US3154923A - Hydraulic drive for producing linear intermittent reciprocatory motions of a machine tool - Google Patents
Hydraulic drive for producing linear intermittent reciprocatory motions of a machine tool Download PDFInfo
- Publication number
- US3154923A US3154923A US212814A US21281462A US3154923A US 3154923 A US3154923 A US 3154923A US 212814 A US212814 A US 212814A US 21281462 A US21281462 A US 21281462A US 3154923 A US3154923 A US 3154923A
- Authority
- US
- United States
- Prior art keywords
- working
- piston
- reversing
- pressure medium
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/22—Feeding members carrying tools or work
- B23Q5/26—Fluid-pressure drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L25/00—Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
- F01L25/02—Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means
- F01L25/04—Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means by working-fluid of machine or engine, e.g. free-piston machine
- F01L25/06—Arrangements with main and auxiliary valves, at least one of them being fluid-driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/002—Hydraulic systems to change the pump delivery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/046—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member
- F15B11/048—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member with deceleration control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/10—Delay devices or arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
- F15B2211/20553—Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20561—Type of pump reversible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/255—Flow control functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/27—Directional control by means of the pressure source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30525—Directional control valves, e.g. 4/3-directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/321—Directional control characterised by the type of actuation mechanically
- F15B2211/325—Directional control characterised by the type of actuation mechanically actuated by an output member of the circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/329—Directional control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7053—Double-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/755—Control of acceleration or deceleration of the output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/77—Control of direction of movement of the output member
Definitions
- HYDRAULIC DRIVE FOR PRODUCING LINEAR INTERMITTENT RECIPROCATORY MOTIONS OF A MACHINE TOOL Filed July 27 1962 3Sheets-Sheet2 I l/I/ll/u 11 2; 11/ Ill/1 Ill/1 F. WEGERDT Nov. 3, 1964 HYDRAULIC DRIVE FOR PRODUCING LINEAR INTERMITTENT lQGSECIPROCATORY MOTIONS OF A MACHINE TOOL.
- Such hydraulic drives are known.
- they comprise a hydraulic working motor producing the intermittent motions, the pressure medium being supplied alternately to the alternately operative working surfaces of the said motor from a source of working pressure medium with adjustable volumetric output by way of a hydraulic reversing device.
- a hydraulic pump with constant working direction and a reversing valve connected in front thereof can be used, or a hydrostatic pump which can be reversed continuously.
- a predistributing slide valve is arranged between the reversing device for the source of working pressure medium and an auxiliary source of pressure medium associated with the said device and usually of constant volumetric output.
- the slide valve can be adjusted mechanically, electrically or hydraulically by a control impulse generator.
- the control impulse generator generally comprises corresponding mechanical feeler switches, which are arran ed in the path of the machine part being moved by the hydraulic working motor.
- the Working motor has the maximum permissible working speed v
- the releasing of the reversing operation takes place, so that the working motor is braked with a constant lag according to the line Ia, until it comes to a standstill at the point s From here the reacceleration takes place in the reverse direction.
- FIGURE 3 clearly shows that designing of a hydraulic drive operating according to the diagram shown brings about a considerable mechanical advantage in the vicinity of the reversing phase at all working speeds which are less. than the maximum permissible working speed according to the graph V.
- the mechanical advantage in the reversing phase located between the points .9 and s is shown in FIGURE 3 by shading.
- a time relay controllable in dependence on the release of impulse the time constant of which is adjustable in inverse ratio to the volumetric output of the source of working pressure medium, and which relay, when started by the reversing impulse retards the opening of the connection between the auxiliary source of pressure medium and the reversing device, at. least during one of the two reversing operations, until the time mechanism has run out.
- the particular volumetric output of the source of working pressure medium determines the working speed of the working motor.
- the retarding times are as a rule very low (less than one second). It has therefore proved particularly advantageous if a time relay with hydraulic time mechanism is used, the supply of pressure medium to the time mechanism being able to be controlled by the predistributing slide valve.
- the extent of the time constant of the time mechanism can be influenced in two ways: First, a stop for the rest position determining the length of the time stroke of the hydraulic time mechanism may be provided, which can be adjusted in dependence on the volumetric output of the pump for the working pressure medium. Secondly, one may ensure that the time mechanism is fed by an auxiliary source of pressure medium, the volumetric output of which is always proportional to the output of the working pressure medium pump. Both measures may be applied either individually or preferably jointly.
- the time mechanism may be associated with only one of the two reversing points. in cases where an exact control is required at both reversing points, it may be advisable to associate a time mechanism with each of the two reversing points, the time constants being abie to be different on the working and idle strokes of the working motor according to the variable speed.
- FIGURE 4 shows a first embodiment of a hydraulic drive, in which the teaching of the invention is applied.
- FIGURE shows another embodiment, in which the working piston acting as a working motor operates with a differential action.
- FIGURE 6 finally shows a modified embodiment of a hydraulic drive according to the invention.
- the invention is 'shown here as applied to a working piston carrying out linear movements. However, it is quite evident that it may also be applied to working motors having a reversible rotary movement. In the drawings the same references have been used for identical parts.
- FIGURE 4 shows a hydraulic working motor in the form of a working piston K1 carrying out linear movements, the piston rods of which extend out of the associated cylinder in both directions.
- the piston rods act on a machine table T, on which are fixed two stops T1 and T2, which can cooperate with an impulse generator G, in order to be able to set off the reversing impulse mechanically.
- the source of working pressure medium is a continuously reversible hydrostatic pump AP.
- Such pumps are known.
- the volumetric output of such pumps can be regulated continuously from a maximum value through zero in the opposite direction to the maximum value again.
- the pump is connected tothe working piston by the two main pipes 1 and 2..
- a reversing piston K3 is used in a manner known per se, the piston rods of which extend out of the associated cylinder in both directions.
- stops A1 and A2 are used, which limit the stroke of' the reversing piston K3 in both directions and can be adjusted by setting wheels R1 and R2.
- the actuating of the reversing piston K3 is effected by means of an auxiliary source of pressure medium in the form of a gear pump ZP with constant volumetric output.
- the pressure pipe 6 of this pump leads to a predistributing slide valve K2, which connects the pressure medium from the pipe 6 alternately with the pipes '7 and 8 leading to both sides of the reversing piston.
- the predistributing slide valve likewise controls the fiowof pressure oil from the pipes 12 and 13 of the reversing cylinder. To this end the predistributing valve is connected via the pipes O to the sump of thehydraulic circuit indicated only diagrammatically.
- the reversing of the pret distributing valve K2 from one to the other of its two possible positions is eifected by the reversing impulse, which acts from the impulse generator G on the predistributing valve either electrically, hydraulically or, as shown, mechanically.
- valves Z1 and Z2 controlled by a time mechanism and controlling the supply of pressure medium to the reversing piston.
- a time relay with a hydraulic time mechanism.
- the time mechanism has in each case a time piston (Z1 and Z2), which is prestressed by a spring Fa'l or FrlZ in its rest position. This rest position is determined in each case by a stop SP1 or SP2.
- the right-hand time piston Z1 is bearing on its stop SP1 and is hence in its position of rest.
- Each time piston serves at the same time as a slide valve and for this purpose comprises an annular groove E1 and E2 which, when the end position W of the piston is reached, brings about communication between the supply pipe '1 or 8 and the reversing cylinder, as shown for the piston Z2.
- the time of travel of the piston from its adjustable rest position to its end position, in which it brings about the communication, constitutes the time constant of the time mechanism.
- a gear connection is provided in the example shown between the setting mechanism R2 or R2 for the stops AT or A2 of the reversing piston K3 and the setting mechanism for the stops SP1 or SP2 of the time mechanism.
- the time mechanisms are fed from a source of pressure medium, the volumetric output of which varies proportionally with the volumetric output of the working pump.
- the time mechanisms are fed by a hydrostatic pump SP with continuously variable volumetric output, the setting mechanism of which is directly connected to the setting mechanism for the working medium pump, as shown in Patent No. 2,928,244, dated March 15, 1960, so that the setting of both pumps always takes place in the same direction and to the same extent.
- a floating piston S is arranged between the two outlets of the pump, which together with the associated non-return valves brings about the required manner of operation.
- the associated stops SP1 or SP2 of the time mechanisms may be pushed so far into the cylinder space that the time mechanism pistons Z1 and Z2 are stopped at their end position W. In this position there is not only a free communication between the gear pump ZP and the reversing piston K3, but the pressure medium delivered by the control pump SP can also flow freely through outlet openings exposed by the time piston, so that the control pump is working without pressure.
- the working pump AP is operating via the pipe 1 on the lefthand side of the working piston KI.
- the latter therefore moves at a constant speed towards the right.
- the time mechanism Z2 has run down and hence maintains the communication with the reversing piston via the pipe 10, so that the reversing piston K3 is held in its righthand position.
- the predistributing slide valve assumes the position shown in the figure; As soon as the stop TI sets oif the impulse generator G, the predistributing slide valve K2 is reversed to its other position; Pipe 8 and pipe 12 are then without pressure as they are connected to the outlet in the predistributing slide valve.
- the pipe 7 is in free communication with the pressure pipe 6, this pressure however, not yet being able to act on the righthand side (pipe 9) of the reversing piston K3, as comrnunication between the pipe 7 and the pipe 9 is blocked by the time piston Z1.
- the reversing impulse released the reversing of the working pump does not yet take place, so that the working piston K1 continues to move at constant speed in the existing stroke direction.
- the pipe 4 for the time mechanism Z1 has also been connected to the pressure pipe 3 of the predistributing pump SP. The time mechanism thus begins to run, as the cylinder space in front of the piston face of the time piston Z1 fills with pressure medium via the pipe 4.
- the reversing operation at the other end of the stroke is set off by the stop T2 on the table. As this reversing operation proceeds in the same way as the reversing operation described above in connection with the stop TI, it is not necessary to go into the same here in more detail.
- the working motor is a piston Kit carrying out linear movements, the piston rod of which only extends outwards in one direction. Moreover, the piston carries out a vertical movement.
- the working surfaces which are operative during both strokes are of different size. In the example shown the actual working stroke is directed downwards, as indicated by the arrow.
- a non-return valve RVI is provided in the piston K10, which can open in the direction of the smaller piston surface F1.
- a valve connection may also be provided outside the working piston directly between the two pressure pipes 1 and 2.
- a hydrostatic pump with reversing piston K3 is again provided as source of working pressure medium.
- the reversing piston K3 is fed by a gear pump ZP.
- a predistributing slide valve K2 controlled by the impulse generator G again controls the setting off of the time mechanism Z and the communication between the gear pump and the reversing piston K3.
- a separate auxiliary source of pressure medium for the feeding of the time mechanism Z is dispensed with. Instead, the pressure fluid leaving the working cylinder through the pipe 2 during the Working stroke is used to feed the time mechanism. As the quantity of pressure fluid accumulating in the pipe 2 is greater than the quantity delivered again by t P p be prevented by a non-return valve 1a.
- This oil after reversal of the predistributing slide valve K2, is delivered to the time mechanism Z via the non-return valve V1, the pipe 3 and the pipe 5, in order to set off the time mechanism.
- the time relay brings about communication between the gear pump ZP and the reversing piston K3, so that the actual reversing operation is initiated.
- the pump In order to ensure that on passing through the zero position, the pump can still suck up sufliciently and that there is a steady reacceleration of the working piston, in this position the excess oil is supplied additionally to the feeding piston K4 of the pump AP through the fact that on reversal of the predistributing slide valve K2, the pipe 4 is put into communication with the suction pipe 13.
- a special measure is provided in order to restrict the acceleration of the working piston up to the increased speed to the same value as that provided for the remaining accelerations and retardations (line Va in FIGURE 3).
- This measure consists in that the pressure pipe leading to the left-hand side of the reversing piston K3 opens into the reversing cylinder at a point Ill, which corresponds to the position of the left-hand side of the piston K3 in the zero position of the working pump.
- a bridging pipe which opens into the end of the cylinder at 12 and which comprises a throttle Dr, which limits the acceleration or retarding of the working piston K3 in its movement in the left part of the cylinder to the required value.
- FIGURE 6 differs only slightly from that according to FIGURE 5.
- FIG- URE 6 for the most part, the same reference numerals are used as in FIGURE 5 when it is a question of the same parts.
- the working pump is a pump AP with variable volumetric output but constant working direction.
- the output of the pump may again be fixed by a mechanical setting mechanism R, which at the same time serves for setting the time constant of the hydraulic time mechanism Z.
- the pressure pipe D of the working pump AP leads to a reversing slide valve US, the freely floating piston of which can connect the two pipes I and 2 of the working piston 10 alternately with the pressure pipe D.
- a reversing slide valve US the freely floating piston of which can connect the two pipes I and 2 of the working piston 10 alternately with the pressure pipe D.
- the Working piston Kilt is again, as in the example according to FIGURE 5, designed as a differential piston with intermediate valve RV a back-flow into the pipe 1 can
- the cylinder space F1 may empty directly into the other cylinder space F2 during the accelerated return of the working piston Kit) only through the intermediate valve RVI.
- the suction side of the working pump AP is in communication, in the position of the reversing slide valve illustrated, with the pipe 2 and the cylinder space F2 via the additional suction pipe S.
- Reversing of the reversing slide valve US takes place in the same way as that of the reversing piston K3 in FIGURE 5 by means of the pressure oil from the gear pump ZP, in that control is efiected by the predistributing slide valve K2.
- the time mechanism On reversal of the working stroke to the return or idle stroke, the time mechanism is efiective through the pipe 7, the annular groove E and the pipe 9.
- the manner of working is the same as in the example according to FIGURE 5.
- a hydraulic drive for producing linear intermittent recip'roeatory motions of a machine tool comprising a reciprocatory hydraulic working motor having opposite working surfaces and said motor being adapted to move the tool, a source of Working pressure medium having an adjustable volumetric output, a hydraulically operated reversing device movable between two positions and cooperating with said source to cause flow of said medium from the source to opposite working surfaces of said motor alternately for reciprocating the latter, an auxiliary source of pressure medium of constant volume, means for producing a reversing control impulse at a predetermined position of the machine tool during its movement in each direction, a predistributing slide valve movable between two positions in response to an impulse for directing flow of pressure medium between the auxiliary source and reversing device to cause movement thereof, and a time relay having a time constant rendered operative in response to movement of the slide valve to at least one of the positions for delaying flow of pressure medium between the auxiliary source and reversing device for the duration of the time constant, and means for adjusting the time delay constant of the relay
- a hydraulic drive for producing linear intermittent reciprocatory motions of a machine tool comprising a reciprocatory hydraulic working motor having opposite working surfaces and said motor being adapted to move the tool, a source of working pressure medium having an adjustable volumetric output, a hydraulic operated reversing device movable between two positions and cooperating with said source to cause flow of working pressure medium from said source to opposite Working surfaces of said motor alternately for reciprocating said motor, an auxiliary source of pressure medium of constant volume, means for producing a reversing control impulse at a predetermined position of the machine tool during its movement in each direction, a predistributing slide valve movable between two positions in response to an impulse for directing flow of pressure medium between said auxiliary source and reversing device for causing movement thereof, a time relay having a time constant rendered operative in response to movement of said slide valve to at least one of the positions for delaying flow of pressure medium between the auxiliary source and reversing device for duration of the time constant, said time relay including a hydraulically operated time mechanism defined by a calibrated cylinder,
- the motor comprises a cylinder, a piston movable within said cylinder, said piston having two alternately active piston surfaces of diiierent areas, and means for supplying the hydraulically operated time mechanism of the time relay with pressure medium including a connection from the cylinder for the excess quantity of the pressure oil flowing from the larger area side of the piston upon energization of the smaller area piston surface during the working stroke.
- the reversing device comprises a cylinder having a reciprocating piston, adjustable end stops for the reciprocating piston for limiting its respective end positions, a connecting pipe between the auxiliary source of pressure medium and an intermediate point of the cylinder of the reversing device which is at one side of the reciprocating piston when the latter has completed its movement in one direction, a bridging pipe between the connecting pipe and the one end of the cylinder which is at the one side of the reciprocating piston, and a throttling device associated with the bridging pipe.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Fluid-Pressure Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEW30437A DE1210290B (de) | 1961-07-29 | 1961-07-29 | Hydrostatisches Getriebe fuer Wechselbewegungen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3154923A true US3154923A (en) | 1964-11-03 |
Family
ID=7599507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US212814A Expired - Lifetime US3154923A (en) | 1961-07-29 | 1962-07-27 | Hydraulic drive for producing linear intermittent reciprocatory motions of a machine tool |
Country Status (4)
Country | Link |
---|---|
US (1) | US3154923A (de) |
CH (1) | CH396556A (de) |
DE (1) | DE1210290B (de) |
GB (1) | GB964189A (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105508228A (zh) * | 2016-01-14 | 2016-04-20 | 中国石油化工股份有限公司胜利油田分公司投资发展处 | 一种井下液力自动换向无杆防砂卡抽油泵 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3213620A (en) * | 1964-07-22 | 1965-10-26 | Int Harvester Co | Hydromechanical power transmission |
US3213621A (en) * | 1964-09-08 | 1965-10-26 | Int Harvester Co | External operating control means for a hydraulic transmission |
DE1650744B1 (de) * | 1968-01-30 | 1971-12-16 | Werkzeugmasch Heckert Veb | Hydrostatisches Getriebe fuer Wechselbewegungen |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1838028A (en) * | 1927-09-15 | 1931-12-22 | Cincinnati Milling Machine Co | Deferred action reversing mechanism |
US1943061A (en) * | 1929-10-21 | 1934-01-09 | Oilgear Co | Hydraulic drive for machine tools |
US2267177A (en) * | 1937-10-07 | 1941-12-23 | Vickers Inc | Power transmission |
US2303946A (en) * | 1938-12-10 | 1942-12-01 | Vickers Inc | Power transmission |
US2458290A (en) * | 1944-04-10 | 1949-01-04 | Ex Cell O Corp | Power transmission for reversible machine elements |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2304131A (en) * | 1938-02-18 | 1942-12-08 | Vickers Inc | Pump jack circuit |
US2250705A (en) * | 1939-08-31 | 1941-07-29 | Hydraulic Dev Corp Inc | Automatic press control system |
US2367341A (en) * | 1943-04-22 | 1945-01-16 | Standard Oil Dev Co | Photogrammetry |
DE850838C (de) * | 1946-10-08 | 1952-09-29 | Chambersburg Eng Co | Schmiedehammer |
DE896003C (de) * | 1949-07-21 | 1953-11-09 | Chambersburg Eng Co | Schmiedemaschine |
-
1961
- 1961-07-29 DE DEW30437A patent/DE1210290B/de active Pending
-
1962
- 1962-07-03 GB GB25418/62A patent/GB964189A/en not_active Expired
- 1962-07-27 US US212814A patent/US3154923A/en not_active Expired - Lifetime
- 1962-07-28 CH CH908562A patent/CH396556A/de unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1838028A (en) * | 1927-09-15 | 1931-12-22 | Cincinnati Milling Machine Co | Deferred action reversing mechanism |
US1943061A (en) * | 1929-10-21 | 1934-01-09 | Oilgear Co | Hydraulic drive for machine tools |
US2267177A (en) * | 1937-10-07 | 1941-12-23 | Vickers Inc | Power transmission |
US2303946A (en) * | 1938-12-10 | 1942-12-01 | Vickers Inc | Power transmission |
US2458290A (en) * | 1944-04-10 | 1949-01-04 | Ex Cell O Corp | Power transmission for reversible machine elements |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105508228A (zh) * | 2016-01-14 | 2016-04-20 | 中国石油化工股份有限公司胜利油田分公司投资发展处 | 一种井下液力自动换向无杆防砂卡抽油泵 |
CN105508228B (zh) * | 2016-01-14 | 2017-09-29 | 中国石油化工股份有限公司胜利油田分公司投资发展处 | 一种井下液力自动换向无杆防砂卡抽油泵 |
Also Published As
Publication number | Publication date |
---|---|
GB964189A (en) | 1964-07-15 |
CH396556A (de) | 1965-07-31 |
DE1210290B (de) | 1966-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3620126A (en) | Hydraulic reversing system for a reciprocating working member | |
US1943061A (en) | Hydraulic drive for machine tools | |
US3872671A (en) | Control device for a hydraulic drive motor | |
US2432305A (en) | Hydraulic operating circuit for machine tools and the like | |
US3170379A (en) | Hydraulic system | |
US2366398A (en) | Power transmission | |
US3185040A (en) | Hydraulic reciprocating system | |
US2328980A (en) | Power transmission | |
US3154923A (en) | Hydraulic drive for producing linear intermittent reciprocatory motions of a machine tool | |
US2986124A (en) | Device for limiting the opening stroke of a tool-carrier | |
US2331046A (en) | Power transmission | |
US2172981A (en) | Fluid pressure driving and reversing mechanism | |
US2286358A (en) | Hydraulic control for variable delivery pumps | |
US2288830A (en) | Power transmission | |
US2389829A (en) | Remote control | |
US2303946A (en) | Power transmission | |
US4020746A (en) | Hydraulically operable linear motor | |
US1986862A (en) | Fluid controlling means | |
US2385069A (en) | Hydraulic drive | |
US1983900A (en) | Hydraulic drive for machine tools | |
US3631761A (en) | Hydraulic action devices with inertia insensitive snubbing circuit | |
US2020765A (en) | Hydraulic feed | |
US2972864A (en) | Hydraulic drives for rectilinear alternating motions for reciprocating machines | |
US2450733A (en) | Power transmission | |
US3150490A (en) | Hydraulic transmissions |