US3217791A - Means for maintaining perma-frost foundations - Google Patents
Means for maintaining perma-frost foundations Download PDFInfo
- Publication number
- US3217791A US3217791A US386341A US38634164A US3217791A US 3217791 A US3217791 A US 3217791A US 386341 A US386341 A US 386341A US 38634164 A US38634164 A US 38634164A US 3217791 A US3217791 A US 3217791A
- Authority
- US
- United States
- Prior art keywords
- permafrost
- layer
- container
- liquid
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims description 31
- 239000010410 layer Substances 0.000 claims description 13
- 238000010257 thawing Methods 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000009833 condensation Methods 0.000 description 11
- 230000005494 condensation Effects 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000007710 freezing Methods 0.000 description 10
- 230000008014 freezing Effects 0.000 description 10
- 239000002689 soil Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/35—Foundations formed in frozen ground, e.g. in permafrost soil
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/11—Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
- E02D3/115—Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means by freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/30—Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/40—Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B23/00—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
- F25B23/003—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S166/00—Wells
- Y10S166/901—Wells in frozen terrain
Definitions
- This invention relates to means for maintaining an improved permafrost foundation system, and to various configurations of the system. More particularly, it relates to what has herein been designated as a thermo-valve foundation system that is based on a novel means of establishing and maintaining a permafrost layer.
- the present system employs as one of its characterizing elements, a sealed hollow tubular vessel containing a liquid of low boiling point, which vessel, upon being so disposed as to have an above ground portion thereof subjected to below freezing temperatures, will effect a transfer of heat away from the buried end portion thereof thus making it possible to accomplish the following results.
- FIG. 1 is a longitudinal sectional view of a thermvalve piling as installed in a foundation construction.
- FIG. 2 is a sectional view, similar to that of FIG. 1 but showing an adaptation of the present thermo-valve principle to a post and pad type foundation.
- FIG. 3 is a vertical cross-sectional view illustrating an application of the present thermo-valve principle for a thawing operation as applied to a roadway in a permafrost area.
- FIG. 4 is a view, similar to that of FIG. 3, showing use of the present system when the heat absorption area must be higher than the condensation area.
- FIG. 5 is a sectional view illustrating use of the present thermo-valve on grade construction.
- FIG. 6 is a sectional view illustrating employment of a condensation trap in connection with the present system.
- FIG. 7 is a sectional view illustrating use of the present system for stabilizing a subgrade.
- FIG. 8 is a sectional view illustrating use of a thermovalve for maintaining a permanently frozen condition in arctic and sub-arctic areas.
- thermo-valve in its entirety by reference character T. It comprises a rather elongated tubular container, closed and sealed at its opposite ends, and partially filled with a selected liquid of low boiling point.
- the container preferably, is cylindrical in form and is equipped with suitable high pressure, quick disconnect fittings, or with other suitable fittings, not herein shown, of the normally used type for the application of additional liquid to the container.
- Liquid level in the container may be controlled by various means but preferably by the use of a small bleed valve with a section of tubing extended into and downwardly in the vessel to a point at which it is desired to establish the liquid level therein, for example, at the level as has been illustrated in FIG. 1 by the dash line 11.
- thermo-valve takes into consideration the following fundamental physical principles:
- the vapor density of any given substance is lighter than its liquid state.
- the vapor pressure of a substance is increased with an increase in temperautre.
- the vapor density of a substance at constant volume decreases with a reduction in temperature.
- thermo-valve piling in a permafrost area.
- the piling comprises a cylindrically tubular container closed and sealed at its opposite ends by end plates 1111, and enclosing a predetermined amount of the selected suitable liquid 12 therein.
- This thermo-valve unit may be either a foundation piling or a separate pipe attached to the foundation piling.
- the top level of the liquid 12 is here shown to be substantially at the top of the permafrost area as designated by horizontal dash line 11.
- the containers For satisfactory operation, there should be no internal restriction in the container 10 to hinder the return of the vapor condensate to the elevation of desired heat extraction of the pile or cylinder, the containers must be so constructed as to prevent leakage or rupture at the particular saturated vapor pressure induced by the selected fluid at the maximum operating temperature.
- the temperature of the system will be controlled by the rate of heat flow to the liquid 12 at the lower end of the piling, the rate of gas flow within the tube, the rate of condensation at the upper end of the piling, and the rate of heat dissipating to the air, ground and portions of the structures adjoining the thermo-valve.
- the tubular piling 10 is shown as being vertically disposed within a well 15 formed in the permafrost area 16, and resting at its lower end on a gravel pad 18 and surrounded up to the top of the permafrost by a gravel filling 20. Above the permafrost 11 the cylinder 10 is surrounded by an earth filling 21. Above the grade, the container 10 is surrounded by an exposed frame designated by numeral 23. I
- thermo-valve foundation in an area results in the following: During periods of subfreezing temperatures vapor in upper end of its closed vessel is condensed on the column surface by the conduction of heat away from the column in the upper soil layers and connecting structural members and by radiation and convection from the exposed portion of the column. The condensed vapor returns to the lower end by gravity. The condensation of the vapor reduces the pressure in the column and permits boiling and evaporation of the liquid at the bottom whenever its temperature is greater than the condensation temperature. The evaporation of the liquid causes a lowering of its temperature with a resultant inflow of heat from the adjoining permafrost. The result of the operation is the freezing of unfrozen soil and/or the lowering of the permafrost temperature with a consequent increase in its strength of adhesion (added freeze strength) to the foundation.
- thermo-valve unit in FIG. 2, I have illustrated the present thermo-valve unit as applied to a post and pad type foundation.
- the tubular container is substanttially like that of FIG. 1 in its application to a permafrost area and the same reference numerals have been given thereto to designate like parts.
- the metal tubular container 10 is shown to be vertically disposed in a well 15 and to project above ground surface level, and to be equipped at its lower end with a metal base plate 25 that is secured to the container by means of a plurality of metal fillets 26; the plate 25 rests upon a gravel pad 27.
- the plate 25 is shown as being of substantially greater diameter than the contatiner l and equipped with a plywood lower face 28, or a face of other material of low heat conductivity, with breather holes 29 formed therethrough in order to permit vapor migration to take place freely to the colder upper surface of the plate 25.
- the plywood face 28, reduces the heat transfer to the lower surface of plate 25 so that, during the time of greatest cooling, the condensation of the Water vapor to ice will occur on the upper surface and thereby eliminate icing of the lower surface.
- Cooling of the footing subgrade results from a combination of thermal conduction, evaporation, and/ or sublimation of moisture in the subgrade. It is indicated in FIG. 2 by arrows which show direction of heat flow, that heat is extracted from the pad and surrounding permafrost area by the container 110 and its liquid 12. Saturated vapor rises into the upper end portion of the container and its heat is extracted by the surrounding earth or construction materials above the permafrost area. The result is a cooler foundation area and warmer area above the permafrost line. Radiation and convection in the areas above the permafrost line results in condensation of the saturated vapor and the return of condensate to the supply of liquid in the lower end of the container. In this installation, the conduction of heat from the permafrost area is facilitated by the metal base plate 25 and the fillets 26.
- FIG. is a view illustrating use of the present system embodying pipes 49 buried beneath an ongrade slab 41 and terminating outside the structural subgrade to provide cooling of the subgrade to maintain or to help maintain a permafrost foundation.
- FIG. 6 I have illustrated the addition of a condensation trap 4-5 to the basic thermo-valve system of FIG. 1 in order to hold the liquid in a position where it can serve as a high heat source for short periods of time with a continuous but lower capacity heat source serving to elevate the vapors to the trap area during periods of lower temperature in the trap-area.
- the system provides heat from thermal or air convection to thaw a vertical drain system in areas where drainage would be required concurrently with thawing weather.
- thermo-valve and thermo-valve trap systems are applicable to some types of vertical and sand drains and dry well construction.
- the thermo-valve trap is also applicable to a particular configuration of thaw line construction in which the primary heat source must be kept elevated above the heat dissipating area as illustrated in FIG. 4.
- Reference numerals applied in FIG. 6 designate parts that correspond to similarly identified parts in FIG.
- thermo-valve 4 pipes Sit-5i for use as a stronger and more impervious core for earth dams, coifer dams, and temporary retaining walls of the character illustrated.
- the thermo-valve pipes herein are illustrated as equipped with heat absorption fins 51 about their upper end portions.
- FIG. 8 illustrates the use of the present thermo-valve system for maintaining a permanently frozen condition in foundation supporting soil in arctic and subarctic areas, when said thermo-valve penetrates a heat source area such as, for example, a body of sea water.
- the tubular metal housing of the thermovalve is designated by reference numeral 10 which is shown to be vertically disposed and to penetrate at its lower end in permanently frozen soil designated at 60. Above this frozen soil, the housing passes through tide water 61 which has high and low tide elevations designated, respectively, by the lines 62 and 63. At its top end the tubular housing is closed by a plate 64 on which a frame structure is supported. This plate is equipped at its underside With a plurality of concentric fins 65 to expedite or facilitate heat loss through the head plate and structural framing supporting thereon.
- fins 66 of annular formation are applied horizontally to the housing walls. These fins are inwardly and downwardly dished to divert condensation from tube surface to prevent reevaporation of condensate from above tidal area during high tide periods, but to permit condensation at low tides during cold weather.
- a suitable insulation 68 which has for its purpose to prevent reevaporation of condensate from the heat source area.
- a bank or succession of annular fins 7t that divert the rising vapors away from the heat transfer from soil to the selected liquid 12 that is contained in the lower end portion of the thermo-valve.
- a series of concentric fins 72 designed to permit a higher rate of heat transfer through the base plate ina position that will permit a minimum of vapor insulation of the heat absorption surface.
- thermo-valve system may be put to various uses other than herein i1- lustrated, one of which could be its employment as an anchor for securement of guying cables and wires for towers and the like, where it is important that the anchoring soil be retained in its frozen condition.
- the manner of installing the thermo-valve as an anchoring device would vary with conditions and requirements of its use as such, but its mode of operation would be in accordance with the disclosures of the specification. I
- a permafrost foundation system comprising a sealed, elongated, hollow container supported in a permafrost area and extending upwardly therefrom; said container being partially filled with a body of liquid of low boiling point from which vapor will be caused to rise and condense in an upper heat dissipating portion of the container during periods of below freezing temperature, thereby lowering vapor pressure in the container, with incident evaporation of liquid in its lower portion with a consequent reduction-in temperature that allows heat to flow from the surrounding soil to the container, thereby reducing temperature of the permafrost with an incident increase of its strength and stability; the body of liquid in the container being restricted from boiling during periods that the upper portion of the container is subjected to above freezing temperatures by the super heat condition, a small portion of vapor in the container will not convect t0 the lower portion of the container because of its lower density, thus resulting in a discontinuance of thermal activity during periods of above freezing temperatures; said container being composed of metal and being closed at its lower end
- a permafrost foundation system comprising a sealed, elongated, tubular container supported in a permafrost area and extending upwardly therefrom, said container being partially filled with a body of liquid of low boiling point from which a vapor will be caused to rise and condense in an upper heat dissipating portion of the container during periods of below freezing temperatures, thereby lowering vapor pressure in the container with incident evaporation of liquid in its lower portion with a consequent reduction in temperature that allows heat to flow from the surrounding soil to the container, thereby reducing temperature of the permafrost with an incident increase of its strength and stability, the body of liquid of the container being restricted from boiling during periods that the upper portion of the container is subjected to above freezing temperatures by the super heat condition, a small portion of vapor in the container will not convect to the lower portion of the container because of its lower density thus resulting in a discontinuance of thermal activity during periods of above freezing temperatures; said container being composed of metal and being closed at its lower end by a metal
- a permafrost foundation system including a device for maintaining a permafrost layer of earth properly frozen wherein the permafrost layer includes a surface layer having an upper surface exposed to the atmosphere, said device comprising an elongated, generally vertically extending body, said body including a sealed chamber extending from a lower end portion to an upper end portion thereof and said upper portion extending into the atmosphere above said upper surface, a central portion extending through said surface layer and a lower portion extending into said permafrost area below said surface layer, the lower portion of said chamber being filled with a liquid whose vapors Will condense below the thawing temperature of said permafrost layer, the remainder of said chamber being filled with the vapors of said liquid, heat dissipating means on said upper portion capable of dissipating heat from said vapors to atmosphere when the temperature of the atmosphere is below the thawing temperature of said permafrost layer whereby said vapors will condense and flow into said lower portion
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Sustainable Energy (AREA)
- Civil Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Paleontology (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Environmental & Geological Engineering (AREA)
- Soil Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
Nov. 16, 1965 E. L. LONG MEANS FOR MAINTAINING PERMAFROST FOUNDATIONS 4 Sheets-Sheet 1 INVENTOR. ERWEN L. LQNG Filed July 30, 1964 Maj/MM Nov. 16, I965 E. L. LONG 3,217,791 1' MEANS FOR MAINTAINING PERMAFROST FOUNDATIONS Filed July 30, 1964 4 Sheets-Sheet 3 ERWIN L. LONG INVENTOR.
Nov. 16, 1965 E. L. LONG 3,17,791
MEANS FOR MAINTAINING PERMAFROST FOUNDATIONS Filed July 30, 1964 4 Sheets-Sheet 4 ERWIN L. 1.0m; INVENTOR.
United States Patent 3,217,791 MEANS FOR MAINTAINING PERMA-FROST FOUNDATIONS Erwin L. Long, 2305 Denali Blvd., Anchorage, Alaska Filed July 30, 1964, Ser. No. 386,341 Claims. (Cl. 16545) This application is a continuation-in-part of my abandoned application, Serial No. 86,217, filed January 31, 1961.
This invention relates to means for maintaining an improved permafrost foundation system, and to various configurations of the system. More particularly, it relates to what has herein been designated as a thermo-valve foundation system that is based on a novel means of establishing and maintaining a permafrost layer.
More specificially, the present system employs as one of its characterizing elements, a sealed hollow tubular vessel containing a liquid of low boiling point, which vessel, upon being so disposed as to have an above ground portion thereof subjected to below freezing temperatures, will effect a transfer of heat away from the buried end portion thereof thus making it possible to accomplish the following results.
(1) The freezing of unfrozen foundation material in the bearing portion of the foundation;
(2) Lowering of the average annular temperature of the foundation material;
(3) Increasing the structural stability and strength of the foundation material;
(4) Decreasing the water permeability of the foundation material;
(5) Lowering the cost of accelerated foundation construction on marginal permafrost and;
(6) Reducing or eliminating the maintenance cost of additional sub-grade cooling where required.
Further objects and advantages of the invention reside in the details of construction of its parts and in the mode of use of the systems as will hereinafter be fully described.
In accomplishing the above mentioned and other objects of the invention, I have provided the improved details of construction, the preferred forms of which are illustrated in the accompanying drawings, wherein:
FIG. 1 is a longitudinal sectional view of a thermvalve piling as installed in a foundation construction.
FIG. 2 is a sectional view, similar to that of FIG. 1 but showing an adaptation of the present thermo-valve principle to a post and pad type foundation.
FIG. 3 is a vertical cross-sectional view illustrating an application of the present thermo-valve principle for a thawing operation as applied to a roadway in a permafrost area.
FIG. 4 is a view, similar to that of FIG. 3, showing use of the present system when the heat absorption area must be higher than the condensation area.
FIG. 5 is a sectional view illustrating use of the present thermo-valve on grade construction.
FIG. 6 is a sectional view illustrating employment of a condensation trap in connection with the present system.
FIG. 7 is a sectional view illustrating use of the present system for stabilizing a subgrade.
.FIG. 8 is a sectional view illustrating use of a thermovalve for maintaining a permanently frozen condition in arctic and sub-arctic areas.
Referring more in detail to the drawings:
Before giving detailed descriptions of the several views of the drawings, it will here be explained that the addition of liquid propane, carbon dioxide, or other liquids of low boiling point to a suitable enclosed container used as herein described is the characterizing feature of the ice thermo-valve foundation system of this invention as set forth in the following specification.
In the several views illustrating the present system and various uses, the thermo-valve is designated in its entirety by reference character T. It comprises a rather elongated tubular container, closed and sealed at its opposite ends, and partially filled with a selected liquid of low boiling point. The container, preferably, is cylindrical in form and is equipped with suitable high pressure, quick disconnect fittings, or with other suitable fittings, not herein shown, of the normally used type for the application of additional liquid to the container.
Liquid level in the container may be controlled by various means but preferably by the use of a small bleed valve with a section of tubing extended into and downwardly in the vessel to a point at which it is desired to establish the liquid level therein, for example, at the level as has been illustrated in FIG. 1 by the dash line 11.
The use of the present thermo-valve takes into consideration the following fundamental physical principles:
(1) The vapor density of any given substance is lighter than its liquid state. (2) The vapor pressure of a substance is increased with an increase in temperautre. (3) The vapor density of a substance at constant volume decreases with a reduction in temperature.
Referring now in detail to the several views of the drawings.
In FIG. 1, I have illustrated the installation of a thermo-valve piling in a permafrost area. The piling comprises a cylindrically tubular container closed and sealed at its opposite ends by end plates 1111, and enclosing a predetermined amount of the selected suitable liquid 12 therein. This thermo-valve unit may be either a foundation piling or a separate pipe attached to the foundation piling. The top level of the liquid 12 is here shown to be substantially at the top of the permafrost area as designated by horizontal dash line 11. For satisfactory operation, there should be no internal restriction in the container 10 to hinder the return of the vapor condensate to the elevation of desired heat extraction of the pile or cylinder, the containers must be so constructed as to prevent leakage or rupture at the particular saturated vapor pressure induced by the selected fluid at the maximum operating temperature.
The temperature of the system will be controlled by the rate of heat flow to the liquid 12 at the lower end of the piling, the rate of gas flow within the tube, the rate of condensation at the upper end of the piling, and the rate of heat dissipating to the air, ground and portions of the structures adjoining the thermo-valve.
In FIG. 1 of the drawings, the tubular piling 10 is shown as being vertically disposed within a well 15 formed in the permafrost area 16, and resting at its lower end on a gravel pad 18 and surrounded up to the top of the permafrost by a gravel filling 20. Above the permafrost 11 the cylinder 10 is surrounded by an earth filling 21. Above the grade, the container 10 is surrounded by an exposed frame designated by numeral 23. I
The application of this unit thermo-valve foundation in an area results in the following: During periods of subfreezing temperatures vapor in upper end of its closed vessel is condensed on the column surface by the conduction of heat away from the column in the upper soil layers and connecting structural members and by radiation and convection from the exposed portion of the column. The condensed vapor returns to the lower end by gravity. The condensation of the vapor reduces the pressure in the column and permits boiling and evaporation of the liquid at the bottom whenever its temperature is greater than the condensation temperature. The evaporation of the liquid causes a lowering of its temperature with a resultant inflow of heat from the adjoining permafrost. The result of the operation is the freezing of unfrozen soil and/or the lowering of the permafrost temperature with a consequent increase in its strength of adhesion (added freeze strength) to the foundation.
In FIG. 2, I have illustrated the present thermo-valve unit as applied to a post and pad type foundation. In this view the tubular container is substanttially like that of FIG. 1 in its application to a permafrost area and the same reference numerals have been given thereto to designate like parts. In this View the metal tubular container 10 is shown to be vertically disposed in a well 15 and to project above ground surface level, and to be equipped at its lower end with a metal base plate 25 that is secured to the container by means of a plurality of metal fillets 26; the plate 25 rests upon a gravel pad 27. The plate 25 is shown as being of substantially greater diameter than the contatiner l and equipped with a plywood lower face 28, or a face of other material of low heat conductivity, with breather holes 29 formed therethrough in order to permit vapor migration to take place freely to the colder upper surface of the plate 25. The plywood face 28, reduces the heat transfer to the lower surface of plate 25 so that, during the time of greatest cooling, the condensation of the Water vapor to ice will occur on the upper surface and thereby eliminate icing of the lower surface.
Cooling of the footing subgrade results from a combination of thermal conduction, evaporation, and/ or sublimation of moisture in the subgrade. It is indicated in FIG. 2 by arrows which show direction of heat flow, that heat is extracted from the pad and surrounding permafrost area by the container 110 and its liquid 12. Saturated vapor rises into the upper end portion of the container and its heat is extracted by the surrounding earth or construction materials above the permafrost area. The result is a cooler foundation area and warmer area above the permafrost line. Radiation and convection in the areas above the permafrost line results in condensation of the saturated vapor and the return of condensate to the supply of liquid in the lower end of the container. In this installation, the conduction of heat from the permafrost area is facilitated by the metal base plate 25 and the fillets 26.
FIG. is a view illustrating use of the present system embodying pipes 49 buried beneath an ongrade slab 41 and terminating outside the structural subgrade to provide cooling of the subgrade to maintain or to help maintain a permafrost foundation. By reversing the slope it would be possible to similarly prevent freezing in the subgrade beneath refrigerated structures in normally thawed areas.
In FIG. 6, I have illustrated the addition of a condensation trap 4-5 to the basic thermo-valve system of FIG. 1 in order to hold the liquid in a position where it can serve as a high heat source for short periods of time with a continuous but lower capacity heat source serving to elevate the vapors to the trap area during periods of lower temperature in the trap-area. As illustrated in FIG. 6, the system provides heat from thermal or air convection to thaw a vertical drain system in areas where drainage would be required concurrently with thawing weather.
The thermo-valve and thermo-valve trap systems are applicable to some types of vertical and sand drains and dry well construction. The thermo-valve trap is also applicable to a particular configuration of thaw line construction in which the primary heat source must be kept elevated above the heat dissipating area as illustrated in FIG. 4. Reference numerals applied in FIG. 6 designate parts that correspond to similarly identified parts in FIG.
In FIG. 7, has been illustrated an application of the present system for the stabilizing of subgrade by its use for creating permafrost with imbedded thermo-valve 4 pipes Sit-5i) for use as a stronger and more impervious core for earth dams, coifer dams, and temporary retaining walls of the character illustrated. The thermo-valve pipes herein are illustrated as equipped with heat absorption fins 51 about their upper end portions.
FIG. 8 illustrates the use of the present thermo-valve system for maintaining a permanently frozen condition in foundation supporting soil in arctic and subarctic areas, when said thermo-valve penetrates a heat source area such as, for example, a body of sea water.
In this view, the tubular metal housing of the thermovalve is designated by reference numeral 10 which is shown to be vertically disposed and to penetrate at its lower end in permanently frozen soil designated at 60. Above this frozen soil, the housing passes through tide water 61 which has high and low tide elevations designated, respectively, by the lines 62 and 63. At its top end the tubular housing is closed by a plate 64 on which a frame structure is supported. This plate is equipped at its underside With a plurality of concentric fins 65 to expedite or facilitate heat loss through the head plate and structural framing supporting thereon.
In that area of the housing that is between the elevations of high and low tide lines, fins 66 of annular formation are applied horizontally to the housing walls. These fins are inwardly and downwardly dished to divert condensation from tube surface to prevent reevaporation of condensate from above tidal area during high tide periods, but to permit condensation at low tides during cold weather.
Applied to the interior wall surface of the housing, along that portion which extends from the permanently frozen ground to low tide level, is a suitable insulation 68 which has for its purpose to prevent reevaporation of condensate from the heat source area.
In that lower end portion of the housing which is contained in the frozen soil, is a bank or succession of annular fins 7t) that divert the rising vapors away from the heat transfer from soil to the selected liquid 12 that is contained in the lower end portion of the thermo-valve. Below the bank of fins 70 is a series of concentric fins 72 designed to permit a higher rate of heat transfer through the base plate ina position that will permit a minimum of vapor insulation of the heat absorption surface.
It is to be understood that the present thermo-valve system may be put to various uses other than herein i1- lustrated, one of which could be its employment as an anchor for securement of guying cables and wires for towers and the like, where it is important that the anchoring soil be retained in its frozen condition. The manner of installing the thermo-valve as an anchoring device would vary with conditions and requirements of its use as such, but its mode of operation would be in accordance with the disclosures of the specification. I
What I claim as new is:
l. A permafrost foundation system comprising a sealed, elongated, hollow container supported in a permafrost area and extending upwardly therefrom; said container being partially filled with a body of liquid of low boiling point from which vapor will be caused to rise and condense in an upper heat dissipating portion of the container during periods of below freezing temperature, thereby lowering vapor pressure in the container, with incident evaporation of liquid in its lower portion with a consequent reduction-in temperature that allows heat to flow from the surrounding soil to the container, thereby reducing temperature of the permafrost with an incident increase of its strength and stability; the body of liquid in the container being restricted from boiling during periods that the upper portion of the container is subjected to above freezing temperatures by the super heat condition, a small portion of vapor in the container will not convect t0 the lower portion of the container because of its lower density, thus resulting in a discontinuance of thermal activity during periods of above freezing temperatures; said container being composed of metal and being closed at its lower end by a metal disc of substantially greater diameter than the diameter of the container; a disc of low conductivity applied to the lower surface of the metal disc; both of said discs having a plurality of aligned holes formed therein at greater radii from the axial center of the container than the tubular container, to permit water vapor to pass upwardly through said holes to the upper colder surface of the disc and thereby eliminate detrimental icing of the lower surface of the disc.
2. A permafrost foundation system comprising a sealed, elongated, tubular container supported in a permafrost area and extending upwardly therefrom, said container being partially filled with a body of liquid of low boiling point from which a vapor will be caused to rise and condense in an upper heat dissipating portion of the container during periods of below freezing temperatures, thereby lowering vapor pressure in the container with incident evaporation of liquid in its lower portion with a consequent reduction in temperature that allows heat to flow from the surrounding soil to the container, thereby reducing temperature of the permafrost with an incident increase of its strength and stability, the body of liquid of the container being restricted from boiling during periods that the upper portion of the container is subjected to above freezing temperatures by the super heat condition, a small portion of vapor in the container will not convect to the lower portion of the container because of its lower density thus resulting in a discontinuance of thermal activity during periods of above freezing temperatures; said container being composed of metal and being closed at its lower end by a metal disc of substantially greater diameter than the diameter of the container, a disc of lower conductivity applied to a lower face of the metal disk, both discs having a plurality of aligned holes formed therein at greater radii from the center than the tubular container, to permit Water vapor to pass upwardly through said holes to the upper, colder surface of the disc and thereby eliminate detrimental icing of the lower surface of the disc.
3. The system of claim Z'wherein said container is positioned in a tidal water area and said container is provided on the inside by concentric rings whereby liquid condensate is diverted away from its walls to prevent its reevaporation within the tidal height when in contact with the tidal waters but yet to permit condensation between these rings to effect the refreezing of the underwater foundation during low tidal levels when the tidal water is not in contact with that portion of the container.
4. A permafrost foundation system including a device for maintaining a permafrost layer of earth properly frozen wherein the permafrost layer includes a surface layer having an upper surface exposed to the atmosphere, said device comprising an elongated, generally vertically extending body, said body including a sealed chamber extending from a lower end portion to an upper end portion thereof and said upper portion extending into the atmosphere above said upper surface, a central portion extending through said surface layer and a lower portion extending into said permafrost area below said surface layer, the lower portion of said chamber being filled with a liquid whose vapors Will condense below the thawing temperature of said permafrost layer, the remainder of said chamber being filled with the vapors of said liquid, heat dissipating means on said upper portion capable of dissipating heat from said vapors to atmosphere when the temperature of the atmosphere is below the thawing temperature of said permafrost layer whereby said vapors will condense and flow into said lower portion and again absorb heat from said permafrost layer and cause said liquid to vaporize and a layer of gravel completely surrounding said lower portion and spacing said lower portion from said permafrost layer.
5. A permafrost foundation system as defined in claim 4 wherein said liquid is selected from the group consisting of carbon dioxide and propane.
References Cited by the Examiner FOREIGN PATENTS 475,226 4/1915 France.
CHARLES SUKALO, Primary Examiner.
Claims (1)
- 4. A PERMAFROST FOUNDATION SYSTEM INCLUDING A DEVICE FOR MAINTAINING A PERMAFROST LAYER OF EARTH PROPERLY FROZEN WHEREIN THE PREMAFROST LAYER INCLUDES A SURFACE LAYER HAVING AN UPPER SURFACE EXPOSED TO THE ATMOSPHERE, SAID DEVICE COMPRISING AN ELONGATED, GENERALLY VERTICALLY EXTENDING BODY, SAID BODY INCLUDING A SEALED CHAMBER EXTENDING FROM A LOWER END PORTION TO AN UPPER END PORTION THEREOF AND SAID UPPER PORTION EXTENDING INTO THE ATMOSPHERE ABOVE SAID UPPER SURFACE, A CENTRAL PORTION EXTENDING INTO SAID PERMAFROST AREA BELOW SAID PORTION EXTENDING INTO SAID PERMAFROST AREA BELOW SAID SURFACE LAYER, THE LOWER PORTION OF SAID CHAMBER BEING FILLED WITH A LIQUID WHOSE VAPORS WILL CONDENSE BELOW THE THAWING TEMPERATURE OF SAID PERMAFROST LAYER, THE REMAINDER OF SAID CHAMBER BEING FILLED WITH THE VAPORS OF SAID LIQUID, HEAT DISSIPATING MEANS ON SAID UPPER PORTION CAPABLE OF DISSIPATING HEAT FROM SAID VAPORS TO ATMOSPHERE WHEN THE TEMPERATURE OF SAID PERMAFROST LAYER BELOW THE THAWING TEMPERATURE OF SAID PERMAFROST LAYER WHEREBY SAID VAPORS WILL CONDENSE AND FLOW INTO SAID LOWER PORTION AND AGAIN ABSORB HEAT FROM SAID PERMAFROST LAYER AND CAUSE SAID LIQUID TO VAPORIZE AND A LAYER OF GRAVEL COMPLETELY SURROUNDING SAID LOWER PORTION AND SPACING SAID LOWER PORTION FROM SAID PERMAFROST LAYER.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US386341A US3217791A (en) | 1964-07-30 | 1964-07-30 | Means for maintaining perma-frost foundations |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US386341A US3217791A (en) | 1964-07-30 | 1964-07-30 | Means for maintaining perma-frost foundations |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3217791A true US3217791A (en) | 1965-11-16 |
Family
ID=23525192
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US386341A Expired - Lifetime US3217791A (en) | 1964-07-30 | 1964-07-30 | Means for maintaining perma-frost foundations |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3217791A (en) |
Cited By (88)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3472314A (en) * | 1967-07-26 | 1969-10-14 | Thermo Dynamics Inc | Temperature control tube |
| US3568762A (en) * | 1967-05-23 | 1971-03-09 | Rca Corp | Heat pipe |
| US3648767A (en) * | 1967-07-26 | 1972-03-14 | Thermo Dynamics Inc | Temperature control tube |
| US3650119A (en) * | 1970-04-02 | 1972-03-21 | Joseph T Sparling | Method and system for transporting oil by pipe line |
| US3662832A (en) * | 1970-04-30 | 1972-05-16 | Atlantic Richfield Co | Insulating a wellbore in permafrost |
| US3675430A (en) * | 1970-02-05 | 1972-07-11 | Atlantic Richfield Co | Arctic construction and drilling |
| US3675429A (en) * | 1970-04-03 | 1972-07-11 | Exxon Production Research Co | Arctic ice platform |
| US3706204A (en) * | 1971-02-10 | 1972-12-19 | Erwin L Long | Method and apparatus for improving bearing strength of piles in permafrost |
| US3757854A (en) * | 1971-06-24 | 1973-09-11 | Us Navy | Horizontal bottom-freezing apparatus |
| US3763931A (en) * | 1972-05-26 | 1973-10-09 | Mc Donnell Douglas Corp | Oil well permafrost stabilization system |
| US3766985A (en) * | 1971-12-01 | 1973-10-23 | Univ Kansas State | Production of oil from well cased in permafrost |
| US3788389A (en) * | 1971-08-25 | 1974-01-29 | Mc Donnell Douglas Corp | Permafrost structural support with heat pipe stabilization |
| US3823769A (en) * | 1972-11-02 | 1974-07-16 | Mc Donnell Douglas Corp | Separable heat pipe assembly |
| US3840068A (en) * | 1971-08-25 | 1974-10-08 | Mc Donnell Douglas Corp | Permafrost structural support with heat pipe stabilization |
| US3898851A (en) * | 1974-08-12 | 1975-08-12 | Dresser Ind | Method of packing heat pipes within a pipe pile involving the vibration of the packing material |
| US3898849A (en) * | 1974-08-12 | 1975-08-12 | Dresser Ind | Method of packing heat pipes within a pipe pile involving the optimized frequency of vibration of the packing material |
| US3902547A (en) * | 1971-08-25 | 1975-09-02 | Mc Donnell Douglas Corp | Permafrost structural support with compatible heat pipe means |
| US3935900A (en) * | 1971-08-25 | 1976-02-03 | Mcdonnell Douglas Corporation | Permafrost structural support with integral heat pipe means |
| US3976125A (en) * | 1972-09-25 | 1976-08-24 | The Dow Chemical Company | Thermal bleed for permafrost environments |
| US3990502A (en) * | 1971-02-04 | 1976-11-09 | The Dow Chemical Company | Arrangement to control heat flow between a member and its environment |
| US4003432A (en) * | 1975-05-16 | 1977-01-18 | Texaco Development Corporation | Method of recovery of bitumen from tar sand formations |
| US4036286A (en) * | 1972-11-02 | 1977-07-19 | Mcdonnell Douglas Corporation | Permafrost stabilizing heat pipe assembly |
| US4040480A (en) * | 1976-04-15 | 1977-08-09 | Atlantic Richfield Company | Storage of radioactive material |
| US4050509A (en) * | 1976-10-28 | 1977-09-27 | Dynatherm Corporation | Down-pumping heat pipes |
| US4067198A (en) * | 1975-06-18 | 1978-01-10 | Long Erwin L | Method and structural support for increasing load carrying capacity in permafrost |
| US4254821A (en) * | 1979-08-10 | 1981-03-10 | Thermo Electron Corporation | Heat pipe deicing apparatus |
| US4269539A (en) * | 1978-12-07 | 1981-05-26 | Exxon Production Research Company | Method for preventing damage to a refrigerated gas pipeline due to excessive frost heaving |
| US4373343A (en) * | 1980-05-12 | 1983-02-15 | U.S. Philips Corporation | Hot water production apparatus utilizing a heat pump |
| FR2525756A1 (en) * | 1982-04-23 | 1983-10-28 | Foerenade Fabriksverken | DEVICE FOR TUBULAR HEAT EXCHANGERS PLACED IN A LAKE |
| EP0136458A1 (en) * | 1983-08-08 | 1985-04-10 | Firma Heinrich Bucher | Container for cooling an article to be cooled |
| US4676695A (en) * | 1985-11-01 | 1987-06-30 | Union Oil Company Of California | Method for preventing thaw settlement along offshore artic pipelines |
| US4961463A (en) * | 1989-04-26 | 1990-10-09 | The United States Of America As Represented By The Secretary Of The Army | Thermosyphon condensate return device |
| US5022236A (en) * | 1989-08-04 | 1991-06-11 | Cryo-Cell International, Inc. | Storage apparatus, particularly with automatic insertion and retrieval |
| US5190098A (en) * | 1992-04-03 | 1993-03-02 | Long Erwin L | Thermosyphon with evaporator having rising and falling sections |
| US5238053A (en) * | 1992-04-03 | 1993-08-24 | Long Erwin L | Method of and system for warming road surface |
| US6309142B1 (en) * | 1995-09-22 | 2001-10-30 | Konoike Construction Co., Ltd. | Structure for preventing frost heave damage to an underground structure and a method of installing the same |
| RU2286423C1 (en) * | 2005-02-28 | 2006-10-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" | Cold accumulation device |
| RU2295002C2 (en) * | 2005-05-24 | 2007-03-10 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" | Cold accumulation device |
| US20080292412A1 (en) * | 2003-04-08 | 2008-11-27 | Baugh Benton F | Arctic platform |
| RU2384671C1 (en) * | 2009-02-11 | 2010-03-20 | Александр Иванович Абросимов | Pile support for structures erected on permanently frozen soil |
| RU2384672C1 (en) * | 2009-02-11 | 2010-03-20 | Александр Иванович Абросимов | Cooled pile support for structures erected on permanently frozen soil |
| RU2405889C1 (en) * | 2009-04-22 | 2010-12-10 | Общество с ограниченной ответственностью "Ньюфрост" | Device for stabilisation of plastic-frozen soils with year-round mode of operation |
| RU2415226C1 (en) * | 2010-05-31 | 2011-03-27 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | System for temperature stabilisation of structures foundation on permafrost soils |
| RU2416002C1 (en) * | 2010-06-10 | 2011-04-10 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | System for temperature stabilisation of structures foundation on permafrost soils |
| CN102094413A (en) * | 2010-10-24 | 2011-06-15 | 西南交通大学 | Heat rod for pipeline |
| RU2422589C1 (en) * | 2009-10-29 | 2011-06-27 | Институт криосферы Земли Сибирского отделения Российской Академии Наук | Method to increase strength of plastic frozen soils and foundation for method realisation |
| FR2965038A1 (en) * | 2010-09-22 | 2012-03-23 | Total Sa | METHOD AND DEVICE FOR STORING A CRYOGENIC FLUID FOR SOIL COMPRISING PERGELISOL |
| US20120102985A1 (en) * | 2010-10-27 | 2012-05-03 | General Electric Company | Conductive surface heater for a refrigerator |
| US20120132393A1 (en) * | 2009-08-03 | 2012-05-31 | Skanska Sverige Ab | Arrangement and method for storing thermal energy |
| US20130025819A1 (en) * | 2011-07-25 | 2013-01-31 | Tai-Her Yang | Close-loop temperature equalization device having single-flowpath heat releasing device |
| US20140041872A1 (en) * | 2012-08-13 | 2014-02-13 | Chevron U.S.A. Inc. | Enhancing Production of Clathrates by Use of Thermosyphons |
| RU2515667C1 (en) * | 2012-10-03 | 2014-05-20 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | System for temperature stabilisation of structure foundations on permafrost soils |
| RU2527969C1 (en) * | 2013-04-08 | 2014-09-10 | Открытое Акционерное Общество "Фундаментпроект" | Cooling device for depth temperature stabilisation of soils, foundations of buildings and structures |
| RU2548284C1 (en) * | 2013-10-10 | 2015-04-20 | Роберт Мияссарович Хафизов | Method to arrange panel-wall foundation of reservoir with cooled product in weak permafrost soil |
| RU2548633C1 (en) * | 2014-02-05 | 2015-04-20 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | Method of refilling heat stabiliser |
| RU2554955C1 (en) * | 2014-03-31 | 2015-07-10 | Федеральное Государственное Бюджетное Учреждение Науки Институт Криосферы Земли Сибирского Отделения Российской Академии Наук (Икз Со Ран) | Straight-flow natural-convection cooling device for thermal stabilisation of frozen soil |
| RU2556591C1 (en) * | 2014-03-20 | 2015-07-10 | Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") | Device for temperature stabilisation of permanently frozen grounds |
| WO2015147683A1 (en) * | 2014-03-28 | 2015-10-01 | Открытое акционерное общество "Акционерная компания по транспорту нефти "ТРАНСНЕФТЬ" | Device for heat stabilization of perennial permafrost soils |
| RU2572319C1 (en) * | 2014-12-31 | 2016-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" | Spatial foundation support of reservoir on frozen base |
| RU2591272C1 (en) * | 2015-05-27 | 2016-07-20 | Открытое Акционерное Общество "Фундаментпроект" | Method for installation of light cooling devices for temperature stabilization of permanently frozen grounds |
| RU2616029C1 (en) * | 2015-12-25 | 2017-04-12 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Method of thermal stabilization of soil base of pile foundation of pipe supports |
| RU2620664C1 (en) * | 2015-12-30 | 2017-05-29 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Method for heat stabilization of permafrost soils and device for its implementation |
| RU172000U1 (en) * | 2017-03-16 | 2017-06-26 | Вадим Васильевич Пассек | Device for freezing soils on the side sections of building structures |
| RU2627793C1 (en) * | 2016-04-27 | 2017-08-11 | Виктор Иванович Гвоздик | Method of installing heat stabilizers in ventilated underground of operated buildings |
| RU2629281C1 (en) * | 2016-04-29 | 2017-08-28 | Илья Павлович Рило | Cooling thermosiphon for depth thermo-stabilization of soils (versions) |
| RU2634315C1 (en) * | 2016-07-20 | 2017-10-25 | Открытое Акционерное Общество "Фундаментпроект" | Method for assembling cooling devices for temperature stabilization of permafrost soils unstable in well walls |
| CN107310022A (en) * | 2017-07-27 | 2017-11-03 | 江苏腾晖电力技术有限公司 | Foundation pile for Frozen Ground Area photovoltaic bracket and preparation method thereof |
| RU2645035C1 (en) * | 2017-05-15 | 2018-02-15 | Лев Николаевич Хрусталев | Surface foundation for single-storey building on permafrost grounds |
| RU2645193C1 (en) * | 2016-12-27 | 2018-02-16 | Александр Иванович Абросимов | Plant for cooling the soil and set of products for construction of such plant |
| US20180051432A1 (en) * | 2016-08-18 | 2018-02-22 | Ian R. Cooke | Snow and Ice Melting Device, System and Corresponding Methods |
| RU2655857C1 (en) * | 2017-07-18 | 2018-05-29 | Илья Рило | Cooling thermosyphon for site thermal stabilization of soils (options) |
| CN108224804A (en) * | 2018-03-13 | 2018-06-29 | 北京交通大学 | Towards the solar energy heat collector and implementation of seasonal frozen soil region subgrade engineering |
| US10100486B2 (en) | 2014-03-28 | 2018-10-16 | Public Joint Stock Company “Transneft” | Method for installing overhead transmission line supports on permafrost soils |
| CN109338841A (en) * | 2018-10-17 | 2019-02-15 | 东南大学 | One-way heat dissipation asphalt pavement structure and construction method for plateau permafrost area |
| RU2681161C1 (en) * | 2018-06-05 | 2019-03-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Device for stabilizing permafrost soil of piled foundation with casings |
| US10443207B2 (en) | 2014-03-28 | 2019-10-15 | Public Joint Stock Company “Transneft” | Pile foundations for supporting power transmission towers |
| RU2704091C1 (en) * | 2019-04-29 | 2019-10-23 | Илья Рило | Condenser of cooling thermosiphon for thermal stabilization of soils in cryolite zone |
| RU2706495C1 (en) * | 2019-06-18 | 2019-11-19 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Spatial reinforced concrete foundation platform on permafrost soil |
| CN110715568A (en) * | 2019-09-26 | 2020-01-21 | 广西大学 | One-way cold guide pipe utilizing phase change conduction |
| RU197180U1 (en) * | 2019-11-12 | 2020-04-08 | Геннадий Владимирович Аникин | Device for temperature stabilization of the foundations of structures |
| RU2755770C1 (en) * | 2021-03-12 | 2021-09-21 | федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» | Device for cooling plastic-frozen soil |
| RU2768247C1 (en) * | 2021-09-14 | 2022-03-23 | Общество с ограниченной ответственностью «МобиДик» | Three-circuit system of all-season thermal stabilization of permafrost soils of bases |
| US11359338B2 (en) * | 2015-09-01 | 2022-06-14 | Exotex, Inc. | Construction products and systems for providing geothermal heat |
| US11408645B2 (en) | 2018-08-27 | 2022-08-09 | Alaska Native Tribal Health Consortium | Hybrid thermosiphon system |
| RU2778817C1 (en) * | 2021-03-25 | 2022-08-26 | Северно-Западный институт экологии и природных ресурсов Академии наук Китая | Self-circulation preventing heaving during freezing heat collecting device and its ground base |
| US20220307729A1 (en) * | 2021-03-25 | 2022-09-29 | Northwest Institute Of Eco-Environment And Resources, Chinese Academy Of Sciences | Light-concentrating anti-frost anti-heave heat gathering device and subgrade thereof |
| US11493238B2 (en) * | 2018-08-23 | 2022-11-08 | Gary Scott Peele | Geothermal heat exchange reservoirs and related methods and systems |
| US12352453B2 (en) | 2018-08-23 | 2025-07-08 | Gary Scott Peele | Geothermal heat exchange reservoirs and related methods and systems |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR475226A (en) * | 1914-01-29 | 1915-04-26 | Henri Monbeig | Devices for using the temperature difference between the lower soil layers and the atmosphere |
-
1964
- 1964-07-30 US US386341A patent/US3217791A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR475226A (en) * | 1914-01-29 | 1915-04-26 | Henri Monbeig | Devices for using the temperature difference between the lower soil layers and the atmosphere |
Cited By (104)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3568762A (en) * | 1967-05-23 | 1971-03-09 | Rca Corp | Heat pipe |
| US3648767A (en) * | 1967-07-26 | 1972-03-14 | Thermo Dynamics Inc | Temperature control tube |
| US3472314A (en) * | 1967-07-26 | 1969-10-14 | Thermo Dynamics Inc | Temperature control tube |
| US3675430A (en) * | 1970-02-05 | 1972-07-11 | Atlantic Richfield Co | Arctic construction and drilling |
| US3650119A (en) * | 1970-04-02 | 1972-03-21 | Joseph T Sparling | Method and system for transporting oil by pipe line |
| US3675429A (en) * | 1970-04-03 | 1972-07-11 | Exxon Production Research Co | Arctic ice platform |
| US3662832A (en) * | 1970-04-30 | 1972-05-16 | Atlantic Richfield Co | Insulating a wellbore in permafrost |
| US3990502A (en) * | 1971-02-04 | 1976-11-09 | The Dow Chemical Company | Arrangement to control heat flow between a member and its environment |
| US3706204A (en) * | 1971-02-10 | 1972-12-19 | Erwin L Long | Method and apparatus for improving bearing strength of piles in permafrost |
| US3757854A (en) * | 1971-06-24 | 1973-09-11 | Us Navy | Horizontal bottom-freezing apparatus |
| US3788389A (en) * | 1971-08-25 | 1974-01-29 | Mc Donnell Douglas Corp | Permafrost structural support with heat pipe stabilization |
| US3902547A (en) * | 1971-08-25 | 1975-09-02 | Mc Donnell Douglas Corp | Permafrost structural support with compatible heat pipe means |
| US3840068A (en) * | 1971-08-25 | 1974-10-08 | Mc Donnell Douglas Corp | Permafrost structural support with heat pipe stabilization |
| US3935900A (en) * | 1971-08-25 | 1976-02-03 | Mcdonnell Douglas Corporation | Permafrost structural support with integral heat pipe means |
| US3766985A (en) * | 1971-12-01 | 1973-10-23 | Univ Kansas State | Production of oil from well cased in permafrost |
| US3763931A (en) * | 1972-05-26 | 1973-10-09 | Mc Donnell Douglas Corp | Oil well permafrost stabilization system |
| US3976125A (en) * | 1972-09-25 | 1976-08-24 | The Dow Chemical Company | Thermal bleed for permafrost environments |
| US4036286A (en) * | 1972-11-02 | 1977-07-19 | Mcdonnell Douglas Corporation | Permafrost stabilizing heat pipe assembly |
| US3823769A (en) * | 1972-11-02 | 1974-07-16 | Mc Donnell Douglas Corp | Separable heat pipe assembly |
| US3898849A (en) * | 1974-08-12 | 1975-08-12 | Dresser Ind | Method of packing heat pipes within a pipe pile involving the optimized frequency of vibration of the packing material |
| US3898851A (en) * | 1974-08-12 | 1975-08-12 | Dresser Ind | Method of packing heat pipes within a pipe pile involving the vibration of the packing material |
| US4003432A (en) * | 1975-05-16 | 1977-01-18 | Texaco Development Corporation | Method of recovery of bitumen from tar sand formations |
| US4067198A (en) * | 1975-06-18 | 1978-01-10 | Long Erwin L | Method and structural support for increasing load carrying capacity in permafrost |
| US4040480A (en) * | 1976-04-15 | 1977-08-09 | Atlantic Richfield Company | Storage of radioactive material |
| US4050509A (en) * | 1976-10-28 | 1977-09-27 | Dynatherm Corporation | Down-pumping heat pipes |
| US4269539A (en) * | 1978-12-07 | 1981-05-26 | Exxon Production Research Company | Method for preventing damage to a refrigerated gas pipeline due to excessive frost heaving |
| US4254821A (en) * | 1979-08-10 | 1981-03-10 | Thermo Electron Corporation | Heat pipe deicing apparatus |
| US4373343A (en) * | 1980-05-12 | 1983-02-15 | U.S. Philips Corporation | Hot water production apparatus utilizing a heat pump |
| FR2525756A1 (en) * | 1982-04-23 | 1983-10-28 | Foerenade Fabriksverken | DEVICE FOR TUBULAR HEAT EXCHANGERS PLACED IN A LAKE |
| EP0136458A1 (en) * | 1983-08-08 | 1985-04-10 | Firma Heinrich Bucher | Container for cooling an article to be cooled |
| US4676695A (en) * | 1985-11-01 | 1987-06-30 | Union Oil Company Of California | Method for preventing thaw settlement along offshore artic pipelines |
| US4961463A (en) * | 1989-04-26 | 1990-10-09 | The United States Of America As Represented By The Secretary Of The Army | Thermosyphon condensate return device |
| US5022236A (en) * | 1989-08-04 | 1991-06-11 | Cryo-Cell International, Inc. | Storage apparatus, particularly with automatic insertion and retrieval |
| US5190098A (en) * | 1992-04-03 | 1993-03-02 | Long Erwin L | Thermosyphon with evaporator having rising and falling sections |
| US5238053A (en) * | 1992-04-03 | 1993-08-24 | Long Erwin L | Method of and system for warming road surface |
| US6309142B1 (en) * | 1995-09-22 | 2001-10-30 | Konoike Construction Co., Ltd. | Structure for preventing frost heave damage to an underground structure and a method of installing the same |
| US20080292412A1 (en) * | 2003-04-08 | 2008-11-27 | Baugh Benton F | Arctic platform |
| US20100003086A1 (en) * | 2003-04-08 | 2010-01-07 | Baugh Benton F | Arctic Platform |
| US8226326B2 (en) | 2003-04-08 | 2012-07-24 | Anadarko Petroleum Corporation | Arctic platform |
| RU2286423C1 (en) * | 2005-02-28 | 2006-10-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" | Cold accumulation device |
| RU2295002C2 (en) * | 2005-05-24 | 2007-03-10 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" | Cold accumulation device |
| RU2384672C1 (en) * | 2009-02-11 | 2010-03-20 | Александр Иванович Абросимов | Cooled pile support for structures erected on permanently frozen soil |
| RU2384671C1 (en) * | 2009-02-11 | 2010-03-20 | Александр Иванович Абросимов | Pile support for structures erected on permanently frozen soil |
| RU2405889C1 (en) * | 2009-04-22 | 2010-12-10 | Общество с ограниченной ответственностью "Ньюфрост" | Device for stabilisation of plastic-frozen soils with year-round mode of operation |
| US20120132393A1 (en) * | 2009-08-03 | 2012-05-31 | Skanska Sverige Ab | Arrangement and method for storing thermal energy |
| US9709337B2 (en) * | 2009-08-03 | 2017-07-18 | Skanska Sverige Ab | Arrangement for storing thermal energy |
| RU2422589C1 (en) * | 2009-10-29 | 2011-06-27 | Институт криосферы Земли Сибирского отделения Российской Академии Наук | Method to increase strength of plastic frozen soils and foundation for method realisation |
| RU2415226C1 (en) * | 2010-05-31 | 2011-03-27 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | System for temperature stabilisation of structures foundation on permafrost soils |
| RU2416002C1 (en) * | 2010-06-10 | 2011-04-10 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | System for temperature stabilisation of structures foundation on permafrost soils |
| WO2012038632A1 (en) * | 2010-09-22 | 2012-03-29 | Total Sa | Method and device for storing a cryogenic fluid and which are suitable for soils including permafrost |
| FR2965038A1 (en) * | 2010-09-22 | 2012-03-23 | Total Sa | METHOD AND DEVICE FOR STORING A CRYOGENIC FLUID FOR SOIL COMPRISING PERGELISOL |
| RU2565115C2 (en) * | 2010-09-22 | 2015-10-20 | Тоталь Са | Method and device for storage of cryogenic fluid medium adapted for grounds including for permafrost |
| NO344198B1 (en) * | 2010-09-22 | 2019-10-14 | Total Sa | Method and device for storing cryogenic fluid and which is suitable for soil types including permafrost |
| CN102094413A (en) * | 2010-10-24 | 2011-06-15 | 西南交通大学 | Heat rod for pipeline |
| US20120102985A1 (en) * | 2010-10-27 | 2012-05-03 | General Electric Company | Conductive surface heater for a refrigerator |
| US20130025819A1 (en) * | 2011-07-25 | 2013-01-31 | Tai-Her Yang | Close-loop temperature equalization device having single-flowpath heat releasing device |
| US9371722B2 (en) * | 2012-08-13 | 2016-06-21 | Chevron U.S.A. Inc. | Enhancing production of clathrates by use of thermosyphons |
| US20140041872A1 (en) * | 2012-08-13 | 2014-02-13 | Chevron U.S.A. Inc. | Enhancing Production of Clathrates by Use of Thermosyphons |
| RU2515667C1 (en) * | 2012-10-03 | 2014-05-20 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | System for temperature stabilisation of structure foundations on permafrost soils |
| RU2527969C1 (en) * | 2013-04-08 | 2014-09-10 | Открытое Акционерное Общество "Фундаментпроект" | Cooling device for depth temperature stabilisation of soils, foundations of buildings and structures |
| RU2548284C1 (en) * | 2013-10-10 | 2015-04-20 | Роберт Мияссарович Хафизов | Method to arrange panel-wall foundation of reservoir with cooled product in weak permafrost soil |
| RU2548633C1 (en) * | 2014-02-05 | 2015-04-20 | Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" | Method of refilling heat stabiliser |
| RU2556591C1 (en) * | 2014-03-20 | 2015-07-10 | Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") | Device for temperature stabilisation of permanently frozen grounds |
| WO2015147683A1 (en) * | 2014-03-28 | 2015-10-01 | Открытое акционерное общество "Акционерная компания по транспорту нефти "ТРАНСНЕФТЬ" | Device for heat stabilization of perennial permafrost soils |
| US9920499B2 (en) | 2014-03-28 | 2018-03-20 | Public Joint Stock Company “Transneft” | Device for heat stabilization of perennial permafrost soils |
| US10443207B2 (en) | 2014-03-28 | 2019-10-15 | Public Joint Stock Company “Transneft” | Pile foundations for supporting power transmission towers |
| US10100486B2 (en) | 2014-03-28 | 2018-10-16 | Public Joint Stock Company “Transneft” | Method for installing overhead transmission line supports on permafrost soils |
| RU2554955C1 (en) * | 2014-03-31 | 2015-07-10 | Федеральное Государственное Бюджетное Учреждение Науки Институт Криосферы Земли Сибирского Отделения Российской Академии Наук (Икз Со Ран) | Straight-flow natural-convection cooling device for thermal stabilisation of frozen soil |
| RU2572319C1 (en) * | 2014-12-31 | 2016-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" | Spatial foundation support of reservoir on frozen base |
| RU2591272C1 (en) * | 2015-05-27 | 2016-07-20 | Открытое Акционерное Общество "Фундаментпроект" | Method for installation of light cooling devices for temperature stabilization of permanently frozen grounds |
| US11359338B2 (en) * | 2015-09-01 | 2022-06-14 | Exotex, Inc. | Construction products and systems for providing geothermal heat |
| RU2616029C1 (en) * | 2015-12-25 | 2017-04-12 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Method of thermal stabilization of soil base of pile foundation of pipe supports |
| RU2620664C1 (en) * | 2015-12-30 | 2017-05-29 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Method for heat stabilization of permafrost soils and device for its implementation |
| RU2627793C1 (en) * | 2016-04-27 | 2017-08-11 | Виктор Иванович Гвоздик | Method of installing heat stabilizers in ventilated underground of operated buildings |
| RU2629281C1 (en) * | 2016-04-29 | 2017-08-28 | Илья Павлович Рило | Cooling thermosiphon for depth thermo-stabilization of soils (versions) |
| RU2634315C1 (en) * | 2016-07-20 | 2017-10-25 | Открытое Акционерное Общество "Фундаментпроект" | Method for assembling cooling devices for temperature stabilization of permafrost soils unstable in well walls |
| US20180051432A1 (en) * | 2016-08-18 | 2018-02-22 | Ian R. Cooke | Snow and Ice Melting Device, System and Corresponding Methods |
| US10988904B2 (en) * | 2016-08-18 | 2021-04-27 | Ian R. Cooke | Snow and ice melting device, system and corresponding methods |
| RU2645193C1 (en) * | 2016-12-27 | 2018-02-16 | Александр Иванович Абросимов | Plant for cooling the soil and set of products for construction of such plant |
| RU172000U1 (en) * | 2017-03-16 | 2017-06-26 | Вадим Васильевич Пассек | Device for freezing soils on the side sections of building structures |
| RU2645035C1 (en) * | 2017-05-15 | 2018-02-15 | Лев Николаевич Хрусталев | Surface foundation for single-storey building on permafrost grounds |
| RU2655857C1 (en) * | 2017-07-18 | 2018-05-29 | Илья Рило | Cooling thermosyphon for site thermal stabilization of soils (options) |
| CN107310022A (en) * | 2017-07-27 | 2017-11-03 | 江苏腾晖电力技术有限公司 | Foundation pile for Frozen Ground Area photovoltaic bracket and preparation method thereof |
| CN108224804A (en) * | 2018-03-13 | 2018-06-29 | 北京交通大学 | Towards the solar energy heat collector and implementation of seasonal frozen soil region subgrade engineering |
| RU2681161C1 (en) * | 2018-06-05 | 2019-03-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Device for stabilizing permafrost soil of piled foundation with casings |
| US12352453B2 (en) | 2018-08-23 | 2025-07-08 | Gary Scott Peele | Geothermal heat exchange reservoirs and related methods and systems |
| US11493238B2 (en) * | 2018-08-23 | 2022-11-08 | Gary Scott Peele | Geothermal heat exchange reservoirs and related methods and systems |
| US11408645B2 (en) | 2018-08-27 | 2022-08-09 | Alaska Native Tribal Health Consortium | Hybrid thermosiphon system |
| CN109338841A (en) * | 2018-10-17 | 2019-02-15 | 东南大学 | One-way heat dissipation asphalt pavement structure and construction method for plateau permafrost area |
| RU2704091C1 (en) * | 2019-04-29 | 2019-10-23 | Илья Рило | Condenser of cooling thermosiphon for thermal stabilization of soils in cryolite zone |
| RU2706495C1 (en) * | 2019-06-18 | 2019-11-19 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Spatial reinforced concrete foundation platform on permafrost soil |
| CN110715568A (en) * | 2019-09-26 | 2020-01-21 | 广西大学 | One-way cold guide pipe utilizing phase change conduction |
| RU197180U1 (en) * | 2019-11-12 | 2020-04-08 | Геннадий Владимирович Аникин | Device for temperature stabilization of the foundations of structures |
| RU2755770C1 (en) * | 2021-03-12 | 2021-09-21 | федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» | Device for cooling plastic-frozen soil |
| US12305889B2 (en) * | 2021-03-25 | 2025-05-20 | Northwest Institute Of Eco-Environment And Resources, Chinese Academy Of Sciences | Light-concentrating anti-frost anti-heave heat gathering device and subgrade thereof |
| RU2778817C1 (en) * | 2021-03-25 | 2022-08-26 | Северно-Западный институт экологии и природных ресурсов Академии наук Китая | Self-circulation preventing heaving during freezing heat collecting device and its ground base |
| US20220307729A1 (en) * | 2021-03-25 | 2022-09-29 | Northwest Institute Of Eco-Environment And Resources, Chinese Academy Of Sciences | Light-concentrating anti-frost anti-heave heat gathering device and subgrade thereof |
| RU2768247C1 (en) * | 2021-09-14 | 2022-03-23 | Общество с ограниченной ответственностью «МобиДик» | Three-circuit system of all-season thermal stabilization of permafrost soils of bases |
| RU2784509C1 (en) * | 2022-06-06 | 2022-11-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Prefaced spatial reinforced concrete foundation platform on permafrost soil |
| RU218712U1 (en) * | 2022-11-24 | 2023-06-06 | Вадим Васильевич Пассек | COAXIAL INSERT FOR THERMAL SUPPORT |
| RU2799222C1 (en) * | 2023-03-24 | 2023-07-04 | Алигюшад Гасан Оглы Керимов | Foundation for vertical steel tank |
| RU223789U1 (en) * | 2023-09-28 | 2024-03-04 | Общество с ограниченной ответственностью "Газпром добыча Ноябрьск" | Device for straightening the ribs of the condenser part of the soil thermostabilizer |
| RU2846070C1 (en) * | 2023-12-21 | 2025-08-29 | СиСиСиСи ФЁСТ ХАЙВЭЙ КАНСАЛТАНС КО., ЛТД. | Ventilation and cooling device and erection method, suitable for permafrost areas |
| RU2837497C1 (en) * | 2024-05-29 | 2025-03-31 | Федеральное государственное бюджетное учреждение науки Институт мерзлотоведения им. П.И. Мельникова Сибирского отделения Российской академии наук | Method of increasing bearing capacity of piles in permafrost zone |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3217791A (en) | Means for maintaining perma-frost foundations | |
| US3788389A (en) | Permafrost structural support with heat pipe stabilization | |
| US3840068A (en) | Permafrost structural support with heat pipe stabilization | |
| US3648767A (en) | Temperature control tube | |
| US3990502A (en) | Arrangement to control heat flow between a member and its environment | |
| FI81437C (en) | Method for reducing stress in an underground refrigerated gas pipeline and a refrigerated gas pipeline | |
| Wagner | Review of thermosyphon applications | |
| US3935900A (en) | Permafrost structural support with integral heat pipe means | |
| US4726191A (en) | Sea water well and aquaculture preserve, and the combination with a power generation system | |
| US3859800A (en) | Air convection device 2 a.g. for permafrost stabilization | |
| US3902547A (en) | Permafrost structural support with compatible heat pipe means | |
| US3564862A (en) | Method and apparatus for supporing a pipeline in permafrost environment | |
| RU2157872C2 (en) | Mechanical design of cooled fill footing of structures and method for temperature control of permafrost soils | |
| US5238053A (en) | Method of and system for warming road surface | |
| US4723876A (en) | Method and apparatus for piled foundation improvement with freezing using down-hole refrigeration units | |
| US3809149A (en) | Method of supporting a hot oil pipeline through permafrost | |
| Schneider | Correlation of ground-water levels and air temperatures in the winter and spring in Minnesota | |
| RU2565115C2 (en) | Method and device for storage of cryogenic fluid medium adapted for grounds including for permafrost | |
| RU8708U1 (en) | COLUMNAL BRACKET BRIDGE ON ETERNAL FROZEN | |
| RU33955U1 (en) | The cooled base of structures | |
| RU2470114C2 (en) | Thermopile for bridge supports | |
| SU1673699A1 (en) | Method for preventing frost bulging of foundations | |
| RU2813272C1 (en) | Method for freezing and maintaining stable condition of permafrost soils | |
| SU916644A1 (en) | Method of erecting an ice river crossing | |
| RU2592113C2 (en) | Ground dam on permafrost base and method for creation thereof |