US3219555A - Distillation unit with still supported condenser - Google Patents

Distillation unit with still supported condenser Download PDF

Info

Publication number
US3219555A
US3219555A US165811A US16581162A US3219555A US 3219555 A US3219555 A US 3219555A US 165811 A US165811 A US 165811A US 16581162 A US16581162 A US 16581162A US 3219555 A US3219555 A US 3219555A
Authority
US
United States
Prior art keywords
water
tube
heat exchange
condenser
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US165811A
Inventor
Poindexter Allan Moore
Adami Arthur Edward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMF Inc
Original Assignee
AMF Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMF Inc filed Critical AMF Inc
Priority to US165811A priority Critical patent/US3219555A/en
Application granted granted Critical
Publication of US3219555A publication Critical patent/US3219555A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/02Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in boilers or stills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/18Control

Definitions

  • This invention relates in general to distillation units, commonly referred to as evaporators, for converting sea water into fresh water for drinking and general purpose use; and, more particularly, this invention relates to evapora-tors for use on smaller vessels.
  • An object of this invent-ion is to provide a small, rugged and light evaporator unit for use on smaller vessels.
  • Another object of this invention is to provide a completely self-contained small evaporator unit which operates on waste heat obtained from cooling water drawn from an internal combustion engine manifold.
  • a further object of this invention is to provide adistillation apparatus which has a greater output per cubic foot of space occupied.
  • a :still further object of this invention 18 to provide a distillation apparatus having fewer parts so that it may be more easily assembled, disassembled, installed and repaired.
  • Yet a further object of this invention is to provide a small evaporator unit having identical evaporating and condensing coils.
  • Still another object of this invention 15 to provide an evaporator unit for use on smaller vessels which will be less aflected in its operation by the roll and pitch of the vessel.
  • Yet another object of this invention is to provide a less expensive and more corrosion resistant sea water distillation apparatus.
  • FIGURE 1 is a vertical section taken through the distillation apparatus of this invention
  • FIGURE 2 is a longitudinal section through a combination condenser inlet and support tube and associated fragments of the distillation apparatus;
  • FIGURE 3 is a vertical section taken on line 33 of FIGURE 1;
  • FIGURE 4 is a vertical section taken on line 44 of FIGURE 3;
  • FIGURES 5 and 6 are horizontal sections taken on lines 5--5 and 66 of FIGURE 1;
  • FIGURE 7 is a horizontal section taken on line 77 of FIGURE 1 with the heating coil partly broken away;
  • FIGURE 8 is a vertical section taken through a turn of a coil
  • FIGURE 9 is a side view of an end of a coil.
  • FIGURE 10 is a side view of another form of an end of a coil.
  • FIGURES 1 and 7 show the base 10 which is designed to be molded in a single piece in a two part mold from a suitable plastic such as a fiberglass reinforced molding compound.
  • the periphery of the base 10 is formed into the slightly tapering annular flange 11. Extending inward from the top of the annular flange 11 is a shoulder 12. Side walls 13 extend downward from the inner edge of the shoulder 12 to support the bottom portion 14 at a lower level than the shoulder 12.
  • a slightly tapering cylindrical cover 16 has a lower outwardly extending flange 17 and a top wall 13.
  • the cover 16 is molded from a suitable plastic material and is secured to the base 10 with a pressure tight gasketed joint by means of bolts 19 or other suitable fastening devices, which extend through the shoulder 12 of the base and the flange 17 of the cover.
  • a shroud 20 may be slipped over and dropped downward about the cover 16 to hide the fastening devices 19 and improve the exterior appearance of the installed evaporator.
  • a boss 22 extends downward from the bottom portion 14 of base 10.
  • a condenser inlet and support tube 30 is formed of arsenical admiralty brass or other suitable material and the tube 30 is inserted downward through the boss 22.
  • a flange 31 is spun to extend from tube 30 and seat on top of the bottom portion 14.
  • a second flange 32 is spun near the top of tube 30.
  • a plastic product pan 34 is slipped downward about tube 30 and rests upon flange 32.
  • a distillate and support tube 36 and a support tube 38 also extend between the base 10 and the product pan 34.
  • the tubes 36 and 38 are formed in the same manner as tube 30 and have flanges corresponding to the flanges 31 and 32 to correctly position and support the product pan 34 above the base 10.
  • the tubes 30, 36 and 38 support the product pan 34 like three legs.
  • a splash plate 40 is positioned directly below the product pan 34.
  • the splash plate 40 has the two radial arms 44 and 45 extending outward from it.
  • the outward facing notches 41, 42 and 43 are formed in the ends of arms 44 and 45 and on the edge of plate 40.
  • tube 30 has a constriction 28 formed in it a short distance below flange 32.
  • the notch 43 of plate 40 fits within the constriction 28.
  • the tubes 36 and 38 contain similar notches to correctly position the splash plate 40 beneath the product pan 34.
  • Plate 40 may contain a number of small drain apertures 46 and a notch 4-7 to accommodate the condenser drain tube 48.
  • the product pan 34 has a circular wall 50 extending upward about a large aperture formed in its central portion. Within the circular wall 50 there is packed a stainless steel mesh 52 or other suitable water droplet separating material. The outer edges of the drain pan 34 form an upturned flange 53. A rubber gasket 54 extends about flange 53 and provides a fluid tight seal between the product pan 34 and the cover 16.
  • an O ring 55 or other suitable packing is held in place by a member 56 so that a fluid tight seal is provided about the tube 30. Similar seals are provided about the upper ends of the tubes 36 and 38.
  • a rubber collar 53 is slipped upward about the bottom of tube 30 and the boss 22. Clamps 59 clamp the rubber collar to the boss 22 and about the tube 30 to provide a pressure tight seal about the tube 30 as it emerges from the base 10.
  • Tube 36 is also sealed as it passes through base 10 in a similar manner, however, the support tube 38 may be closed or plugged at the bottom and not pass completely through the base 10.
  • a heating coil 69 having an inlet tube 61 and an outlet tube 62 is mounted above the bottom portion 14 of base 19.
  • Small chocks 63 may be molded to extend upward from portion 14 to support the turns of heating coil 60.
  • a condensing coil 64 having the inlet tube 65 and the outlet tube 66 is supported above the product pan 34 on the chocks 67 and the vacuum drain dam 68.
  • the chocks 67 and the vacuum drain dam 68 may be molded integrally with the product pan 34.
  • the coils 60 and 64 are identical and they are formed from two pieces of metal 70 and 71 which are pressure welded at suitable locations 72 and then expanded by hydraulic pressure. The expansion forms the internal passages '73.
  • Suitable end manifold passages 74 are formed at the ends of the coils to connect the longitudinal passages 73. These passages 74 may then have suitable inlet or outlet tubes 76 and 77 welded or otherwise secured to communicate with them.
  • the bottom portion 14 of the base 19 has a raised portion 80.
  • Side walls 82 extend above a part of the raised portion 80.
  • a cover plate 84 is glued or otherwise secured to the side walls 82 and has a tube 85 extending upward from its center portion.
  • the condenser drain tube 48 communicates with tube 85 and leads into the compartment 86 formed by the raised portion 80, side walls 82 and the cover plate 84.
  • Two eductor nozzles 87 are screwed or otherwise secured within the raised portion 80. Extending downward between the eductor nozzles 87 is a partition 88. When the bottom cover plate 89 is fixed below the raised portion 80, the partition 88 forms the two compartments 90 and 91.
  • Two tubes 92 and 93 lead from beneath each eductor nozzle 87 to create a vacuum within the compartments 90 and 91.
  • tubes 94 and 95 extend upward from the compartments 90 and 91 outside the side walls 82.
  • Tube 95 extends upward for a few inches above base It) and then terminates, while tube 94 extends upward and has connected to it the vacuum drain tube 97 which is shown in FIGURE 6.
  • a cylindrical plastic splash guard 98 is supported on suitable chocks 99 which may be molded onto the bottom portion 14 of the base 10.
  • the inlet tube to the heating coil 60 is connected to a hot water source such as the cooling water manifold of an internal combustion engine. This hot water at a temperature of about 180 degrees F. is circulated through the heating coil 60.
  • a pump (not shown) forces cool sea water under pressure into the condenser inlet and support tube 30 from which the cool sea water flows through the condensing coil 64. Water from coil 64 then passes through the condenser discharge tube 48 into the compartment 86 as shown in FIGURES 3 and 4. From compartment 86, water jets through the eductor nozzles 87 into the tubes 92 and 93 to create a partial vacuum in the compartments 90 and 91.
  • a small nozzle 100 is mounted on the cover plate 84 and it directs a small stream of water from compartment 86 onto base within the apparatus.
  • Sea water from nozzle 100 which has been slightly warmed by passing through coil 64, fills the bottom of the evaporator until its level rises to the top of tube 95 as shown in FIGURE 1. Then water which is not evaporated by the heating coil 60 is drawn downwards through the top of tube 95 which thus maintains a constant level of sea water within the evaporator.
  • Tube 94 leading to compartment 90 is connected to the vacuum tube 97 which leads to the aperture 101 within the vacuum drain dam 68 as shown in FIGURE 5.
  • the vacuum drain tube 97 creates a partial vacuum within the apparatus so that the heating coil 60 will vaporize sea water at a temperature of 125 degrees.
  • the vacuum drain tube 97 also removes non-condensable gases from the apparatus.
  • the tube 97 and the tube 48 may be of rubber or a like material and they may be connected within the apparatus by means of suitable clamps. Water vapor passes through the mesh 52 which separates out any droplets carried along with the vapor. The splash plate 40 prevents any slugs of water from directly striking the mesh 52 and then being carried over into the condenser.
  • the constant feed of sea water through nozzle prevents the brine solution about the heating coil 60 from reaching too high a concentration or level of salinity so that this feature tends to prevent the formation of scale.
  • the coils 60 and 64 prevent smooth, contiguous surfaces which are easily wiped clean and which tend to inhibit scale formation.
  • the entire apparatus may be easily disassembled for cleaning or repair by merely undoing the bolts 19 and removing the cover 16.
  • the compact construction enables a greater and more efficient production of potable water with an apparatus of less weight which occupies a smaller volume.
  • Apparatus for the conversion of sea water to drinking water comprising, a housing formed of a base and a cover sealed thereto, an evaporator system for vaporizing sea water enclosed in the lower portion of said housing, said evaporator system comprising a hot heat exchange surface, connected passages for conducting hot water therethrough in contact with said hot heat exchange surface and means for exposing sea water to said hot heat exchange surfaces for vaporization, a condenser system for the condensation of vapor and collection of distilled water enclosed in the upper portion of said housing, said condenser system comprising a vapor filter for entrapment of entrained liquid passing therethrough, a cold heat exchange surface surrounding said filter, connected passages for conducting cold water therethrough in contact with said cold heat exchange surfaces and means for collecting distilled water condensed on said cold heat exchange surfaces and an eductor system located within said housing for draining cold water from said condenser system and simultaneously creating a vacuum within said housing, said eductor being mounted on the base and including first and second compartments each containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

A. M. POINDEXTER ETAL 3,219,555
Nov. 23, 1965 DISTILLATION UNIT WITH STILL SUPPORTED CONDENSER Filed Jan. 12, 1962 2 Sheets-Sheet 1 FIG. I
INVENTORS. ALLAN MOORE POINDEXTER ART 29R E. ADAMI l/IIIA ATTORNEY 23, 1965 A. M. POINDEXTER ETAL 3,219,555
DISTILLATION UNIT WITH STILL SUPPORTED CONDENSER Filed Jan. 12, 1962 2 Sheets-Sheet 2 JNVENTORS: ALLAN MOORE POINDEXTER E. ADAMI ARTHUR ATTOR NEY United States Patent Jersey Filed Ja 1962 S9 N0- 1 5,311
4 Claims. (Cl. 202-494) This invention relates in general to distillation units, commonly referred to as evaporators, for converting sea water into fresh water for drinking and general purpose use; and, more particularly, this invention relates to evapora-tors for use on smaller vessels.
An object of this invent-ion is to provide a small, rugged and light evaporator unit for use on smaller vessels.
Another object of this invention is to provide a completely self-contained small evaporator unit which operates on waste heat obtained from cooling water drawn from an internal combustion engine manifold.
A further object of this invention is to provide adistillation apparatus which has a greater output per cubic foot of space occupied.
A :still further object of this invention 18 to provide a distillation apparatus having fewer parts so that it may be more easily assembled, disassembled, installed and repaired.
Yet a further object of this invention is to provide a small evaporator unit having identical evaporating and condensing coils.
Still another object of this invention 15 to provide an evaporator unit for use on smaller vessels which will be less aflected in its operation by the roll and pitch of the vessel.
Yet another object of this invention is to provide a less expensive and more corrosion resistant sea water distillation apparatus.
Many other objects, advantages and features of invention reside in the construction, arrangement, and combination of parts involved in the embodiment of the invent on and its practice as will be understood from the following description and accompanying drawing wherein:
FIGURE 1 is a vertical section taken through the distillation apparatus of this invention;
FIGURE 2 is a longitudinal section through a combination condenser inlet and support tube and associated fragments of the distillation apparatus;
FIGURE 3 is a vertical section taken on line 33 of FIGURE 1;
FIGURE 4 is a vertical section taken on line 44 of FIGURE 3;
FIGURES 5 and 6 are horizontal sections taken on lines 5--5 and 66 of FIGURE 1;
FIGURE 7 is a horizontal section taken on line 77 of FIGURE 1 with the heating coil partly broken away;
FIGURE 8 is a vertical section taken through a turn of a coil;
FIGURE 9 is a side view of an end of a coil; and
FIGURE 10 is a side view of another form of an end of a coil.
Referring to the drawing in detail, FIGURES 1 and 7 show the base 10 which is designed to be molded in a single piece in a two part mold from a suitable plastic such as a fiberglass reinforced molding compound. The periphery of the base 10 is formed into the slightly tapering annular flange 11. Extending inward from the top of the annular flange 11 is a shoulder 12. Side walls 13 extend downward from the inner edge of the shoulder 12 to support the bottom portion 14 at a lower level than the shoulder 12.
Referring further to FIGURES 1 and 7, a slightly tapering cylindrical cover 16 has a lower outwardly extending flange 17 and a top wall 13. The cover 16 is molded from a suitable plastic material and is secured to the base 10 with a pressure tight gasketed joint by means of bolts 19 or other suitable fastening devices, which extend through the shoulder 12 of the base and the flange 17 of the cover. A shroud 20 may be slipped over and dropped downward about the cover 16 to hide the fastening devices 19 and improve the exterior appearance of the installed evaporator.
Referring now to FIGURES 1 and 2, a boss 22 extends downward from the bottom portion 14 of base 10. A condenser inlet and support tube 30 is formed of arsenical admiralty brass or other suitable material and the tube 30 is inserted downward through the boss 22. A flange 31 is spun to extend from tube 30 and seat on top of the bottom portion 14. A second flange 32 is spun near the top of tube 30. A plastic product pan 34 is slipped downward about tube 30 and rests upon flange 32. As shown in FIGURES 1, 6 and 7, a distillate and support tube 36 and a support tube 38 also extend between the base 10 and the product pan 34. The tubes 36 and 38 are formed in the same manner as tube 30 and have flanges corresponding to the flanges 31 and 32 to correctly position and support the product pan 34 above the base 10. Thus the tubes 30, 36 and 38 support the product pan 34 like three legs.
Referring now to FIGURES 1 and 6, a splash plate 40 is positioned directly below the product pan 34. The splash plate 40 has the two radial arms 44 and 45 extending outward from it. The outward facing notches 41, 42 and 43 are formed in the ends of arms 44 and 45 and on the edge of plate 40. Referring again to FIGURE 2, it may be seen that tube 30 has a constriction 28 formed in it a short distance below flange 32. The notch 43 of plate 40 fits within the constriction 28. The tubes 36 and 38 contain similar notches to correctly position the splash plate 40 beneath the product pan 34. Plate 40 may contain a number of small drain apertures 46 and a notch 4-7 to accommodate the condenser drain tube 48. As shown in FIGURES 1 and 5, the product pan 34 has a circular wall 50 extending upward about a large aperture formed in its central portion. Within the circular wall 50 there is packed a stainless steel mesh 52 or other suitable water droplet separating material. The outer edges of the drain pan 34 form an upturned flange 53. A rubber gasket 54 extends about flange 53 and provides a fluid tight seal between the product pan 34 and the cover 16.
Referring further to FIGURE 2, an O ring 55 or other suitable packing is held in place by a member 56 so that a fluid tight seal is provided about the tube 30. Similar seals are provided about the upper ends of the tubes 36 and 38. A rubber collar 53 is slipped upward about the bottom of tube 30 and the boss 22. Clamps 59 clamp the rubber collar to the boss 22 and about the tube 30 to provide a pressure tight seal about the tube 30 as it emerges from the base 10. Tube 36 is also sealed as it passes through base 10 in a similar manner, however, the support tube 38 may be closed or plugged at the bottom and not pass completely through the base 10.
Referring now to FIGURES 1, 8, 9 and 10, a heating coil 69 having an inlet tube 61 and an outlet tube 62 is mounted above the bottom portion 14 of base 19. Small chocks 63 may be molded to extend upward from portion 14 to support the turns of heating coil 60. A condensing coil 64 having the inlet tube 65 and the outlet tube 66 is supported above the product pan 34 on the chocks 67 and the vacuum drain dam 68. The chocks 67 and the vacuum drain dam 68 may be molded integrally with the product pan 34. The coils 60 and 64 are identical and they are formed from two pieces of metal 70 and 71 which are pressure welded at suitable locations 72 and then expanded by hydraulic pressure. The expansion forms the internal passages '73. Suitable end manifold passages 74 are formed at the ends of the coils to connect the longitudinal passages 73. These passages 74 may then have suitable inlet or outlet tubes 76 and 77 welded or otherwise secured to communicate with them.
As shown in FIGURES 1, 3 and 4, the bottom portion 14 of the base 19 has a raised portion 80. Side walls 82 extend above a part of the raised portion 80. A cover plate 84 is glued or otherwise secured to the side walls 82 and has a tube 85 extending upward from its center portion. The condenser drain tube 48 communicates with tube 85 and leads into the compartment 86 formed by the raised portion 80, side walls 82 and the cover plate 84. Two eductor nozzles 87 are screwed or otherwise secured within the raised portion 80. Extending downward between the eductor nozzles 87 is a partition 88. When the bottom cover plate 89 is fixed below the raised portion 80, the partition 88 forms the two compartments 90 and 91. Two tubes 92 and 93 lead from beneath each eductor nozzle 87 to create a vacuum within the compartments 90 and 91.
As shown in FIGURES 4 and 7, two tubes 94 and 95 extend upward from the compartments 90 and 91 outside the side walls 82. Tube 95 extends upward for a few inches above base It) and then terminates, while tube 94 extends upward and has connected to it the vacuum drain tube 97 which is shown in FIGURE 6. A cylindrical plastic splash guard 98 is supported on suitable chocks 99 which may be molded onto the bottom portion 14 of the base 10.
This apparatus operates in the following manner. The inlet tube to the heating coil 60 is connected to a hot water source such as the cooling water manifold of an internal combustion engine. This hot water at a temperature of about 180 degrees F. is circulated through the heating coil 60. A pump (not shown) forces cool sea water under pressure into the condenser inlet and support tube 30 from which the cool sea water flows through the condensing coil 64. Water from coil 64 then passes through the condenser discharge tube 48 into the compartment 86 as shown in FIGURES 3 and 4. From compartment 86, water jets through the eductor nozzles 87 into the tubes 92 and 93 to create a partial vacuum in the compartments 90 and 91. A small nozzle 100 is mounted on the cover plate 84 and it directs a small stream of water from compartment 86 onto base within the apparatus. Sea water from nozzle 100, which has been slightly warmed by passing through coil 64, fills the bottom of the evaporator until its level rises to the top of tube 95 as shown in FIGURE 1. Then water which is not evaporated by the heating coil 60 is drawn downwards through the top of tube 95 which thus maintains a constant level of sea water within the evaporator. Tube 94 leading to compartment 90 is connected to the vacuum tube 97 which leads to the aperture 101 within the vacuum drain dam 68 as shown in FIGURE 5. Thus the vacuum drain tube 97 creates a partial vacuum within the apparatus so that the heating coil 60 will vaporize sea water at a temperature of 125 degrees. The vacuum drain tube 97 also removes non-condensable gases from the apparatus. The tube 97 and the tube 48 may be of rubber or a like material and they may be connected within the apparatus by means of suitable clamps. Water vapor passes through the mesh 52 which separates out any droplets carried along with the vapor. The splash plate 40 prevents any slugs of water from directly striking the mesh 52 and then being carried over into the condenser.
As water vapor contacts the cooling coils 64, it condenses on top of the product pan 34 to fiow into the aperture 102 shown in FIGURE 5 and then it flows down the distillate and support tube 36 from which it may be drawn off for use. Distillate cannot flow into the vacuum drain tube 97 because the clam 68 surounds the aperture 101 and keeps water from flowing into aperture 101. A suitable checking device (not shown) must be associated with tube 36 to prevent air at atmospheric pressure from flowing back into the apparatus through the tube 36.
This invention enjoys many advantages. The constant feed of sea water through nozzle prevents the brine solution about the heating coil 60 from reaching too high a concentration or level of salinity so that this feature tends to prevent the formation of scale. The coils 60 and 64 prevent smooth, contiguous surfaces which are easily wiped clean and which tend to inhibit scale formation. The entire apparatus may be easily disassembled for cleaning or repair by merely undoing the bolts 19 and removing the cover 16. The compact construction enables a greater and more efficient production of potable water with an apparatus of less weight which occupies a smaller volume.
While this invention has been shown and described in the form known, it will nevertheless be understood that this is purely exemplary and that modifications in the construction, arrangement and combination of parts may be made without departing from the spirit of the invention except as it may be more limited in the appended claims.
What is claimed is:
1. Apparatus for the conversion of sea water to drinking water comprising, a housing formed of a base and a cover sealed thereto, an evaporator system for vaporizing sea water enclosed in the lower portion of said housing, said evaporator system comprising a hot heat exchange surface, connected passages for conducting hot water therethrough in contact with said hot heat exchange surface and means for exposing sea water to said hot heat exchange surfaces for vaporization, a condenser system for the condensation of vapor and collection of distilled water enclosed in the upper portion of said housing, said condenser system comprising a vapor filter for entrapment of entrained liquid passing therethrough, a cold heat exchange surface surrounding said filter, connected passages for conducting cold water therethrough in contact with said cold heat exchange surfaces and means for collecting distilled water condensed on said cold heat exchange surfaces and an eductor system located within said housing for draining cold water from said condenser system and simultaneously creating a vacuum within said housing, said eductor being mounted on the base and including first and second compartments each containing an eductor nozzle evacuating said compartments, said eductor nozzles extending into orifices through which said eductor nozzles evacuate, a third compartment mounted above and coupled to said first and second compartments, a condenser drain tube leading to said third compartment, a water levelling tube extending a short distance upward from said first compartment, and a pipe connection from said second compartment to the means for collecting distilled water in the condensing system whereby vacuum created by said eduction of cold water is communicated to the interior of said apparatus so that evaporation can be accomplished at less than 212 F.
2. The apparatus according to claim 1 in which said third compartment contains an orifice extending into and communicating with the evaporator system for filling said evaporator with cold sea water drained from said condenser.
3. The combination according to claim 1 wherein both condenser and evaporator heat exchange surfaces com- References Cited by the Examiner UNITED STATES PATENTS 534,412 2/1895 Vinton. 616,277 12/1898 Todd et al.
6 Barnstead.
Fcurness 202205 X Hapgood 20289 Kirgan. Waddill 202205 NORMAN YUDKOFF, Primary Examiner.
GEORGE D. MITCHELL, Examiner.

Claims (1)

1. APPARATUS FOR THE CONVERSION OF SEA WATER TO DRINKING WATER COMPRISING, A HOUSING FORMED OF A BASE AND A COVER SEALED THERETO, AN EVAPORATOR SYSTEM FOR VAPORIZING SEA WATER ENCLOSED IN THE LOWER PORTION OF SAID HOUSING, SAID EVAPORATOR SYSTEM COMPRISING A HOT HEAT EXCHANGE SURFACE, CONNECTED PASSAGES FOR CONDUCTING HOT WATER THERETHROUGH IN CONTACT WITH SAID HOT HEAT EXCHANGE SURFACE AND MEANS FOR EXPOSING SEA WATER TO SAID HOT HEAT EXCHANGE SURFACES FOR VAPORIZATION, A CONDENSER SYSTEM FOR THE CONDENSATION OF VAPOR AND COLLECTION OF DISTILLED WATER ENCLOSED IN THE UPPER PORTION OF SAID HOUSING, SAID CONDENSER SYSTEM COMPRISING A VAPOR FILTER FOR ENTRAPMENT OF ENTRAINED LIQUID PASSING THERETHROUGH, A COLD HEAT EXCHANGE SURFACE SURROUNDING SAID FILTER, CONNECTED PASSAGES FOR CONDUCTING COLD WATER THERETHROUGH IN CONTACT WITH SAID COLD HEAT EXCHANGE SURFACES AND MEANS FOR COLLECTING DISTILLED WATER CONDENSED ON SAID COLD HEAT EXCHANGE SURFACES AND AN EDUCATOR SYSTEM LOCATED WITHIN SAID HOUSING FOR DRAINING JCOLD WATER FROM SAID CONDENSER SYSTEM AND SIMULTANEOUSLY CREATING A VACUUM WITHIN SAID HOUSING,
US165811A 1962-01-12 1962-01-12 Distillation unit with still supported condenser Expired - Lifetime US3219555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US165811A US3219555A (en) 1962-01-12 1962-01-12 Distillation unit with still supported condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US165811A US3219555A (en) 1962-01-12 1962-01-12 Distillation unit with still supported condenser

Publications (1)

Publication Number Publication Date
US3219555A true US3219555A (en) 1965-11-23

Family

ID=22600579

Family Applications (1)

Application Number Title Priority Date Filing Date
US165811A Expired - Lifetime US3219555A (en) 1962-01-12 1962-01-12 Distillation unit with still supported condenser

Country Status (1)

Country Link
US (1) US3219555A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406748A (en) * 1981-09-25 1983-09-27 Hoffman Frank W Liquid purification system
WO1987003275A1 (en) * 1985-11-21 1987-06-04 Nautical Services Pty. Ltd. Electronic control and dosing system for desalinators
US5259928A (en) * 1991-05-14 1993-11-09 A. Ahlstrom Corporation Apparatus for evaporation of liquid solutions
US5525200A (en) * 1992-07-16 1996-06-11 Lanois; Rene Low temperature vacuum distillation apparatus
US5614066A (en) * 1995-03-15 1997-03-25 Williamson; William R. Water distillation apparatus
US20090247964A1 (en) * 2008-03-26 2009-10-01 Tyco Healthcare Group Lp Roller clamp cover
US11066171B2 (en) 2016-04-04 2021-07-20 B/E Aerospace, Inc. Contoured class divider

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US534412A (en) * 1892-10-08 1895-02-19 John h
US616277A (en) * 1898-12-20 Fluid-distilling apparatus
US825178A (en) * 1905-04-20 1906-07-03 Robert P Barnstead Domestic water-still.
US1306056A (en) * 1919-06-10 Wilfred fottbjosss
US1935183A (en) * 1929-01-03 1933-11-14 Laval Separator Co De Apparatus for distilling dry cleaners' solvent
US2441361A (en) * 1945-03-27 1948-05-11 Kirgan John Vapor compression still with liquid level cutoff
US2443970A (en) * 1944-01-03 1948-06-22 Phillips Petroleum Co Refining of lubricating oils

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US616277A (en) * 1898-12-20 Fluid-distilling apparatus
US1306056A (en) * 1919-06-10 Wilfred fottbjosss
US534412A (en) * 1892-10-08 1895-02-19 John h
US825178A (en) * 1905-04-20 1906-07-03 Robert P Barnstead Domestic water-still.
US1935183A (en) * 1929-01-03 1933-11-14 Laval Separator Co De Apparatus for distilling dry cleaners' solvent
US2443970A (en) * 1944-01-03 1948-06-22 Phillips Petroleum Co Refining of lubricating oils
US2441361A (en) * 1945-03-27 1948-05-11 Kirgan John Vapor compression still with liquid level cutoff

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406748A (en) * 1981-09-25 1983-09-27 Hoffman Frank W Liquid purification system
WO1987003275A1 (en) * 1985-11-21 1987-06-04 Nautical Services Pty. Ltd. Electronic control and dosing system for desalinators
US4877489A (en) * 1985-11-21 1989-10-31 Nautical Services Pty. Ltd. Electronic control and dosing system for desalinators
US5259928A (en) * 1991-05-14 1993-11-09 A. Ahlstrom Corporation Apparatus for evaporation of liquid solutions
US5525200A (en) * 1992-07-16 1996-06-11 Lanois; Rene Low temperature vacuum distillation apparatus
US5614066A (en) * 1995-03-15 1997-03-25 Williamson; William R. Water distillation apparatus
US20090247964A1 (en) * 2008-03-26 2009-10-01 Tyco Healthcare Group Lp Roller clamp cover
US11066171B2 (en) 2016-04-04 2021-07-20 B/E Aerospace, Inc. Contoured class divider
US20210347485A1 (en) * 2016-04-04 2021-11-11 B/E Aerospace, Inc. Contour class divider
US11787544B2 (en) * 2016-04-04 2023-10-17 B/E Aerospace, Inc. Contour class divider

Similar Documents

Publication Publication Date Title
CA1310606C (en) Vacuum distillation system
US3875017A (en) Multi-stage thin film evaporator having a helical vapor flow path
US3997408A (en) Thermocompression-type apparatus for desalting saline water
US4536257A (en) Desalination system
US7422663B2 (en) Desalination machine
US4366030A (en) Subatmospheric pressure distillation and/or cooling method and means
US3196864A (en) Condensing chamber apparatus
US3219555A (en) Distillation unit with still supported condenser
US3214352A (en) Distillation apparatus
US3390057A (en) Apparatus for vapor compression distillation of water
GB1171072A (en) Evaporation Apparatus.
NO120411B (en)
CN2870939Y (en) Film evaporator with freely flowing outside pipe
RU2005530C1 (en) Distillation plant
US3393131A (en) Saline water conversion apparatus
PL169577B1 (en) Sea water desalting apparatus
GB834467A (en) A flash evaporator
US3471373A (en) Automatic control system for vapor compression distilling unit
US3803001A (en) Combination condenser-degasser-deaerator for a desalination plant
JP6982849B2 (en) Water production equipment
JPH06198102A (en) Vertical column type evaporator
US760440A (en) Apparatus for evaporating or distilling.
USRE21129E (en) Nd effect
US3522149A (en) Distillation apparatus to recover potable water from non-potable water
SU565727A1 (en) Plant for cleaning workpieces