US3206301A - Process for the continuous treatment of steel - Google Patents
Process for the continuous treatment of steel Download PDFInfo
- Publication number
- US3206301A US3206301A US71047A US7104760A US3206301A US 3206301 A US3206301 A US 3206301A US 71047 A US71047 A US 71047A US 7104760 A US7104760 A US 7104760A US 3206301 A US3206301 A US 3206301A
- Authority
- US
- United States
- Prior art keywords
- steel
- crucible
- converter
- casting
- induction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 46
- 239000010959 steel Substances 0.000 title claims description 46
- 238000000034 method Methods 0.000 title description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 238000005266 casting Methods 0.000 claims description 9
- 230000006698 induction Effects 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 238000010924 continuous production Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 238000007670 refining Methods 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 238000009749 continuous casting Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 7
- 239000011819 refractory material Substances 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/56—Manufacture of steel by other methods
- C21C5/567—Manufacture of steel by other methods operating in a continuous way
Definitions
- Continuous casting processes known to date are intermittent in that the continuous casting apparatus is charged ladle by ladle. When one ladle is empty, the casting is interrupted and the refractories or linings then have to be repaired or renewed. Also, before casting can be renewed, other operations such as reheating and the insertion of a plug ingot are necessary. This considerably reduces the productivity of a continuous casting installation and thus increases the price.
- One aim of the present invention is to make possible the continuous casting of steels killed with aluminum and manufactured in a top or bottom-blown converter.
- the invention consists in a continuous process for treating steel, comprising the steps of pouring the steel in an open container, heating the steel in the container by electrical induction, deoxidising the steel in the container and continuously passing the steel from the container, out of contact with the air, into a mould.
- This method allows the temperature of the metal delivered to the mould to be precisely controlled and also permits the carrying out of metallurgical treatment in the container.
- the process may actually be considered 3,206,301 Patented Sept. 14, 1965 a combination of the classical method of ingot combined with a continuous Duplex treatment in an induction furnace.
- a normal casting temperature may be used in the method and such temperature may be any well known in the art.
- the converter heat can conveniently be terminated with the metal some 20 C. below that obtained in the classic method.
- the metal is then preferably
- the metal is then preferably transferred to a teapot ladle in which the slag separates and which serves for transport.
- any deoxidising agent in the converter or even in the ladle we prefer not to add any deoxidising agent in the converter or even in the ladle. Aluminium for deoxidation is added in the container, in which, moreover, the composition of the steel is finalized. Also, alumina, amongst other impurities, comes out in the supernatent slag owing partly to the stirring action due to this method of heating.
- FIGURE 1 is a vertical sectional view of an apparatus for feeding in a continuous casting apparatus
- FIGURE 2 is a diagrammatic view showing the use of the apparatus, the metal being supplied to the container by modified devices.
- the steel 6 being poured from a refining apparatus is fed through a spout 3 into an induction furnace or container 4.
- the deoxidising or killing agents are continuously added to the furnace 4 from above, and alloying additions can also be added continuously.
- 8 denotes an opening in the lower part of the furnace 4 which is blocked by a plug 9.
- the furnace 4 is heated by a coil 10 in which any suitable medium is provided for heat transfer.
- the opening 8 is connected with an auxiliary chamber 16 by means of a duct 14 lined with refractory material 15.
- This auxiliary chamber 16 is filled with an inert gas such as nitrogen or argon under gauge or controlled pressure, supplied by cylinders 17 through a union member 19, a regulating valve 20, and a dome 18.
- the gas pressure is measured by a gauge 21 'and the gas passes to the chamber 16 by the ducts 22, 23, and 24.
- the auxiliary chamber 16 is lined with refractory material 25 and in its lower portion has an opening 26 in which a nozzle 27 is placed and which is of specially resistant refractory material.
- the bore 28 of this nozzle diverges in the manner of a Laval tube so as to minimize disturbance of the steel which has already passed therethrough.
- the lower end 29 of the nozzle 28 is always held below the level 30 of liquid steel in a mould 31, of a continuous casting installation. 31 could also represent a feeder supplying a mould indirectly.
- the auxiliary chamber 16 is traversed by a metal stopper rod 32 composed of a refractory material 33 and it is arranged to be cooled but the appropriate apparatus for this is not shown.
- the lower end of the rod 32 carries the actual stopper 34 which is made of a sufficient length to allow for wear.
- the rod 32 passes through the gas duct 24 and is fixed and connected into a piston 35 and another rod 36.
- the piston is placed in a cylinder 37 mounted between the dome 18 and the chamber 16, and the cylinder rests in a groove 38 in the refractory member 25.
- the cylinder 37 is also fixed in an external metal housing 39 by a plate 40 pierced by a hole 41 through which the rod 36 passes.
- a metal sleeve 42 for protecting the rod 32 and cooperating with an opening 43 in which it is guided.
- the movement of the piston 35 in the cylinder 37 is controlled by pressure fluid passed through two pipes 44 and 45 by a control system which is not shown to simplify the drawing of FIG. 1.
- the apparatus functions as follows:
- steel is poured as a jet 6 into the furnace or crucible 4 through the spout 3.
- the metal is covered by a suitably prepared supernatant or layer of slag 12.
- the heating coils 10 have been energised, the temperature of the steel has been adjusted and the continuous addition of deoxidising agent to the metal has been begun, the rod 32 is pressed downwards against the nozzle 27.
- the regulating valve 20 is opened and gas blown into the chamber 16 and the duct 14. The pressure of this gas is then increased until the plug 9 is blown out of the hole 8.
- a relay not shown, which is actuated by the dislodgment of the plug 9 checks the flow of the gas and transmits a signal to the hydraulic control system so that it causes the piston 35 to travel upwards and access into the nozzle 27 is freed.
- the killed steel then flows through the duct 14 into the chamber 16 which is filled to the level 47, and then through the spout 27 into the ingot mold 31.
- the position of the piston 35 is then adjusted to regulate the fiow of steel from the chamber 16.
- the gas pressure in the latter is automatically controlled by a system, not shown, in dependence upon the height of the steel 11 in the furnace or crucible 4.
- the mould could be fed by means of several nozzles 27 connected in parallel, or through a feeder dividing the metal into several streams. In this latter case, additional precautions would be necessary to keep the steel out of contact with the air as much as possible.
- a converter 1 pours molten steel 2 into one of the teapot ladles 4.
- the steel from each ladle 4 is poured into a gutter 5 which passes it into a central pivoted gutter 3 which in turn passes into one of two crucibles 4 (in the FIG. 2 transfer into both crucibles 4' simultaneously is shown).
- the steel is drawn oil? from the crucibles 4 and emerges through nozzles 27'.
- the steel can then either be passed directly into the mould 31', the lower end of the nozzle 27 being held below the lever 30 in this mould as much as possible, or else the metal can be poured into an intermediate feeder 48 feeding the mould 50 of another continuous casting apparatus through several nozzles 51.
- the latter are carefully spaced and are long enough to penetrate through the metal surface 53.
- the means for preventing access of air to the metal in the feeder 48 has not been shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU37966 | 1959-11-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3206301A true US3206301A (en) | 1965-09-14 |
Family
ID=19722308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US71047A Expired - Lifetime US3206301A (en) | 1959-11-23 | 1960-11-22 | Process for the continuous treatment of steel |
Country Status (3)
Country | Link |
---|---|
US (1) | US3206301A (en)) |
GB (1) | GB949060A (en)) |
LU (1) | LU37966A1 (en)) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413401A (en) * | 1966-02-02 | 1968-11-26 | Northwestern Steel & Wire Co | Method and apparatus for melting metals by induction heating |
US3655176A (en) * | 1969-02-27 | 1972-04-11 | Stoecker & Kunz Gmbh | Closure devices for metallurgical and like vessels |
US3679105A (en) * | 1970-03-05 | 1972-07-25 | Babcock & Wilcox Co | Nozzle arrangement for molten metal container vessel |
US3718175A (en) * | 1969-04-15 | 1973-02-27 | Voest Ag | Plant for continuous casting without deep casting stream penetration |
US3752218A (en) * | 1969-03-21 | 1973-08-14 | Ashmore Benson Pease & Co Ltd | Continuous casting moulds |
US3775091A (en) * | 1969-02-27 | 1973-11-27 | Interior | Induction melting of metals in cold, self-lined crucibles |
DE2327880A1 (de) * | 1972-06-05 | 1974-01-03 | Graenges Essem Ab | Verfahren und anlage zum zufuehren von geschmolzenem metall zu verbraucherstellen |
US4120696A (en) * | 1973-05-19 | 1978-10-17 | Klockner-Werke Ag | Process for the production of steel |
US4121651A (en) * | 1976-05-10 | 1978-10-24 | Dino Marco Zeppellini | Casting receptacle or ladle for moulded castings or various materials |
US4702767A (en) * | 1984-03-14 | 1987-10-27 | Aichi Steel Works, Ltd. | Method of purifying a bearing steel |
US4810287A (en) * | 1986-01-21 | 1989-03-07 | Daido Tokushuko Kabushiki Kaisha | Process for producing steel for valve springs |
US6627146B1 (en) * | 2000-12-28 | 2003-09-30 | Hayes Lemmerz International, Inc. | Stopper module device for a casting machine furnace apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004153A (en) * | 1990-03-02 | 1991-04-02 | General Electric Company | Melt system for spray-forming |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1309162A (en) * | 1919-07-08 | William r | ||
US1318164A (en) * | 1919-10-07 | John mcconnell | ||
US2193034A (en) * | 1936-05-08 | 1940-03-12 | Mars Georg | Apparatus for treating materials under reduced pressure |
US2225373A (en) * | 1937-07-29 | 1940-12-17 | Norman P Goss | Method and apparatus for casting metal |
US2253421A (en) * | 1938-09-20 | 1941-08-19 | Mare Baltzar E L De | Method and apparatus for deoxidizing and degasifying liquid steel |
US2339337A (en) * | 1942-03-14 | 1944-01-18 | Int Smelting & Refining Co | Furnace launder construction |
US2741555A (en) * | 1951-03-17 | 1956-04-10 | Oesterriechisch Alpine Montang | Process for refining pig iron |
US2788270A (en) * | 1954-08-10 | 1957-04-09 | Universal Cyclops Steel Corp | Method and apparatus for melting metal under vacuum |
US2837790A (en) * | 1953-12-28 | 1958-06-10 | Ford Motor Co | Process for degassing ferrous metals |
US2976339A (en) * | 1956-12-03 | 1961-03-21 | Heraeus Gmbh W C | Vacuum smelting furnace and method of operation |
-
0
- LU LU37966D patent/LU37966A1/xx unknown
-
1960
- 1960-11-22 US US71047A patent/US3206301A/en not_active Expired - Lifetime
- 1960-11-22 GB GB40075/60A patent/GB949060A/en not_active Expired
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1309162A (en) * | 1919-07-08 | William r | ||
US1318164A (en) * | 1919-10-07 | John mcconnell | ||
US2193034A (en) * | 1936-05-08 | 1940-03-12 | Mars Georg | Apparatus for treating materials under reduced pressure |
US2225373A (en) * | 1937-07-29 | 1940-12-17 | Norman P Goss | Method and apparatus for casting metal |
US2253421A (en) * | 1938-09-20 | 1941-08-19 | Mare Baltzar E L De | Method and apparatus for deoxidizing and degasifying liquid steel |
US2339337A (en) * | 1942-03-14 | 1944-01-18 | Int Smelting & Refining Co | Furnace launder construction |
US2741555A (en) * | 1951-03-17 | 1956-04-10 | Oesterriechisch Alpine Montang | Process for refining pig iron |
US2837790A (en) * | 1953-12-28 | 1958-06-10 | Ford Motor Co | Process for degassing ferrous metals |
US2788270A (en) * | 1954-08-10 | 1957-04-09 | Universal Cyclops Steel Corp | Method and apparatus for melting metal under vacuum |
US2976339A (en) * | 1956-12-03 | 1961-03-21 | Heraeus Gmbh W C | Vacuum smelting furnace and method of operation |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413401A (en) * | 1966-02-02 | 1968-11-26 | Northwestern Steel & Wire Co | Method and apparatus for melting metals by induction heating |
US3655176A (en) * | 1969-02-27 | 1972-04-11 | Stoecker & Kunz Gmbh | Closure devices for metallurgical and like vessels |
US3775091A (en) * | 1969-02-27 | 1973-11-27 | Interior | Induction melting of metals in cold, self-lined crucibles |
US3752218A (en) * | 1969-03-21 | 1973-08-14 | Ashmore Benson Pease & Co Ltd | Continuous casting moulds |
US3718175A (en) * | 1969-04-15 | 1973-02-27 | Voest Ag | Plant for continuous casting without deep casting stream penetration |
US3679105A (en) * | 1970-03-05 | 1972-07-25 | Babcock & Wilcox Co | Nozzle arrangement for molten metal container vessel |
DE2327880A1 (de) * | 1972-06-05 | 1974-01-03 | Graenges Essem Ab | Verfahren und anlage zum zufuehren von geschmolzenem metall zu verbraucherstellen |
US3940264A (en) * | 1972-06-05 | 1976-02-24 | Granges Essem Aktiebolag | Method of distributing molten metal to consumer stations |
US4120696A (en) * | 1973-05-19 | 1978-10-17 | Klockner-Werke Ag | Process for the production of steel |
US4121651A (en) * | 1976-05-10 | 1978-10-24 | Dino Marco Zeppellini | Casting receptacle or ladle for moulded castings or various materials |
US4702767A (en) * | 1984-03-14 | 1987-10-27 | Aichi Steel Works, Ltd. | Method of purifying a bearing steel |
US4810287A (en) * | 1986-01-21 | 1989-03-07 | Daido Tokushuko Kabushiki Kaisha | Process for producing steel for valve springs |
US6627146B1 (en) * | 2000-12-28 | 2003-09-30 | Hayes Lemmerz International, Inc. | Stopper module device for a casting machine furnace apparatus |
Also Published As
Publication number | Publication date |
---|---|
GB949060A (en) | 1964-02-12 |
LU37966A1 (en)) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3206301A (en) | Process for the continuous treatment of steel | |
US2590311A (en) | Process of and apparatus for continuously casting metals | |
US3991263A (en) | Means for tapping | |
EP0334915B1 (en) | Process for heating molten steel contained in a ladle | |
US3825241A (en) | Apparatus for introducing gas to hot metal in a bottom pour vessel | |
US3671224A (en) | Methods of producing leaded steel | |
US3623862A (en) | Use of rare earth elements for reducing nozzle deposits in the continuous casting of steel process | |
US2840871A (en) | Apparatus and method for casting metal | |
EP0116405A1 (en) | Steel production using channel induction furnace | |
US3467284A (en) | Distributor for continuous casting machine | |
US3822735A (en) | Process for casting molten silicon-aluminum killed steel continuously | |
US3384362A (en) | Apparatus for adding heat to flowing metal | |
US3146503A (en) | Degasification of metal | |
US2928150A (en) | Temperature control during metal casting | |
US3332474A (en) | Apparatus and method for continuous vacuum degassing and casting of steel and other metals | |
CA1242326A (en) | Treatment of molten metal | |
US2715064A (en) | Method of producing silicon steel | |
US3836359A (en) | Method of producing leaded steel | |
US3819842A (en) | Method and furnace for maintaining the temperature level of metal melts | |
US3651856A (en) | Method of continuously casting steel | |
US12017274B2 (en) | Method for manufacturing a steel ingot | |
Sommerville et al. | Compositional Control Before and During Continuous Casting of High-Strength, Low-Alloy Steels | |
AT232668B (de) | Verfahren zum kontinuierlichen Gießen von beruhigtem, insbesondere kohlenstoffarmem Stahl | |
Marsh | A New Horizontal Continuous Casting Process for Steel | |
Forster | RH degassing |