) * 1992-03-27 2004-10-28 The Louis Berkman Company, An Ohio Corporation Corrosion-resistant coated copper and method for making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2229275A (en) * 1939-07-15 1941-01-21 M J B Company Key for cans
US2258610A (en) * 1938-11-12 1941-10-14 American Can Co Container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258610A (en) * 1938-11-12 1941-10-14 American Can Co Container
US2229275A (en) * 1939-07-15 1941-01-21 M J B Company Key for cans

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857684A (en) * 1971-05-10 1974-12-31 Usui Kokusai Sangyo Kk Corrosion-resistant double-coated steel material
US4999258A (en) * 1987-05-20 1991-03-12 Nippon Steel Corporation Thinly tin coated steel sheets having excellent rust resistance and weldability
US6811891B2 (en) 1992-03-27 2004-11-02 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
US5520964A (en) * 1992-03-27 1996-05-28 The Louis Berkman Company Method of coating a metal strip
US5667849A (en) * 1992-03-27 1997-09-16 The Louis Berkman Company Method for coating a metal strip
US6080497A (en) * 1992-03-27 2000-06-27 The Louis Berkman Company Corrosion-resistant coated copper metal and method for making the same
US5480731A (en) * 1992-03-27 1996-01-02 The Louis Berkman Company Hot dip terne coated roofing material
US20070104975A1 (en) * 1992-03-27 2007-05-10 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
US5491036A (en) * 1992-03-27 1996-02-13 The Louis Berkman Company Coated strip
US5491035A (en) * 1992-03-27 1996-02-13 The Louis Berkman Company Coated metal strip
US20070023111A1 (en) * 1992-03-27 2007-02-01 The Louis Berkman Company, A Corporation Of Ohio Corrosion-resistant fuel tank
US20040214029A1 (en) * 1992-03-27 2004-10-28 The Louis Berkman Company, An Ohio Corporation Corrosion-resistant coated copper and method for making the same
US7045221B2 (en) 1992-03-27 2006-05-16 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
US5616424A (en) * 1992-03-27 1997-04-01 The Louis Berkman Company Corrosion-resistant coated metal strip
US7575647B2 (en) 1992-03-27 2009-08-18 The Louis Berkman Co. Corrosion-resistant fuel tank
US6861159B2 (en) 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
US6858322B2 (en) 1992-03-27 2005-02-22 The Louis Berkman Company Corrosion-resistant fuel tank
US6652990B2 (en) 1992-03-27 2003-11-25 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
US6794060B2 (en) 1992-03-27 2004-09-21 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
US20040213916A1 (en) * 1992-03-27 2004-10-28 The Louis Berkman Company, A Corporation Of Ohio Corrosion-resistant fuel tank
US5455122A (en) * 1993-04-05 1995-10-03 The Louis Berkman Company Environmental gasoline tank
US5401586A (en) * 1993-04-05 1995-03-28 The Louis Berkman Company Architectural material coating
US5470667A (en) * 1993-04-05 1995-11-28 The Louis Berkman Company Coated metal strip
US5429882A (en) * 1993-04-05 1995-07-04 The Louis Berkman Company Building material coating
US5597656A (en) * 1993-04-05 1997-01-28 The Louis Berkman Company Coated metal strip
US5492772A (en) * 1993-04-05 1996-02-20 The Louis Berkman Company Building material coating
US5489490A (en) * 1993-04-05 1996-02-06 The Louis Berkman Company Coated metal strip
US5695822A (en) * 1993-04-05 1997-12-09 The Louis Berkman Company Method for coating a metal strip

Similar Documents

Publication Publication Date Title
US3231127A (en) Alloy coated steel article
US4579786A (en) Surface-treated steel strips seam weldable into cans
US3978803A (en) Container or can and a method for manufacturing the same
GB2037814A (en) Acidic tinplating electrolyte
US4608320A (en) Surface-treated steel strips adapted for electric resistance welding
EP0184115B1 (en) Surface-treated steel strip having improved weldability and process for making
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
CA1253451A (en) Process for preparing surface-treated steel strips adapted for electric resistance welding
EP0194654B1 (en) Tin-free steel strips useful in the manufacture of welded cans and process for making
JPH0611918B2 (en) Surface-treated steel plate for cans
US2003467A (en) Spark plug electrode
JPH0434636B2 (en)
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS6330998B2 (en)
KR830002668Y1 (en) Surface-treated steel sheet for painting
JPS60190597A (en) Surface treated steel sheet for welded can and its production
JPH0431039B2 (en)
JPH0368949B2 (en)
JPH0425350B2 (en)
JPS63178942A (en) Easy open can using can body made of aluminum-coated steel plate
JPH0673592A (en) Zn-fe alloy plated al alloy sheet excellent in resistance weldability
JPS59133398A (en) Production of surface treated steel sheet for welded can having excellent rust preventiveness and paintability
JPS6334238B2 (en)
JPH0241594B2 (en)
JPS634090A (en) Surface treated steel sheet for producing can