US3222270A - Multi-electrolytic cells - Google Patents
Multi-electrolytic cells Download PDFInfo
- Publication number
- US3222270A US3222270A US796856A US79685659A US3222270A US 3222270 A US3222270 A US 3222270A US 796856 A US796856 A US 796856A US 79685659 A US79685659 A US 79685659A US 3222270 A US3222270 A US 3222270A
- Authority
- US
- United States
- Prior art keywords
- titanium
- anode
- electrolytic cell
- cathode
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D1/00—Oxides or hydroxides of sodium, potassium or alkali metals in general
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
- C25B9/77—Assemblies comprising two or more cells of the filter-press type having diaphragms
Definitions
- the present invention relates to improvements in or relating to multi-electrolytic cells and particularly to multi-electrolytic cells of the kind adaptable for the production, of for example, chlorine, a hypochlorite or a chlorate from aqueous solutions of a chloride of an alkali metal for example sodium chloride and comprising a plurality of unit electrolytic cells.
- Multi-electrolytic cells arev known, for instance, wherein the anode of one unit cell is separated from the cathode of an adjacent unit cell by a partition of non-conducting inert material, for example concrete, and wherein said anode and said cathode are connected electrically by electro-conducting connections passing through said partition.
- these cells may be so constructed, for instance, that each unit cell has a conventional type of asbestos diaphragm placed between its anode and cathode to prevent the products formed at the anode and cathode from mixing and so to permit these products to be collected.
- the object of the present invention is to employ an electro-conducting chemically inert partition in the form of titanium metal sheet as a chemically inert partition which separates the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell.
- titanium metal sheet includes a metal sheet of a titanium alloy consisting essentially of titanium.
- each unit cell has a diaphragm, for instance a conventional type of asbestos diaphragm, between its anode and cathode to permit for instance caustic sodaand chlorine to be collected.
- the diaphragm between the anode and the cathode of each unit cell may comprise a cationic exchange resin.
- the anode in each unit cell is of graphite and at least a portion of that face of the titanium metal sheet which faces the anode has a layer of a noble metal of the platinum group.
- a noble metal of the platinum group is meant ruthenium, rhodium, palladium, osmium, iridium or platinum, or an alloy of two or more of such metals (hereinafter called generically a platinum metal).
- the anode in each unit cell is of graphite treated to be impermeable to chlorine and at least a portion of that face of the titanium metal sheet which faces the anode has a layer of a metal of high electrical conductivity
- the anode in each unit cell is a layer of a platinum metal which is on one side of the titanium metal sheet and the cathode is that opposed side of the next titanium metal sheet which is free from a layer of a platinum metal.
- the layer of a platinum metal can be a film or surface coating of a platinum metal secured or deposited on one side of the titanium metal sheet in any convenient manner.
- the coating of a platinum metal may be constituted, if desired, by a thin sheet or foil which is welded to the titanium metal sheet.
- other methods may likewise be utilised for applying the coating of the platinum metal to the titanium metal sheet, for example, roll-bonding, cathode sputtering, vacuum deposition, metal spraying, rolling a platinum metal powder into the surface of the titanium metal sheet and coating of a titanium metal sheet with a platinum-bearing preparation and subsequently heating as for example in the manner practised in the ceramic industry.
- each unit cell may, if desired, be provided with a diaphragm and means for recycling anolyte and/ or catholyte through the respective compartments of each unit cell may also be provided.
- a multi-electrolytic cell of the invention can consist of mercury unit cells so as to permit sodium amalgam to be collected from its cathodes and chlorine from its anodes.
- Multi-electrolytic cells of the invention have the followinlg advantages.
- Titanium is extremely resistant to chlorinated brine.
- Titanium sheet permits quick assembly operations.
- the overall weight of a battery of multi-electrolytic cells of the invention is much less than a battery of multi-electrolytic cells wherein in each multi-electrolytic cell the partition between the anode of one unit cell and the cathode of an adjacent unit cell is of non-conducting inert material, for example concrete.
- the titanium sheet can be compressed firmly, against for instance a graphite plate and so give good electrical contact between the anode of one unit cell and the cathode of an adtrical contact in the multi-electrolytic cell of the inven-' tion without this cell being under a high degree of com: pression.
- the fourth-mentioned embodiment of the invention has the advantage that it is even more compact than the first three mentioned embodiments, that the distance between the anode and cathode of any one unit electrolytic cell is constant while the multi-electrolytic cell of the invention is in operation and that chlorine discharged at the anode is free from carbon dioxide.
- a comparison at given current densities of the mean unit cell voltages for a diaphragm multi-electrolytic cell incorporating means for recycling anolyte and catholyte according to said fourth and preferred embodiment of the invention and for a commercial diaphragm cell of the kind aforementioned is given in the following table.
- FIGURE 1 represents a cross-section of said four aforementioned embodiments of the invention.
- FIGURES 2 and 3 represent different views of one embodiment in which each unit electrolytic cell comprises a graphite anode, a cathode and a conventional asbestos diaphragm which separates the anode from the cathode and in which a titanium plate separates the graphite anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell.
- FIGURE 4 represents, with respect toFIGURE 1, one view of an embodiment in which electrical connection between a graphite anode of a unit electrolytic cell and a titanium metal sheet which separates said graphite anode from the cathode of an adjacent unit electrolytic cell is provided by a thin layer ofa metal of high electrical conductivity deposited on the whole or part of those faces of the titanium plate which would otherwise be in directcontact with the graphite anode.
- Said graphite anode in'accordance with another embodiment of the invention, hasbeen treated to make it impervious to chlorine andchlorinated brine.
- FIGURE 5 represents, with respect to'FIGURE 1, one view of an embodiment of a diaphragm multi-electrolytic cell according to the invention in which each unit electrolytic cell comprises as anode a thin coating of a platinum metal which is on one side of a titanium metal plate, a cathodic surface on the opposed side of the corresponding titanium metal plate of an adjacent unit electrolytic cell and an intervening conventional asbestos diaphragm supported on a metal gauze screen in good electrical contact with said cathodic surface of the titanium metal plate and in which except at the ends a titanium plate having on one side thereof a layer of a platinum metal separates the platinum metal layer anode of the unit electrolytic cell on one side thereof from the cathode of the adjacent unit electrolytic cell on the other side thereof.
- each unit electrolytic cell comprises as anode a thin coating of a platinum metal which is on one side of a titanium metal plate, a cathodic surface on the opposed side of the corresponding titanium metal plate of an adjacent unit electrolytic cell and an interven
- FIG- URES 2 and 3 represent vertical part sections of the first-mentioned embodiment of a multi-electrolytic cell according to the invention through AA and BB respectively in FIGURE 1, which in turn represents the vertical cross-section of a unit electrolytic cell through C-C in FIGURE 2.
- Graphite anodes 1 are held in position against titanium plates 2 by clamping plates 3 of mechanically strong and corrosion resistant material, for example rubber covered steel.
- clamping plates 3 of mechanically strong and corrosion resistant material, for example rubber covered steel.
- intervening sheets 4 of flexible material such as natural or synthetic rubber between the titanium plates 2 and the clamping plates 3.
- 5 are highly compressed portions of the flexible sheets 4 positioned between the adjacent edges of the graphite anodes 1 and the clamping plates 3.
- the thickness of the flexible sheets 4 is such that when the multi-electrolytic cell is held together under a suitable degree of of compression the graphite anodes 1 are held firmly against the titanium plates 2.
- 6 are conventional asbestos diaphragms and these are supported on metal gauze screens 7 which are set in metal plates 8.
- Thin layers 9 of suitable corrosion resistant material are bonded by conventional means to these faces of the metal plates 8 which face towards the graphite anodes 1.
- the graphite anodes 1 are maintained at a suitably small distance from the asbestos diaphragm 6 by frames 10 of corrosion resistant materials. Additional frames 11 of corrosion resistant material separate the metal plates 8 from the adjacent titanium plates 2 of adjacent unit electrolytic cells. Frames 11 differ from frames 10 in their thickness and in that they are reversed laterally with respect to frames 10,
- the titanium plates 2 are provided with a series of embossed nipples 12 which are disposed regularly over those portions of the titanium plates 2 which face the metal gauze screens 7.
- embossed nipples 12 protrude towards the metal gauze screens 7 for such a distance that when the multi-electrolytic cell is held together under a suitable degree of compression the nipples 12 are in sufiiciently close contact with the metal gauze screens 7 that there is negligible resistance to the flow of electrical current between the metal gauze screens 7 and the adjacent faces of the titanium plates 2. Should it be necessary this resistance can be reduced by welding together the metal gauze screens 7 and the titanium plates 2. The metal gauze screens 7 and the adjacent faces of the titanium plates 2 form together the cathodes of the multi-electrolytic cell.
- the titanium plates 2, the clamping plates 3, the flexible sheets 4, the frames 10, the metal plates 8 and the frames 11 are each provided with four corresponding apertures 13, 14, 15 and 16 to form ducts 17, 18, 19 and 20 respectively.
- the apertures 13, 14, 15 and 16 in the titanium plates 2 and the metal plates 8 are enlarged to allow the insertion of bushes 21 of corrosio resistant and electrically insulating material. These bushes 21 are sealed to the titanium plates 2 and the metal plates 8' by a suitable adhesive composition (not shown).
- the frames 10 are provided with rectangular apertures 22 of such dimensions as will conform closely to the dimensions of the graphite anodes 1 and the asbestos diaphragms 6. These aperture are connected to the diagonally opposite apertures 13 and 14 by channels 24 and 25 respectively.
- Frames 11 have rectangular apertures 23 of similar dimensions to apertures 22 in frames 10. Apertu-res 23 are connected to the diagonally opposite apertures 15 and 16 respectively by channels 26 and 27.
- the components for a suitable number of unit electrolytic cells are positioned as aforementioned and are held together under a suitable degree of compression by conventional means.
- the seals between adjacent components are effected by conventional methods as for example by intervening films of suitable adhesive materials or by thin layers of flexible jointing compounds (not shown).
- the frames and 11 may be of suitable flexible material when no further means of sealing are required other than compression.
- 28 and 29 are current leads to the anode and cathode titanium end plates 2.
- the rectangular apertures 22 in the frames 10 form anode compartments which are connected to the ducts 17 and 18 by channels 24 and 25 respectively.
- the rectangular apertures 23 in the frames 11 form cathode compartments which are connected to the ducts 19 and by the channels 26 and 27 respectively.
- the duct 18 serves for the introduction of sodium chloride solution into the anode compartments 22 through the channels by means of suitable external connections (not shown). If this solution is controlled at a level 30 there will be at least a partial flooding of the duct 17. If, however, the solution is controlled at level 31 there is no flooding of the duct 17. The sodium chloride solution percolates through the asbestos diaphragm 6 into the cathode compartment 23 attaining a controlled level. If the sodium chloride solution is controlled at a level 32 there will be partial flooding of the duct 19. The solution then leaves the multi-electrolytic cell by the channels 27 and the duct 20 through suitable external connections (not shown). Should the solutionbe controlled at a level 33 there is no flooding of the duct 19.
- If desired means can be provided for the return of the anolyte from duct 17 to duct 18 and/or of the catholyte from duct 19 to duct 20 and for the circulation of the anolyte and catholyte respectively through the apertures 22 and the apertures 23.
- the chlorine which is liberated at the graphite anodes 1 passes through the channels 24 and the duct 17 and leaves the multi-electrolyti-c cell by suitable external connections (not shown).
- the hydrogen which is liberated at the composite cathode formed by the metal gauz'e screen 7 and the titanium plate 2 leaves the multielectrolytic cell by the channels 26 and the duct 19 through suitable external connections (not shown) while the sodium hydroxide which is formed in the cathode compartment 23 leaves the multi-electrolytic cell together with the depleted sodium chloride solution by the channels 27 and the duct 20 as aforementioned.
- FIGURE 4 represents those two embodiments of the invention wherein good electrical connection between the graphite anodes 1 and the titanium plates 2 is obtained by a thin layer 34 of a metal of high electrical conductivity which is deposited, either chemically or electrically, on the whole or parts of those faces of the titanium plates 2 which would otherwise be in direct contact with the graphite anodes 1.
- the layers 34 may either be a platinum metal or a less noble metal, for example copper. If the layers 34 are of a less noble metal this metal may be protected from corrosion by impregnating those parts of the graphite anode 1 adjacent to the metal layer 34 with an inert material so as to render said parts of the graphite anode 1 completely impervious to the gases or liquids contained in the multi-electrolytic cell. If the layers 34 are a noble metal such as platinum no such protection is necessary.
- FIGURE 5 represents a v'ertical part section through a multi-electrolytic cell corresponding to a section through A--A in FIGURE 1.
- FIGURE 5 there are no graphite anodes 1, no clamping plates 3, and no flexible layers 4.
- Those faces, however, of the titanium plates 2 which are adjacent to the asbestos diaphragm 6 are provided with a thin coating of a platinum metal.
- This thin coating 35 is deposited on the titanium plates 2 either chemically or electrolytically to form the anodic part of this embodiment of a multi-electrolytic cell according to the invention.
- a multi-electrolytic cell comprising a plurality of unit electrolytic cells, each unit electrolytic cell having an anode and a cathode, said unit electrolytic cells being arranged with the anode of one unit electrolytic cell juxtaposed to the cathode of the next unit electrolytic cell with an inert partition separating the anode of one unit electrolytic cell from the cathode of the adjacent unit electrolytic cell, each inert partition being a chemically inert electroconducting partition of titanium metal sheet, each of said titanium metal sheets having on one surface an electrically conducting layer which is in electrical contact with said titanium sheet over essentially all of said titanium surface, said layer constituting the anode in each unit electrolytic cell, the other surface of each said sheet comprising titanium and constituting the cathode of the next adjacent unit electrolytic cell, said anode and cathode constituting the sole essential working electrodes in each said unit cell.
- each unit cell has a diaphragm between its anode and cathode.
- a multi-electrolytic cell as claimed is claim 1 wherein the anode in each cell is graphite rendered impermeable to chlorine and essentially all of the surface of the titanium metal sheet which carries the anode has a layer of a metal of high electrical conductivity which forms good electrical contact both with the titanium metal sheet and the graphite, the opposite face of said titanium sheet comprising the cathode of the adjoining cell.
- a multi-electrolytic cell of the bipolar electrode filter-press type for the electrolysis of alkali metal chlorides comprising a plurality of unit electrolytic cells, each unit electrolytic cell having an anode and a cathode, said unit electrolytic cells being arranged with the anode of one unit electrolytic cell juxtaposed to the cathode of the next unit electrolytic cell with an inert partition separating the anode of one unit electrolytic cell from the cathode of the adjacent unit electrolytic cell, each inert partition being a chemically inert electroconducting partition of titanium metal sheet, each of said titanium metal sheets having on one surface a layer of a platinum metal, said layer constituting the anode in each unit electrolytic cell, the other surface of each said sheet comprising titanium as the operative surface and constituting the cathode of the next adjacent unit electrolytic cell, said anode and cathode constituting the sole essential working electrodes in each said unit cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8715/58A GB845043A (en) | 1958-03-18 | 1958-03-18 | Improvements in or relating to multi-electrolytic cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US3222270A true US3222270A (en) | 1965-12-07 |
Family
ID=9857850
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US230799D Pending USB230799I5 (de) | 1958-03-18 | ||
US796856A Expired - Lifetime US3222270A (en) | 1958-03-18 | 1959-03-03 | Multi-electrolytic cells |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US230799D Pending USB230799I5 (de) | 1958-03-18 |
Country Status (9)
Country | Link |
---|---|
US (2) | US3222270A (de) |
CH (1) | CH389578A (de) |
DE (1) | DE1421051B2 (de) |
DK (1) | DK105980C (de) |
ES (1) | ES247601A1 (de) |
FI (1) | FI41014B (de) |
GB (1) | GB845043A (de) |
NL (2) | NL125501C (de) |
SE (1) | SE334866B (de) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4090939A (en) * | 1975-01-20 | 1978-05-23 | Solvay & Cie | Electrolytic diaphragm cell |
US4100052A (en) * | 1976-11-11 | 1978-07-11 | Diamond Shamrock Corporation | Electrolytic generation of halogen biocides |
US4217199A (en) * | 1979-07-10 | 1980-08-12 | Ppg Industries, Inc. | Electrolytic cell |
US4236992A (en) * | 1979-08-06 | 1980-12-02 | Themy Constantinos D | High voltage electrolytic cell |
US4402809A (en) * | 1981-09-03 | 1983-09-06 | Ppg Industries, Inc. | Bipolar electrolyzer |
US4605482A (en) * | 1981-04-28 | 1986-08-12 | Asahi Glass Company, Ltd. | Filter press type electrolytic cell |
US5359769A (en) * | 1989-03-06 | 1994-11-01 | Silveri Michael A | Installation method for pool purifier |
US5389210A (en) * | 1989-08-18 | 1995-02-14 | Silveri; Michael A. | Method and apparatus for mounting an electrolytic cell |
US5545310A (en) * | 1995-03-30 | 1996-08-13 | Silveri; Michael A. | Method of inhibiting scale formation in spa halogen generator |
US5580438A (en) * | 1989-08-18 | 1996-12-03 | Silveri; Michael A. | Pool purifier attaching apparatus and method |
US5676805A (en) * | 1995-03-30 | 1997-10-14 | Bioquest | SPA purification system |
US5752282A (en) * | 1995-03-30 | 1998-05-19 | Bioquest | Spa fitting |
US5759384A (en) * | 1995-03-30 | 1998-06-02 | Bioquest | Spa halogen generator and method of operating |
US6007693A (en) * | 1995-03-30 | 1999-12-28 | Bioquest | Spa halogen generator and method of operating |
USRE37055E1 (en) | 1989-08-18 | 2001-02-20 | Michael A. Silveri | Pool purifier attaching apparatus and method |
US6474330B1 (en) * | 1997-12-19 | 2002-11-05 | John S. Fleming | Hydrogen-fueled visual flame gas fireplace |
GB2490159A (en) * | 2011-04-20 | 2012-10-24 | Jake Gould | A mesh separator located between the cathode and anode of an electrolysis cell for the electrolysis of water |
US20140356674A1 (en) * | 2013-05-06 | 2014-12-04 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium ion secondary battery including the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3103484A (en) * | 1959-10-10 | 1963-09-10 | Anodes for electrolytic chlorine | |
FR1220408A (fr) * | 1960-06-22 | 1960-05-24 | Ici Ltd | Cellules électrolytiques multiples |
GB1012681A (en) * | 1961-08-10 | 1965-12-08 | Staveley Iron & Chemical Compa | Improvements in or relating to a cell for making alkali-metal chlorates |
US3117023A (en) * | 1962-01-03 | 1964-01-07 | Ionics | Method of making a non-corroding electrode |
US3278410A (en) * | 1962-05-01 | 1966-10-11 | Edwin M Nelson | Electrolytic anode |
US3948750A (en) * | 1974-05-28 | 1976-04-06 | Hooker Chemical & Plastics Corporation | Hollow bipolar electrode |
FR2435537A1 (fr) * | 1978-08-22 | 1980-04-04 | Creusot Loire | Cellule d'electrolyse pour la production de gaz |
CA1234779A (en) * | 1983-03-21 | 1988-04-05 | Joseph E. Toomey, Jr. | Filter press electrochemical cell with improved fluid distribution system |
EP0334394A1 (de) * | 1983-03-21 | 1989-09-27 | Reilly Industries, Inc. | Elektrochemische Zelle vom Filterpressentyp mit Flüssigkeitsverteilungssystem |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1477099A (en) * | 1922-07-07 | 1923-12-11 | Firm Of Chem Fab Weissenstein | Anode for forming percompounds |
US2070612A (en) * | 1932-03-19 | 1937-02-16 | Niederreither Hans | Method of producing, storing, and distributing electrical energy by operating gas batteries, particularly oxy-hydrogen gas batteries and electrolyzers |
US2384463A (en) * | 1938-12-06 | 1945-09-11 | Gunn Ross | Fuel cell |
US2636856A (en) * | 1948-06-29 | 1953-04-28 | Mallory & Co Inc P R | Electrode for electrochemical oxidation |
US2719797A (en) * | 1950-05-23 | 1955-10-04 | Baker & Co Inc | Platinizing tantalum |
US2871179A (en) * | 1955-04-01 | 1959-01-27 | Lonza Ag | Electrolytic water decomposer |
US2955999A (en) * | 1957-09-04 | 1960-10-11 | Ionics | Self-rectifying electrodialysis unit |
-
0
- US US230799D patent/USB230799I5/en active Pending
- NL NL237121D patent/NL237121A/xx unknown
- NL NL125501D patent/NL125501C/xx active
-
1958
- 1958-03-18 GB GB8715/58A patent/GB845043A/en not_active Expired
-
1959
- 1959-02-28 ES ES0247601A patent/ES247601A1/es not_active Expired
- 1959-03-02 FI FI0367/59A patent/FI41014B/fi active
- 1959-03-03 US US796856A patent/US3222270A/en not_active Expired - Lifetime
- 1959-03-17 SE SE02592/59A patent/SE334866B/xx unknown
- 1959-03-18 DK DK97359AA patent/DK105980C/da active
- 1959-03-18 DE DE19591421051 patent/DE1421051B2/de active Pending
- 1959-03-18 CH CH7095059A patent/CH389578A/de unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1477099A (en) * | 1922-07-07 | 1923-12-11 | Firm Of Chem Fab Weissenstein | Anode for forming percompounds |
US2070612A (en) * | 1932-03-19 | 1937-02-16 | Niederreither Hans | Method of producing, storing, and distributing electrical energy by operating gas batteries, particularly oxy-hydrogen gas batteries and electrolyzers |
US2384463A (en) * | 1938-12-06 | 1945-09-11 | Gunn Ross | Fuel cell |
US2636856A (en) * | 1948-06-29 | 1953-04-28 | Mallory & Co Inc P R | Electrode for electrochemical oxidation |
US2719797A (en) * | 1950-05-23 | 1955-10-04 | Baker & Co Inc | Platinizing tantalum |
US2871179A (en) * | 1955-04-01 | 1959-01-27 | Lonza Ag | Electrolytic water decomposer |
US2955999A (en) * | 1957-09-04 | 1960-10-11 | Ionics | Self-rectifying electrodialysis unit |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4090939A (en) * | 1975-01-20 | 1978-05-23 | Solvay & Cie | Electrolytic diaphragm cell |
US4100052A (en) * | 1976-11-11 | 1978-07-11 | Diamond Shamrock Corporation | Electrolytic generation of halogen biocides |
US4217199A (en) * | 1979-07-10 | 1980-08-12 | Ppg Industries, Inc. | Electrolytic cell |
US4236992A (en) * | 1979-08-06 | 1980-12-02 | Themy Constantinos D | High voltage electrolytic cell |
US4605482A (en) * | 1981-04-28 | 1986-08-12 | Asahi Glass Company, Ltd. | Filter press type electrolytic cell |
US4402809A (en) * | 1981-09-03 | 1983-09-06 | Ppg Industries, Inc. | Bipolar electrolyzer |
US5359769A (en) * | 1989-03-06 | 1994-11-01 | Silveri Michael A | Installation method for pool purifier |
US5580438A (en) * | 1989-08-18 | 1996-12-03 | Silveri; Michael A. | Pool purifier attaching apparatus and method |
US5401373A (en) * | 1989-08-18 | 1995-03-28 | Silveri; Michael A. | Electrolytic pool purifier |
USRE37055E1 (en) | 1989-08-18 | 2001-02-20 | Michael A. Silveri | Pool purifier attaching apparatus and method |
US5389210A (en) * | 1989-08-18 | 1995-02-14 | Silveri; Michael A. | Method and apparatus for mounting an electrolytic cell |
US5885426A (en) * | 1995-03-30 | 1999-03-23 | Bioquest | Spa purification system |
US5752282A (en) * | 1995-03-30 | 1998-05-19 | Bioquest | Spa fitting |
US5759384A (en) * | 1995-03-30 | 1998-06-02 | Bioquest | Spa halogen generator and method of operating |
US5676805A (en) * | 1995-03-30 | 1997-10-14 | Bioquest | SPA purification system |
US6007693A (en) * | 1995-03-30 | 1999-12-28 | Bioquest | Spa halogen generator and method of operating |
US5545310A (en) * | 1995-03-30 | 1996-08-13 | Silveri; Michael A. | Method of inhibiting scale formation in spa halogen generator |
US6474330B1 (en) * | 1997-12-19 | 2002-11-05 | John S. Fleming | Hydrogen-fueled visual flame gas fireplace |
GB2490159A (en) * | 2011-04-20 | 2012-10-24 | Jake Gould | A mesh separator located between the cathode and anode of an electrolysis cell for the electrolysis of water |
US20140356674A1 (en) * | 2013-05-06 | 2014-12-04 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium ion secondary battery including the same |
US10050250B2 (en) * | 2013-05-06 | 2018-08-14 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium ion secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
CH389578A (de) | 1965-03-31 |
DE1421051B2 (de) | 1970-07-16 |
USB230799I5 (de) | |
DE1421051A1 (de) | 1969-06-26 |
FI41014B (de) | 1969-04-30 |
NL125501C (de) | |
NL237121A (de) | |
GB845043A (en) | 1960-08-17 |
ES247601A1 (es) | 1959-06-16 |
DK105980C (da) | 1966-12-05 |
SE334866B (de) | 1971-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3222270A (en) | Multi-electrolytic cells | |
CA1073406A (en) | Bipolar electrode for an electrolytic cell | |
US3242059A (en) | Electrolytic process for production of chlorine and caustic | |
US4142950A (en) | Apparatus and process for electrolysis using a cation-permselective membrane and turbulence inducing means | |
US4138324A (en) | Metal laminate strip construction of bipolar electrode backplates | |
US3884792A (en) | Bipolar electrodes | |
US4732660A (en) | Membrane electrolyzer | |
US3778362A (en) | Electrolytic apparatus including bipolar electrodes defining an enclosed volume and held in a nonconductive frame | |
US3836448A (en) | Frames for electrolytic cells of the filter-press type | |
US4207165A (en) | Filter press cell | |
JPS6315354B2 (de) | ||
US4389289A (en) | Bipolar electrolyzer | |
US4584080A (en) | Bipolar electrolysis apparatus with gas diffusion cathode | |
GB1561956A (en) | Electrolysis apparatus | |
SU1291029A3 (ru) | Бипол рный электрод | |
US4746415A (en) | Electrode | |
JPS629674B2 (de) | ||
FI71355C (fi) | Elektrolytisk cell av filterpresstyp | |
EP0159138B1 (de) | Elektrode und Elektrolysezelle | |
US4116807A (en) | Explosion bonding of bipolar electrode backplates | |
NL8003324A (nl) | Werkwijze voor het elektrolyseren van een waterige alkalimetaalchlorideoplossing. | |
CA1054559A (en) | Hollow bipolar electrode | |
US3775272A (en) | Mercury diaphragm chlor-alkali cell and process for decomposing alkali metal halides | |
CA1117473A (en) | Electrolytic cell | |
CA1176598A (en) | Bipolar electrolyzer element |