US3121006A - Photo-active member for xerography - Google Patents
Photo-active member for xerography Download PDFInfo
- Publication number
- US3121006A US3121006A US668165A US66816557A US3121006A US 3121006 A US3121006 A US 3121006A US 668165 A US668165 A US 668165A US 66816557 A US66816557 A US 66816557A US 3121006 A US3121006 A US 3121006A
- Authority
- US
- United States
- Prior art keywords
- plate
- xerographic
- binder
- zinc
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 61
- 150000001875 compounds Chemical class 0.000 claims description 56
- 238000005286 illumination Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 22
- 230000003213 activating effect Effects 0.000 claims description 12
- 230000005855 radiation Effects 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 230000005684 electric field Effects 0.000 claims description 6
- 150000001455 metallic ions Chemical class 0.000 claims description 6
- 230000001235 sensitizing effect Effects 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 78
- 239000011230 binding agent Substances 0.000 description 57
- 238000000576 coating method Methods 0.000 description 39
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 33
- 239000011248 coating agent Substances 0.000 description 33
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 33
- 239000000203 mixture Substances 0.000 description 32
- 230000035945 sensitivity Effects 0.000 description 32
- 239000000049 pigment Substances 0.000 description 26
- 229920005479 Lucite® Polymers 0.000 description 25
- 239000004926 polymethyl methacrylate Substances 0.000 description 25
- UQMZPFKLYHOJDL-UHFFFAOYSA-N zinc;cadmium(2+);disulfide Chemical compound [S-2].[S-2].[Zn+2].[Cd+2] UQMZPFKLYHOJDL-UHFFFAOYSA-N 0.000 description 22
- 229910052984 zinc sulfide Inorganic materials 0.000 description 20
- 239000005083 Zinc sulfide Substances 0.000 description 18
- 229940063789 zinc sulfide Drugs 0.000 description 18
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 18
- 206010070834 Sensitisation Diseases 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 230000008313 sensitization Effects 0.000 description 17
- 239000011787 zinc oxide Substances 0.000 description 16
- 238000000498 ball milling Methods 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 230000003595 spectral effect Effects 0.000 description 15
- 206010034960 Photophobia Diseases 0.000 description 14
- 239000012212 insulator Substances 0.000 description 11
- 208000013469 light sensitivity Diseases 0.000 description 11
- 229920002050 silicone resin Polymers 0.000 description 10
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 9
- 229910052711 selenium Inorganic materials 0.000 description 9
- 239000011669 selenium Substances 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 7
- 150000002484 inorganic compounds Chemical class 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- WBFMCDAQUDITAS-UHFFFAOYSA-N arsenic triselenide Chemical compound [Se]=[As][Se][As]=[Se] WBFMCDAQUDITAS-UHFFFAOYSA-N 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 5
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 5
- 229940116367 cadmium sulfide Drugs 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- LJLWNMFUZWUGPO-UHFFFAOYSA-N calcium strontium disulfide Chemical compound [S--].[S--].[Ca++].[Sr++] LJLWNMFUZWUGPO-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 3
- 206010034972 Photosensitivity reaction Diseases 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000004637 bakelite Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000005686 electrostatic field Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000036211 photosensitivity Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- QXKXDIKCIPXUPL-UHFFFAOYSA-N sulfanylidenemercury Chemical compound [Hg]=S QXKXDIKCIPXUPL-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229920006387 Vinylite Polymers 0.000 description 2
- 239000004110 Zinc silicate Substances 0.000 description 2
- 229940007424 antimony trisulfide Drugs 0.000 description 2
- NVWBARWTDVQPJD-UHFFFAOYSA-N antimony(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Sb+3].[Sb+3] NVWBARWTDVQPJD-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229960003671 mercuric iodide Drugs 0.000 description 2
- 229940101209 mercuric oxide Drugs 0.000 description 2
- YFDLHELOZYVNJE-UHFFFAOYSA-L mercury diiodide Chemical compound I[Hg]I YFDLHELOZYVNJE-UHFFFAOYSA-L 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 2
- 235000019352 zinc silicate Nutrition 0.000 description 2
- -1 zinc titanate Chemical class 0.000 description 2
- UKUVVAMSXXBMRX-UHFFFAOYSA-N 2,4,5-trithia-1,3-diarsabicyclo[1.1.1]pentane Chemical compound S1[As]2S[As]1S2 UKUVVAMSXXBMRX-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical group [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- NYZGMENMNUBUFC-UHFFFAOYSA-N P.[S-2].[Zn+2] Chemical compound P.[S-2].[Zn+2] NYZGMENMNUBUFC-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940052288 arsenic trisulfide Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- VAWSWDPVUFTPQO-UHFFFAOYSA-N calcium strontium Chemical compound [Ca].[Sr] VAWSWDPVUFTPQO-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- SQZOLVDICGOBKT-UHFFFAOYSA-E di(octadecanoyloxy)alumanyl octadecanoate Chemical compound [Al+3].[Al+3].[Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O SQZOLVDICGOBKT-UHFFFAOYSA-E 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/087—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and being incorporated in an organic bonding material
Definitions
- This invention relates in general to xerography and in particular to xerographic plates and a Xerographic process using such plates. More specifically, the invention relates to a new Xerographic member comprising a rel.- tively conductive backing having on at least one surface thereof a coating of a finely ground photoconductive insulating material dispersed in a high resistance electrical binder.
- a base plate of relatively low electrical resistance such as metal, paper, etc. having a photoconductive insulating surface thereon is electrostatically charged in the dark.
- the charged coating is then exposed to a light image.
- the charges leak otf rapidly to the base plate in proportion to the intensity of light to which any given area is exposed.
- the coating is contacted with electrostatic marking particles in the dark. These particles adhere to the areas Where the electrostatic charges remain forming a powder image corresponding to the electrostatic image.
- the powder image can then be transferred to a sheet of transfer material resulting in a positive or negative print, as the case may be, having excellent detail and quality.
- the base plate is relatively inexpensive, as of paper, it may be desirable to fix the powder image directly to the plate itself.
- suitable photoconductive insulating coatings comprise anthracene, sulfur r various mixtures of these materials as sulfur with selenium, etc. to thereby form uniform vitreous coatings on the base material.
- These materials have a sensitivity largely limited to the blue or near ultraviolet and have a further limitation of being only slightly light sensitive. Consequently, there has been an urgent need for improved photoconductive insulating materials.
- the discovery of the photoconductive insulating properties of highly memei fied vitreous selenium has resulted in this material becoming the standard in commercial Xerography.
- vitreous selenium suffers from two serious defecis: first, its spectral response is very largely limited to the bllic or near ultraviolet; and, second, the preparation of uniform films of vitreous selenium has required highly involved and critical processes, particularly vacuum evaporation. Furthermore, vitreous selenium by its nature requires a relatively firm and uniform support such as a continuous plastic or mteal base. This, together with the high cost of selenium itself has rendered impractical the development of a disposable xerographic plate such as a paper base plate using this material.
- a Xerographic sensitive member known as a xerographic plate can be prepared by intimately mixing and grinding together a photocon uctive insulating material in a high electrical resistance bi .der.
- This mixture is suitable as the photoconductive insulating layer in the xerographic plate and may be coated on any suitable support material offering a relatively lower electrical resistance such as metal, paper, suitable plastics or conductively coated glass, plastics, etc. as more fully dc scribed hereafter.
- the photoconductive insulating layer itself comprises an inor anic photoconductive: insulating compound dispersed in a high electrical resistance binder.
- This composition dissolved in a suitable solvent may be flowed on the base material or otherwise coated on the base as by dipping, whirling, the use of a doctor blade, dip roll etc.
- the composition may be rendered flowable using a thermoplastic resin as the insulating binder and heat to render the composition plastic.
- the composition may be applied to the base material without the necessity for a solvent.
- a solvent solution of the coating composition may be emulsified or dispersed in water and the aqueous emulsion or dispersion coated on the base material.
- photoconductive insulators will hold a charge in the dark and can, thus, be used in the xerographlc process.
- the photoconductor forms a homogeneous layer, its ability to hold a charge is essentially cle endent on the dark resistivity of the photoconductive insulator itself.
- the minimum operable dark resistivity is generally in the order of 10 ohmscrn. and it is preferred that the material be more resistant. Very few photo conducting materials possess such a high resistivity in the dark.
- the photoconducting material is incorporated in an insulating binder, a larger part of the resistivity of the component layer is dependent on the resistivity of the resin binder.
- the darlr resistivity requirements for the photocouductive insulator are not nearly so strenuous.
- a material is considered a photoconductive insulator for use in a binder plate if it shows a resistivity in the dark above about 10 ohmscm. it is evident that all insulators and all semi-conductors are not photoconductors. Certain arrangements among the allowed electron energies in the material are required to achieve photoconductivity.
- photcconductive insualting is a defining term distinguishing the material from an insulator, a semi-conductor and a photoconductive semi-conductor.
- Resistivity is a simple physical property which may be determined by consulting an appropriate handbook or by a simple electrical measurement.
- Photocond'uctivity as used herein is more illusive of accurate definition. In general, photoconductivity requires making electron transitions to the conduction band upon the absorption of light.
- the photoconductive members of each group possessing the requisite resistivity as herein defined are photoconductive insulating compounds.
- the inorganic photoactive compounds operable in the instant invention may be classified in these groups: first, inorganic luminescent or phosphorescent compounds; second, inorganic, intrinsically colored compounds having an index of refraction of at least 2; third, inorganic compounds possessing at least one index of refraction greater than 2.10 over at least 5% of the wavelength range of visible light; and, fourth, inorganic compounds which have two different valence states of at least one elemental constituent between which electron transfers can occur.
- luminescence or phosphorescence is evidence of the elevation of one or more electrons to a higher energy level. Therefore, whenever the elevation is sufficient so that the electric charge is free to migrate upon the application of an electric field the material is photoconductive. It is assumed that materials classed herein as phosphors are either intrinsically phosphors or are made so by the inclusion or addition of specified impurities or promoters as is well known to those skilled in the art.
- inorganic photoconducting insulating compounds is intrinsically colored ionic compounds. Colored compounds, due to their greater light absorption, have a greater light eliiciency than colorless compounds at certain wavelengths.
- An intrinsic color is the term used to describe the color resulting from the interaction of ions on each other whereby there is produced a color different than that produced by the ions separately and additively. The interaction is a property of the compound itself and is a constant phenomenon, that is, it is the same by whatever process the compound is prepared. Thus, an intrinsic color is direct physical evidence either of a maintained distribution of excited valence orbitals or of the presence of constantly occurring electron shifts. Such materials are often photoconductors.
- the refractive index is equated to the square root of the dielectric constant and is directly proportional to the number of mobile electrons, that is, electrons free to vibrate. Such mobile electrons are easily excited to the conductive band by the absorption of energy which is the necessary requirement for photoconductivity.
- the index of refraction gives a rough approximation of the number of such electrons.
- the index of refraction is at least two and we have the concurring evidence of intrinsic color, the compound is generally photoconductive.
- another class of inorganic compounds are photoconductive insulating compounds which are intrinsically colored and possess an index of refraction of at least 2.
- Still another class of photoconductive insulating compounds are those inorganic compounds which have at least one index of refraction greater than 2.10 over at least 5% of the wavelength range of visible light.
- this class of compounds it may be considered that there are sufiicient free electrons that it is not necessary to have the confirming evidence of intrinsic color to classify the compound a priori as a photoconductor.
- a final class of compounds in which the requsite electron transfers can occur for photoconductivity are inorganic compounds which have two different valence states of at least one elemental constituent between which electron transfers can occur.
- One evidence of such compounds occurs when the stoichiometric composition of the material implies the presence of an unusual oxidation state of one or more of the chemical elements present.
- the Berthollides are in this group, particularly that class of Berthollides called perovskites.
- the inorganic photoconductive insulating compounds found suitable for use in xerographic binder plates may be described as being characterized by having electrons in the non-conductive energy level activatable by illumination to a different energy level whereby an electric charge is free to migrate under an applied electric field in the order of at least 10 volts per centimeter, the composite resistivity of the binder and photoactive material in the layer being at least 10 ohms-cm. in the absence of illumination and the decay factor being less than 3.0.
- the measured apparent specific resistivity of the composite layer tends to vary with the field strength and, therefore, should be determined under the approximate conditions of use which may, in the absence of other indications, be a field strength in the order of 10 to 10 volts per centimeter.
- the decay factor is determined by the rate of charge decay in the absence of activating radiation.
- a xerographic plate in general, is closely analogous to a condenser.
- the potential decay of a condenser may be expressed by the equation:
- R resistance in ohms
- C capacitance in farads c base of natural logarithms In this equation, l/RC is the decay factor; when 1 /RC is large, the decay will be rapid and when it is small the decay will be slow.
- l/RC may change, as decay proceeds, but an average value of l/RC over the range employed adequately describes this critical factor.
- the decay factor is less than 0.01, this representing a high quality performance.
- the factor is less than 0.1, this representing a preferred upper limit of the decay factor.
- the decay factor is about 3.0, the potential decay would be from about 200 volts to about 100 volts in about 4 sec., and this represents substantially the maximum decay rate that can be tolerated in accordance with presently known xerographic techmques.
- the gap between the valence and the conducting band of a compound is determinant of the energy needed to make electron transitions. The more energy needed the higher the frequency to which the photoconductor will respond.
- there are various external evidences of stress on the electronic configuration of inorganic compounds which are evidence of the desired electronic structure. It is obvious that it is possible to reduce the band-gap for these compounds by adding a foreign compound as an activator which either by virtue of its atomic dimensions or by possessing a particular electronic forbidden zone structure or through the presence of traps as donor levels in the intermediate zone between the valence and the conduction band stresses the electronic configuration of the photoconductive compound so as to reduce its band-gap and, hence, increased its ability to release electrons to its conduction band.
- Phosphors almost necessarily imply the presence of such activating substances.
- the effect of such impurities may be such as to confer photoconducan tivity upon a compound which intrinsically is non-photoconductive.
- the (Ca-Sr)S phosphors used herein are believed to be in this group.
- excessive impurity content can be deleterious.
- many CO1-- pounds which are intrinsically operable as photoconductive insulators are reported in the literature as photo conductive semiconductors ecause of the unsuspeceted presence of conducting impurities.
- a compound when suitably activated as with manganese, calcium, cadmium, copper, etc. zinc sulfide is a phosphor and belongs in that group. With proper treatment, ZnS may also be classified 'as a defect compound (the fourth group in the above classification). However, this is largely a theoretical classification due to the great difficulty of not activating ZnS as to render it phosphorescent.
- Pb O which in the above classification belongs in both group two and group tour.
- iodides are often intrinsically colored. Mercuric iodide is an excellent photoconductor. However, the iodide ion does not always confer a high color to salts. Certain iodides, simple and complex, which contain, for example mercury, may be viewed as intrinsically colored. In the instances of Cullgl Cu ligl among others, the intrinsically is quite obvious because such compounds undergo a reversible color change from red to yellow at about 150 C. depending on the compound. Stibnides, arsenides, phosphides and similar compounds also are often photoconductive but possess complicated net strucures. The same is true of the Berthollides and perovslrites. Zinc titanate may possess the perovskite structure.
- Specific photoconductive insulating compounds investigated by us include but are not limited to phosphors such as zinc oxide, zinc sulfide, zinc-cadmium sulfide, zinc-magnesiiun oxide, cadmium selenide, zinc silicate, CQlCllllTleSilOIlllUl'll sulfide, etc.; intrinsically colored compounds such as cadmium sulfide, mercuric iodide, mercuric oxide, mercuric sulfide, indium trisulfide, gallium triselcnide, arsenic disulfide (A5 8 arsenic trisullide, arsenic triselenide, antimony trisulfide, red lead (1 13 0,), etc.; compounds having a high index of retraction such as titanium dioxide; and defect compounds such as zinc titanate, red lead, zinc sulfide (GP. grade) etc.
- phosphors such as zinc oxide, zinc s
- the binder material which is employed in cooperation with the photoactive compound is a material which is an insulator to the extent that an electrostatic charge placed on the layer is not conducted by the binder at a rate to prevent the formation and retention of an electrostatic latent image or charge thereon.
- the binder material is adhered tightly to the base material and provides efiicient dispersing medium for the photoactive particles. Further, the binder should not react chemically with the photoactive compound.
- Satisfactory binder materials for the practice of the invention are polystyrene; silicone resins such as DC-SOl, DC-804, and DC996 all manufactured by the Dow Corning Corp. and SR-82 manufactured by the General Electric Company; acrylic and mcthacrylic ester polymers such as Acryloid A10 and Acryloid E72, polymerized ester derivatives of acrylic and alpha acrylic acids both supplied by Rohm and Haas Company, and Lucite 44, Lucite 45 and Lucite 46 polymerized butyl methacryiates supplied by the E. I.
- du Pont de Nemours & Company du Pont de Nemours & Company; chlorinated rubber such as Parlon supplied by the Hercules Fowder Company; vinyl polymers and copolymers such as polyvinyl chloride, polyvinyl acetate, etc. including Vinylite VYHH and VMCH n1anufactured by the Bakelite Corporation; cellulose esters and ethers such as ethyl cellulose, nitrocellulose, etc.; alkyrd resins such as Glyptal 2469 manufactured by the General Electric (10.; etc. In addition, mixture of such resins with each other or with plasticizers so as to improve adhesion, flexibility, blocking, etc. of the coatings may be used.
- chlorinated rubber such as Parlon supplied by the Hercules Fowder Company
- vinyl polymers and copolymers such as polyvinyl chloride, polyvinyl acetate, etc. including Vinylite VYHH and VMCH n1anufactured by the Bake
- Rezyl 869 (a linseed oil-glycerol alkyd manufactured by American Cyana-mid Company) may be added to chlorinated rubber to improve its adhesion and flexibility.
- Vinylites VYHH and VMCH polyvinyl chloride-acetate copolymens manufactured by the Bakelite Company
- Plasticizers include phthalates, phosphates, adipates, etc. such as tricresyl phosphate, dioctyl phthalate, etc. as is Well known to those skilled in the plastics art.
- T he method of preparation of the binder has a significant effect upon its conductivity and, therefore, its operability in a xerographic plate.
- Certain methods of polymerization lead to the inclusion of significant quantities of ionic materials such as emulsifying agents, salts, etc. in the binder which contaminants would render inoperable a resin in itself quite operable.
- a resin may be operative with one pigment and not with another.
- a particular resin may have a border-line resistivity so that when blended with a high resistant p'hotoactive compound such as the proper rform of cadimiuni sulfide, there results an operable xerographic binder plate whereas when blended with a less resistive photoactive compound such as zinc oxide, the cumulative effect of the compound and binder is to result in an inoperable xerographic binder plate, i.e., one which is unable to hold an electrostatic charge in the dark.
- a high resistant p'hotoactive compound such as the proper rform of cadimiuni sulfide
- the function of the base or backing material used in preparing xerographic binder plates is to provide physical support for the photoconductive insulating layer and to act as a ground thereby permitting the photoconductive insulating layer to receive an electrostatic charge in the dark and permitting the charges to migrate when exposed to light.
- metal surfaces such as aluminum, brass, stainless steel, copper, nickel, zinc, etc.; conductively coated glass as tinor indium-oxide coated glass, aluminum coated glass, etc.; similar coatings on plastic substrates; or paper rendered conductive by the inclusion of a suitable chemical therein or through conditioning in a humid atmosphere to insure the presence therein of sufficient water content to render the ma- 6 terial conductive.
- T act as a ground plane as described herein, the backing material may have a surprisingly high resistivity such as 16 or ohms-cm.
- the composite layer of binder and photoactive compound has suucient strength to form a self-supporting layer (termed pellicle)
- a ground plane provides a source of mobile charges of both polarities.
- the deposition on the other side of the photoconductive insulating layer (from the ground plane) of sensitizing charges of the desired polarity causes those charges in the ground plane of opposite polarity to migrate to the interface at the photoconductive insulating layer. Without this the capacity of the insulating layer by itself would be such that it could not accept enough charge to sensitize the layer to a xerographically useful potential.
- the simultaneous deposition of negative charges on the other side of the pellicle also by corona charging Will create an induced, that, is a virtual, ground plane within the body of the pellicle just as if the charges of opposite polarity had been supplied to the interface by being induced from an actual ground plane.
- Such an artificial ground plane permits the acceptance of a usable sensitizing charge and at the same time permits migration of the charges under the applied field when exposed to activating radiation.
- the term conductive base includes both a physical base and an artiiicia one as described herein.
- the xerographic binder plate may be in any form whatsoever as desired by the formulator such as flat, spherical, cylindrical, etc.
- the plate may be flexible or rigid.
- xcrographic plates having a variety of colors and hues with light sensitivities ranging from complete panchromaticity over the visible spectrum to sensitivity to a specific narrow range of Wavelengths anywhere from the near ultraviolet to the near infrared.
- a series of pigments, each in itself being sensitive to a series of wavelengths, may be combined in the photoconductive insulating layer. In cases of such combination the sensitivity in the resulting plate is not necessarily the sum of the sensitivities of the individual pigments. In some cases it has been observed that the pigment will have a quenching effect on the other pigment or pigments. The reason for this effect is not known.
- the spectral sensitivity of plates prepared in accordance with the instant invention may, as is obvious to those skilled in the art, be modified through the inclusion of photosensitizing dyes therein.
- the dyes useful for this purpose are those commonly used in photographic sensitization and the basic mechanism of dye sensitization in xerographic binder plates is believed to be the same as that in photographic sensitization. By using such dyes singly or in combination, it is possible to further modify and, in effect, tailor-make the resulting binder plate.
- Example 1 A mixed cadmiurnsultfide zinc-sulfide phosphor commercially available under the name Phosphor 2225 (New Jersey Zinc Company) was mixed with an adhesive binder which was a silicone resin commercially available under the name DC-996 (Dow Corning Corp).
- the phosphor material had a particle size of about one micron.
- the phosphor crystals and the binder material were mixed together in equal parts by weight together with toluene in an amount equal to the volume of the binder material.
- the resulting mixture was painted on the surface of a mirror-finished aluminum plate and was allowed to dry. I
- the product is a xerographic plate comprising a metallic backing and a photoconductive insulating layer thereon.
- the photoconductive insulating surface is characterized by the ability to accept and retain an electrostatic charge of at least about 300 volts and upon suitable exposure to activating radiation rapidly to dissipate this charge.
- Thermal excitation as by heating supplies the energy needed to free the carrier from the trap.
- Other means of relieving fatigue known to those skilled in xcrography may also be used. Where the xerographic plate is not to be reused, fatigue is not a problem, though in the case of easily fatigued photoconductors it may be desirable to store the plate in the dark until use.
- Examples 2 Through 18 A series of xerographic plates were prepared in the following manner: In each case a 4 x 5-inch sheet of polished aluminum was dipped in a solution of 5% sodium hydroxide long enough to dull the finish of the aluminum.
- a coating emulsion was formulated by adding 10 millimeters of distilled water to 15 millimeters of an aqueous polystyrene emulsion commercially available under the name BKS-92 from the Bakelite Company, a division of Union Carbide and Carbon Company. Enough of the photoconductive material was then added to the emulsion to bring the total volume to 30 millimeters. The emulsion was then agitated and after thorough mixing, 8 millimeters was spread evenly over the metal plate.
- the plate was air dried, baked for 15 minutes in an oven at 250 F. and then cooled to room temperature.
- the plates so prepared were tested by being passed under a corona charging unit which unit had been adjusted to give a plate-to ground current of 7 microamperes when using electrically positive sensitization and 26 microamperes when using negative sensitization.
- a corona charging unit which unit had been adjusted to give a plate-to ground current of 7 microamperes when using electrically positive sensitization and 26 microamperes when using negative sensitization.
- Immediately after charging the potential on the plate was measured with a vibrating probe electrometer. After 30 seconds in the dark, potential was remeasured.
- the plate was then recharged, exposed to the light from a Bausch & Lomb photomicrograph lamp for 30 seconds and the voltage on the plate remeasured.
- Zinc sulfide C.P.
- antimony sulfide C.P.
- the following phosphors obtained from the E. I.
- du Pont 'de Nernours & Company-511 (zinc oxide), 601 (zinc silicate), 1200 (zinc-cadmium sulfide); the following phosphors from RCA-F-2032 (zinc oxide), F2039 (zinc-cadmium sulfide) and F- 2046 (zinc sulfide); and the following phosphors from New Jersey Zinc Company2ll0 (zinc-magnesium oxide), 2115 (zinc magnesium oxide), 2200 (zinc sulfide), 2205 (zinc sulfide), 2215 (zinc cadmium sulfide), 2301 (zinc sulfide), 2304 (zinc-cadmium sulfide), 2330 (zinc sulfide) and 2469 (calcium strontium sulfide).
- the chemically pure zinc sulfide and Phosphor 2330 were found useful only with negative sensitization.
- the antimony sulfide and Phosphors 511, 2215 and 2301 while useful with both polarities of sensitization were slightly more sensitive for positive sensitization.
- Phosphors 601, 1200, 2032, 2200, 2304 and 2469 while useful with both polarties of sensitization showed a preferential light sensitivity when negatively charged. The remaining materials were approximately equally sensitive for both polarities of charging.
- Examples 1 9 Through 30 A series of xerographic plates were prepared by making a 1 to 1 mixture, by volume, of a particular photoconductive material with the silicone resin DC-996. This mixture was spread over a 4 x 5-inch aluminum plate by means of a doctor plate to give a coating approximately 0.007-inch thick.
- the photoconductive materials used in these examples were the following phosphors obtained from the New Jersey Zinc Company: 2100 (zinc oxide), 2110 (zinc magnesium oxide), 2115 (zinc-magnesium oxide), 2200 (zinc sulfide), 2205 (zinc sulfide), 2215 (zinc-cadmium sulfide), 2220 (zinc-cadmium sulfide), 2301 (zinc sulfide), 2304 (zinc-cadmium sulfide), 2469 (calcium-strontium sulfide), 2479 (calcium-strontium sulfide) and 2703 (calcium-strontium sulfide).
- xerographic plates obtained with these ingredients were operable as in Example 1 to accept an electrostatic charge and to dissipate the charge upon illumination.
- the sulfur-containing photoconductors showed a higher light sensitivity than the oxygen-containing photoconductors.
- these xerographic plates of Examples 22 through 30, inclusive were retested as described excepting that instead of uniform light they were exposed to light projected through a transparent photographic positive of a continuous-tone subject to produce on the plate a pattern of electrostatic charges corresponding to the pattern of light and shadow to be reproduced.
- the electrostatic charges were developed using the powder cloud development apparatus and method described in detail in US. 2,784,109 by Lewis E. Walkup. In each case an accurate reproduction of the continuous-tone original was obtained.
- Examples 3 Through 33 A series of three xerographic plates were prepared as described in Examples 19 through 30 except that in Ex ample 31, 0.5 milliliter of a 1% toluene solution of monoaluminum stearate for each 5 grams of photoconductor were added to the resin-photoconductor mix. In Example 32 the same amount of dialluminum stearate and in Example 33 the same amount of trialuminum stearate was used. In each case the resin was silicone resin DC-996 and the photoconductor was Phosphor F-2039 (zinc-cadmium sulfide). It was found that the aluminum soaps tried were equally satisfactory and in each case produced a significant improvement in the texture of the plate surface and the quality of xerographic powder images developed on the surface as described in Examples 22 through 30.
- Example 34 Two xerog-raphic plates were prepared using a 1 to 1 mixture, by volume, of Phosphor 2225 (zinccadmium sulfide) and silicone resin DC-996. The mixture was thoroughly agitated to disperse the photoconduotor in the resin solution.
- the photoconduotorbinder mixture was coated on a 4 x 5-inch aluminum sheet using a doctor blade giving a coating of 0.005-inch thick.
- Example 35 the mixture was sprayed on the aluminum plate giving a coating 0.003 inch thick. Both plates were then tested and were found to accept an electrostatic charge and to dissipate the charge upon illumination. There was no significant diiference between the plates in their xerographic properties or physical properties.
- Example 36 A series of four xerographic plates were prepared using Phosphor 1 -2039 and silicone resin Bil-996. The photoconductor-binder mixture was applied to the 4 x 5 aluminum sheets by dipping the plates in the solution and withdrawing them at the rate of one-inch per minute.
- plate was Clipped once giving a coating thickness of 0.0035 inch.
- Example 37 the plate was dipped twice giving a coating thickness of 0.007 inch.
- Example 38 the plate was dipped three times giving a coating thickness of 0.011 inch and in Example 39 the plate was dipped four times giving a coating thickness of 0.0145 inch.
- the plates were then charged and charge acceptance and light and dark decay measured as in Examples 2 through 18. The results are set forth for both positive and negative charging in FIGS. 1 through 4.
- Example 40 A l to mixture, by volume, of Phosphor F2039 and silicone resin DC-996 was prepared. The mixture was then ball-milled for four hours. At the end of this time particle size had been reduced from the range of 5 to 50 microns to a range of 0.5 to 5 microns. This treatment eliminated the fluorescence of the phosphor. A continuous tone xerographic image was developed on this plate as described in Examples 22 through 30. There was observed a substantial improvement in grain quality which was ascribed to the reduction in particle size of the photoconductor.
- Examples 41 Through 43 A series of three xerographic plates were prepared us ing a 1 to 1, by volume, mixture of silicone DC-996 and, respectively, Phosphor 1200 (zinc-cadmium sulfide), Phosphor 1 -2039 (zinc-cadmium sulfide) and Phosphor 2225 (zinc-cadmium sulfide).
- the binder-photoconductor mixtures were applied to 4 x 5 aluminum. sheets using a doctor blade to give a coating about 0.005 inch thick.
- Phosphor 1200 had a particle size of about 75 l.
- Phosphor F2039 had a particle size of about to 30 microns and Ehosphor 2225 had a particle size or about 0.5 to 5 microns.
- the plates so prepared were electrically charged and charge acceptance and light and dark decay determined for both positive and negative electrical sensitization. The results are shown in FIGS. 5 and 6.
- Example 44 Eighty parts of titanium dioxide, by weight and twenty parts, by weight, of polystyrene were mixed with sufficient toluene to give a free flowing solution. The suspension was fiowed onto a 4 x 5 aluminum sheet and air dried at room temperature. The plate was then baked for 2 /2 days at 65 C. and then at 120 C. for 5 hours. The plate so prepared was then tested for electrical charge acceptance and light and dark decay as in Examples 2-18. The plate accepted both positive and negative electrostatic charges and was appriximately equally light sensitive for both polarities of charging. The plate was approximately as sensitive to light as a plate coated with anthracene by vacuum evaporation but appeared to be rather humidity sensitive.
- Example 45 A xerographic plate was prepared by adding to a porcelain ball-mill 2.1 parts by weight of a commercial antimony trisulfide obtained from the l. T. Baker Chemical Company, 1.0 part by weight of a poly-n-butyl methacrylate resin obtained from E. I. du Pont de Nemours & Company under the trade name Lucite 44 and 2.3 parts by weight of toluene. The mixture was ball-milled for 3 hours using porcelain balls about 0.5 inch in diameter. The mixture was whirl-coated on a 4 x S-inch aluminum plate rotating at about 120 r.p.m. to give a coating about 61 microns thick. An electrostatic charge was placed on the plate using corona charging as described in US.
- Example 46 A xerographic plate was prepared and tested as in Example 45 using 3.68 parts of GP. grade HgS (l. T. Baker Chemical Co.) to 1.0 part Lucite 44 to 2.3 parts toluene (all parts by weight). The coating was 23 microns thick. The plate accepted both positive and negative electrostatic charges and was found to dissipate these charges upon illumination as in Example 45.
- GP. grade HgS l. T. Baker Chemical Co.
- Example 47 A xerographic plate was prepared and tested as in Example 45 using 5.1 parts of GP. grade mercuric oxide (J. T. Baker Chemical Company) to 1.0 part of Lucite 44 to 1.3 parts of toluene (all parts by weight) and ballmilling for 8 hours. The coating was 25 microns thick. The plate was operable to accept an electrostatic charge and to dissipate the charge upon illumination using both positive and negative electrical sensitization.
- GP. grade mercuric oxide J. T. Baker Chemical Company
- Example 48 A xexrographic plate was prepared and tested as in Example 45 using 1.5 parts of chemically pure indium trisulfide, 1 part of a copolymer of n-butyl and isobutyl mcthacrylate obtained from the E. I. du Pont de Nemours and Company under the trade name of Lucite 46 and 4 parts of toluene (all parts by weight). The mixture was ball-milled for 6 hours using Pyrex glass beads T2 6 millimeters in diameter. The coating was 17 microns thick. The plate was operable to accept both positive and negative electrostatic charges and to dissipate the charges upon illumination as in Example 47.
- Example 49 A xerographic plate was prepared and tested as in Example 48 using 1.5 parts of chemically pure AS 8 (Coleman and Bell Co.), 1.0 part of Lucite 46 and 3 parts of toluene (all parts by weight) and ball-milling for 5 hours. The coating was 53 microns thick. The xerographic plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The charge acceptance and light sensitivity of the plate was slightly better for positive sensitization than for negative.
- Examples 50 Through 52 A series of three xerographic plates were prepared as in Example 45 using as the pigment Pb O Because of the high density of the pigment the ratio of binder to pigment is based on true volume using the density of the binder and pigment to compute the actual volume of the materials used. In each case 1 part by volume of Lucite 46 was used as the binder. The amounts of Pb O for Examples 50-52 Were, by volume, 0.55, 0.88 and 1.0, respectively, to 5.8, 6.8 and 7.4 volumes of toluene, respectively. The coatings were about 22 microns thick. In each case the xerographic plates were operable to accept either positive or negative charges and to dissipate the charges upon illumination.
- Example 53 A xerographic plate was prepared and tested as in Example 45 using 1.4 parts of phosphor grade CdSe (copper activated, Merck & Co.), 1 part Lucite 44 and 5 parts of toluene and the solution ball-milled for 19 hours. Additional toluene and Lucite 44 were added to change the volume ratio to 0.7 part cadmium selenide to 1 part of Lucite 44 (all parts by volume, adjusted by density to give true volume). The mixture was ball-milled an additional hour and a 4 x 5-inch aluminum plate whirlcoated to give a coating 25 microns thick. The plate so obtained was operable to accept an electrostatic charge of either polarity and to dissipate the charge upon illumination. On retesting with a monochromatic light source, as in Examples 50 through 52, it was found that the plate showed photosensitivity over the wavelength range of 650 to 800 millimicrons. The peak sensitivity was at 750 millimicrons.
- Example 54 A xerographic plate was prepared and tested as in Example 45 using 1.56 parts of a chemically pure arsenic trisulfide, 1 part of Lucite 46 and 5.6 parts of toluene (all parts by weight) and ball-milling for 6.5 hours. The coating was 20 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges upon illumination to light.
- Example 55 A xerographic plate was prepared and tested as in Example 45 using 1.34 parts of CF. grade gallium triselenide, 1 part of Lucite 46, 5.66 parts of toluene (all parts by weight) and ball-milling for 6.5 hours. The coating was 18 microns thick.
- the xerographic plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges upon illumination. The plate was sensitive over the entire range of wavelengths from 400 to 700 millimicrons with peak sensitivity at about 600. The plate showed a higher light sensitivity when positively sensitized.
- Example 56 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor 2205 (zinccadmium sulfide), 1 part of Lucite 46 and 5.66 parts by weight of toluene (all parts by weight), and ball-milling for 7.5 hours. The coating was microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate had slightly better xerograpln'c properties for negative sensitization than for positive.
- Example 57 A xerographic plate was prepared and tested as in Example 45 using 5.0 parts of Phosphor 2330 (zinccadmium sulfide), 1 part of Lucite 46 and 5.66 parts of toluene (all parts by weight), and ball-milling for 7.5 hours. The coating was 41 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate was sensitive only in the bluegreen with peak sensitivity in the near ultraviolet.
- Example 58 A xerographic plate was prepared and tested as in Example 45 using 5.0 parts of Phosphor 2225 (zinccadmium sulfide), 1 part of Lucite 46, and 5.66 parts of toluene (all parts by weight), and ball-milling for 17 hours. The coating was 28 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate had slightly better charge acceptance and light sensitivity when negatively sensitized than when positively sensitized. Light sensitivity extended from the near ultraviolet out to the orange (about a wavelength of 600 millimicrons). Peak sensitivity was at about 500 millimicrons.
- Example 59 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor F4039 (zinccadmium sulfide), 1 part of Lucite 46 and 3.0 parts of toluene (all parts by weight), and ball-milling 17.5 hours. The coating was 46 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate had much more light sensitivity for positive sensitization than for negative. The plate was sensitive over the entire visible spectrum with a peak at a wavelength of about 500 millimicrons when negatively charged.
- Example 60 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor 1200 (zinccadmium sulfide), 1 part of Lucite 46 and 3.0 parts of toluene (all parts by weight), and ball-milling 17 hours. The coating was 43 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination.
- Example 61 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor 2703 (calciumstrontium sulfide), 1 part of Lucite 46 and 5.66 parts of toluene (all parts by Weight), and ball-milling for 7 hours. The coating was 23 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination.
- Example 62 A xerographic plate was prepared and tested as in Example using 1.8 parts of a GP. grade Zinc sulfide, 1.0 part of a silicone resin obtained from General Electric and sold under the trade name SR82, 3.2 parts of toluene (all parts by weight), and ball-milling for 21 hours. The coating was 106 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. This plate displayed much better charge acceptance and light sensitivity when negatively charged. Moreover, it was particularly outstanding in having extremely low residual potentials after light exposure.
- Example 64 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of a GP. grade Pb o 1 part of Lucite 46, 4 parts of toluene (all parts by weight), and ball-milling for 5 hours. The coating was 23 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination.
- Example 65 A xerographic plate was prepared and tested as in Example 45 using 0.44 part of a GP. grade cadmium sulfide, 1 part of Lucite 46, 4 parts of toluene (all parts by weight) and ball-milling for 3 hours. The coating was 20 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. This plate displayed a definitely higher charge acceptance and light sensitivity for negative charge than for positive.
- Example 66 A xerographic plate was prepared and tested as Example 45 using 5 parts of Phosphor 2225 (zinc-cadmium sulfide), 1 part of CE. grade mercuric sulfide, 1 part of Lucite 46 and 5 parts of toluene (all parts by true volume). The ratio of total pigment to binder was 1.4 to 1 by volume. The mixture was ball-milled for 15 hours and whirl-coated on an aluminum plate to give a coating 28 microns thick. The plate so prepared accepted relatively high electrical potentials of either positive or ne ative polarity with very low dark decay rates. The plate had a low but definite sensitivity over the entire spectral range from 375 to 700 millimicrous with peak sensitivity at about 600. As compared to the light sensitivities of the separate pigments, peak sensitivity was less for this plate and extended much further into the red.
- Phosphor 2225 zinc-cadmium sulfide
- Example 67 A xerographic plate was prepared and tested as in Example 45 using 10 parts zinc oxide (a pigment grade obtained from New lersey Zinc Co. under the trade name Florence Green Seal No. 8), 1 part C.P. grade arsenic triselenide, 1 part Lucite 46, 6.3 parts of toluene (all parts by true volume) and ball-milling for 15 hours to give a coating microns thick.
- the volume ratio of total pigment to binder was 1.4 to 1.
- arsenic triselenide has a peak sensitivity in the red.
- Zinc oxide has a peak sensitivity in the near ultraviolet.
- This plate with the pigment mixture showed a high photosensitivity at 375 millirnicrons (substantially higher than Zinc oxide alone) falling off to virtually zero at 400 millimicrons. No photo-sensitivity could be detected at longer wavelengths. The separate sensitivity of the arsenic triselenide was apparently quenched. The plate did not accept a positive charge.
- Examples 68 Through 69 A series of three xerographic plates were prepared and tested as in Example 45 using parts of Florence Green Seal No. 8 zinc oxide, 1 part of a phosphor, one part of Lucite 4-6, 5.5 parts of toluene and ball-milling for 14 hours.
- the phosphors for Examples 68 through 69 were 2225, 2330 and F2Q39, with coating thicknesses of 28 microns, 13 microns and 23 microns, respectively.
- the ratio of pigment to binder was 1: 1. All parts are by true volume.
- the spectral sensitivity of the plates were determined and the results are shown in FIGURE 7.
- Example 70 A xerographic plate was prepared by using 2.5 parts by weight of Florence Green Seal No. 8 zinc oxide, 1 part by weight SR-82 and sufficient toluene to give good grinding viscosity and ball-milled to uniformly disperse the pigment in the binder. The resulting mixture was whirlcoated on an aluminum plate and air dried for 48 hours. The coating was 23 microns thick. The spectral sensitivity of the plate was determined and the results are shown in FIG. 7.
- T is the time in seconds for the potential on the plate to decay in the dark to one-half of some given value
- T is the time in seconds for the potential on the plate to decay under given illumination to one-half of the same initial value used in the determination of T and I is the intensity of the light in microwatts per square centimeter.
- the spectral sensitivities to sunlight of the plates of Examples 46, 48, 55, 59, 62 and 70 were then determined.
- the spectral sensitivity to sunlight was similariiy calculated for a commercial xerographic plate comprising vacuum evaporated selenium on an aluminum backing obtained from The Haloid Company, Rochester, New York. The results are shown in bar-graph form in FIG. 8 with the numbers normalized to 100 for selenium.
- the same calculation was then repeated to determine the relative spectral sensitivity of these plates to a photofiood source.
- the spectral sensitivity of the plate in Example 68 was calculated for this light source.
- the relative sensitivity in the terms of 100 for the commercial selenium plate is shown in bar-graph form in FIG. 9.
- pigment grade zinc oxide is sensitive only in the far blue and near ultraviolet while cadmium selenide is sensitive only in the red and near infrared.
- Mercuric sulfide is sensitive only in the range Within about 25 millimicrons of 600.
- Arsenic triselenide is sensitive over the entire visible spectrum with a peak in the far red.
- Gallium trisclcnide and indium trisulfide are sensitive from the green to far red with a high peak in the orange. Costs vary widely.
- Pigment grade zinc oxide is relatively cheap but has low sensitivity.
- Gallium triselenide, indium trisulfide and arsenic triselenide although quite sensitive to incandescent light sources are relatively expansive and not readily available commercially.
- a particularly preferred material for use in xerographic binder plates are the zinc-cadmium sulfide phosphors. These materials are readily available commercially and in themselves offer an extremely wide range of choice in spectral characteristics. Thus, Phosphor 23 30 is sensitive only in the near ultraviolet to green region of the spectrum while Phosphor F2039 is sensitive over the entire spectral range from the near ultraviolet to the far red. Whereas materials such as pigment grade zinc oxide and GP. grade zinc sulfide are generally useful xerographically only when neagtively charged, the zinc-cadmium sulfide phosphors are usable when sensitized with either polarity of electrical charge.
- the thickness of the photoconductive insulating layer is not critical.
- the layer may be anywhere from about 10 to 200 microns thick. For best operation it is preferred that the layer not be over about microns thick.
- the ratio between binder and the inorganic photoconductive insulating compound is from about 1 part binder and 10 parts photoconductor to about 2 parts binder and 1 part photoconductor by weight.
- the actual proportion will, of course, depend on the specific binder as well as on the properties and characteristics desired.
- the quantities of the binder should be the least amount which will adequately secure the photoconductor to the surface of the backing member and which will form a smooth and useful surface for the ultimate deposition thereon of electr-ostatically charged powder particles.
- the mechanism of operation of a xerographic binder plate is not understood. It has been postulated that the individual particles of operable inorganic compounds exist with two different conductive states in the particles, that is, the surface may be p-type while the interior of the particles may be n-type or vice versa. The difference of conductivity type may be due to the method of the preparation of the crystal or to the interaction of the binder in the preparation of the xerographic plate. These pigment particles may form irregular chains of conductive paths leading from the surface of the binder plate to the interface with the backing material. Such a path would offer a large number of p-n junctions.
- the pigment particles may be coated with a thin insulating film of binder offering a resistive barrier between adjacent pigment particles.
- carrier movement is probably limited primarily by interparticle barriers. It is not intended to limit the invention to this or any other theory of operation.
- the critical requirement or property, as discussed hcreinbefore, is that the excited photoelectrons or holes left behind can migrate when under an applied electric field.
- the xerographic members a-- cording to this invention have a very high specific resistivity in the absence of activating illumination and are such as to have a decay factor as previously defined of less than about 30, generally less than about 0.1.
- Typical compounds possessing these properties are cadmium sulfide, zinc sulfide, cadmium selenide, zinc selenide, mixed sulfides or selenides of these metals and other compounds sometimes available under the class of phosphors and believed to have activating crystal imperfections or impurities, such as amounts of other elements, for example, up to about 1% and generally about 0.001 to 0.01% of elements, such as copper, zinc, calcium, silver, magnesium and the like.
- a process for recording a pattern of light and shadow comprising in the absence of activating radiation placing sensitizing electrostatic charges of one polarity on the surface of a xcrographically sensitive member comprising a conductive backing and a thin photoconductive insulating layer thereon comprising an insulating organic resin binder and dispersed therein finely-divided particles of an inorganic photoconductive insulating metallicdons containing crystalline compound having electrons in the nonconductive energy level activatable by illumination to a different energy level whereby an electric charge is free to migrate under an applied electric field in the order of at least volts per cm., the composite resistivity of the layer being at least 10 ohms-cm.
- a process according to claim pound is cadmium sulfide.
- a process according to claim pound is zinc selenide.
- a process according to claim pound is cadmium selenide.
- a process according to claim pound is titanium dioxide.
- a process for recording a pattern of light and shadow comprising in the absence of activating radiation placing sensitizing electrostatic charges of one polarity on the surface of a xerographically sensitive member comprising a conductive backing and a thin photoconductive insulating layer thereon comprising an insulating organic resin binder and dispersed therein finely-divided particles of an inorganic photoconductive insulating metallic-ion containing crystalline phosphor, said phosphor showing photoluminescence when excited by low energy photons, exposing the thus charged surface to a pattern of light and shadow to be recorded whereby an electrostatic latent image is formed corresponding to said pattern and depositing electrically attractable finely-divided marking material selectively in conformity with the electrostatic image thus produced.
- said particles comprise a phosphor-grade zinc chalkogenide, the chalkogen having an atomic weight not more than about 128.
- a xerographic process comprising imposing an electrostatic field through a photoconductive insulating layer of an insulating organic resin binder having dispersed therein finely divided particles of an inorganic photoconductive insulating metallic-ion containing crystalline compound having electrons in the non-conductive energy level activatable by illumination to a different energy level whereby an electric charge is free to migrate under an applied electric field in the order of at least 10 volts per cm., the composite resistivity of the layer being at least 10 ohms-cm.
- said photoconductive insulating layer being positioned in electrical contact with a non-light sensitive electrically conductive backing and, while the field is imposed, selectively flowing charge through portions of the photoconductive insulating layer by selectively exposing said portions to activating radiation forming a varying charge pattern of intelligence to be reproduced which is adapted to be developed with marking material.
- a xerographio process comprising imposing an electrostatic field through a photoconductive insulating layer of an insulating organic resin binder having dispersed therein finely divided particles of an inorganic photoconductive insulating metallic-ion containing crystalline phosphor, said phosphor showing photoluminescence when excited by low energy photons, said photoconductive insulating layer being positioned in electrical contact with a nonlight sensitive electrically conductive backing and, while the field is imposed, selectively flowing charge through portions of the photoconductive insulating layer by selectively exposing said portions to activating radiation forming a varying charge pattern of intelligence to be reproduced which is adapted to be developed with marking material.
- Wainer Photographic Engineering, vol. 3, No. 1, 1952, pages 12 to 22, originally presented May 24, 1951.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
Feb. 11, 1964 Filed June 26, 1957 A. E. MIDDLETON ETAL PHOTO-ACTIVE MEMBER FOR XEROGRAPHY 6 Sheets-Sheet 2 ATTORNEY Feb. 11, 1964 A. E. MIDDLETON ETAL 3,121,006
PHOTO-ACTIVE MEMBER FOR XEROGRAPHY 6 Sheets-Sheet 3 Filed June 26, 1957 0; 32086 626520 EE M2; 09 ow ow ow om o o 280 E0 J Tkuwo x59 om mmomi ow 89 f ow p on 1 oo. mmmm lllllll/ oom oov SL'IOA IVILNBLOd 3.1.V'lcl HAILV'DHN m O mozoumm 626N210 E52 M2; om ow 0 INVENTOR.
Arthur E. Middleion Donald G. Reynolds @OMN n CON- SL'IOA "IVLLNBLOd 3.1.V'ld EALUSOd ATTORN Feb. 11, 1964 Filed June 26, 1957 DLI A. E. MIDDLETON ETAL PHOTO-ACTIVE MEMBER FOR XEROGRAPHY 6 Sheets-Sheet 4 I o Phosphor F- 2039-Zn0 A Phgsphor I 225 -ZnO 5 l V Phosphor 2330-Zn0 D ZnO 4 X 3 \q 2 Wavelenqih m FIG. 7
INVENTOR. Arthur E.M|dd|eton BY Donald C. Reynolds ATTORNEY 1964 A. E. MIDDLETON ETAL 3,
PHOTO-ACTIVE MEMBER FOR XEROGRAPHY 6 Sheets-Sheet 5 m OE ril- N QN ON 0m Na MN Filed June 26, 1957 Arthur E. Middleton Don Id C. Reynol 5 ATTORNEY 1964 A. E. MIDDLETON ETAL 3,
PHOTO-ACTIVE MEMBER FOR XEROGRAPHY 6 Sheets-Sheet 6 Filed June 26, 1957 0 O o o O. 7 6 5. 4 3 ac: 5.33.6 33cm Wavelenglh, rn,u
FIG. IO
INVENIOR. Arthur E. Mlddleton Donald C. Reynolds ATTOR EY United States Patent PHQTQ-ACTIVE Mllitllfiljll FGR XERE GRAPHY Arthur E. Middleton, Indianapolis, ind, and Donald C.
Reynolds, Springfield, Ohio, assignors, by mesne assignments, to Xerox Corporation, a corporation of New York Filed June 26, 1957, Ser. No. 663,165 15 Claims. (Cl. 96--1) This invention relates in general to xerography and in particular to xerographic plates and a Xerographic process using such plates. More specifically, the invention relates to a new Xerographic member comprising a rel.- tively conductive backing having on at least one surface thereof a coating of a finely ground photoconductive insulating material dispersed in a high resistance electrical binder.
in the xerographic process as described in US. 2,297,- 691 to C. F. Carlson, a base plate of relatively low electrical resistance such as metal, paper, etc. having a photoconductive insulating surface thereon is electrostatically charged in the dark. The charged coating is then exposed to a light image. The charges leak otf rapidly to the base plate in proportion to the intensity of light to which any given area is exposed. After such exposure the coating is contacted with electrostatic marking particles in the dark. These particles adhere to the areas Where the electrostatic charges remain forming a powder image corresponding to the electrostatic image. The powder image can then be transferred to a sheet of transfer material resulting in a positive or negative print, as the case may be, having excellent detail and quality. Alternatively, where the base plate is relatively inexpensive, as of paper, it may be desirable to fix the powder image directly to the plate itself.
As disclosed in Carlson, suitable photoconductive insulating coatings comprise anthracene, sulfur r various mixtures of these materials as sulfur with selenium, etc. to thereby form uniform vitreous coatings on the base material. These materials have a sensitivity largely limited to the blue or near ultraviolet and have a further limitation of being only slightly light sensitive. Consequently, there has been an urgent need for improved photoconductive insulating materials. The discovery of the photoconductive insulating properties of highly puii fied vitreous selenium has resulted in this material becoming the standard in commercial Xerography.
The photographic speed of this material is many times that of the prior art 1 hotoccnductive insulating materials. However, vitreous selenium suffers from two serious defecis: first, its spectral response is very largely limited to the bllic or near ultraviolet; and, second, the preparation of uniform films of vitreous selenium has required highly involved and critical processes, particularly vacuum evaporation. Furthermore, vitreous selenium by its nature requires a relatively firm and uniform support such as a continuous plastic or mteal base. This, together with the high cost of selenium itself has rendered impractical the development of a disposable xerographic plate such as a paper base plate using this material.
Now, in accordance with this invention, it has been found that a Xerographic sensitive member known as a xerographic plate can be prepared by intimately mixing and grinding together a photocon uctive insulating material in a high electrical resistance bi .der. This mixture is suitable as the photoconductive insulating layer in the xerographic plate and may be coated on any suitable support material offering a relatively lower electrical resistance such as metal, paper, suitable plastics or conductively coated glass, plastics, etc. as more fully dc scribed hereafter.
This composition completely obviates the necessity for BJZLdhS Patented Feb. ll, 19W
such procedures as vacuum evaporation. One of the advantages of the novel Xerographic plates prepared according to the instant invention is the ease and. variety of means or" applying the photoconductive insulating layers to a base material. The photoconductive insulating layer itself comprises an inor anic photoconductive: insulating compound dispersed in a high electrical resistance binder. This composition dissolved in a suitable solvent may be flowed on the base material or otherwise coated on the base as by dipping, whirling, the use of a doctor blade, dip roll etc. Alternatively, the composition may be rendered flowable using a thermoplastic resin as the insulating binder and heat to render the composition plastic. In this form the composition may be applied to the base material without the necessity for a solvent. Yet again, a solvent solution of the coating composition may be emulsified or dispersed in water and the aqueous emulsion or dispersion coated on the base material.
Plates so prepared possess a number of unequaled and useful advantages. Thus, the ease and variety of means of applying the coatings together with the large degree of flexibility inherently possessed by such pigmentbinder compositions renders such photoconductive insulating layers eminently suitable for application to a variety of substrates and, in particular, they are easily applied to such inexpensive substrates as paper and similar felted fibrous bases.
There are disclosed in U. S. Patent application Ser. No. 95,374, filed on May 25, 1949, by Arthur E. Middleton, now US. Patent 2,663,636, various methods and means whereby any photoconductive insulating material in an insulating resin binder can be formed into an operable xerographic plate. There are both photoconductive insulators and photoconductive semi-conductors. Both materials show a resistance considerably lower in the light than in the dark. Both materials would be insulators at a temperature of absolute zero. The difference between these photoconductors lies in their ability to hold charges in the dark. A photoconductive semi-conductor will not and for the purposes of xerography such a material is not useful. Hence, these materials are generally restricted to photccells, rectifier-s and similar applications.
On the other hand photoconductive insulators will hold a charge in the dark and can, thus, be used in the xerographlc process. Where the photoconductor forms a homogeneous layer, its ability to hold a charge is essentially cle endent on the dark resistivity of the photoconductive insulator itself. When used in this manner the minimum operable dark resistivity is generally in the order of 10 ohmscrn. and it is preferred that the material be more resistant. Very few photo conducting materials possess such a high resistivity in the dark. When the photoconducting material is incorporated in an insulating binder, a larger part of the resistivity of the component layer is dependent on the resistivity of the resin binder. Accordingly, the darlr resistivity requirements for the photocouductive insulator are not nearly so strenuous. In general, a material is considered a photoconductive insulator for use in a binder plate if it shows a resistivity in the dark above about 10 ohmscm. it is evident that all insulators and all semi-conductors are not photoconductors. Certain arrangements among the allowed electron energies in the material are required to achieve photoconductivity. Thus, technically, photcconductive insualting is a defining term distinguishing the material from an insulator, a semi-conductor and a photoconductive semi-conductor.
Resistivity is a simple physical property which may be determined by consulting an appropriate handbook or by a simple electrical measurement. Photocond'uctivity as used herein is more illusive of accurate definition. In general, photoconductivity requires making electron transitions to the conduction band upon the absorption of light. There are certain definite physical properties generally associated with materials possessing this ability. While not all members of each class are necessarily photoconductive insulating compounds as described herein and hence, operable in a xerographic binder plate, nevertheless, the physical properties constituting the distinguish ing characteristics of the group also constitute extrinsic evidence of photoconductivity. Hence, the photoconductive members of each group possessing the requisite resistivity as herein defined are photoconductive insulating compounds. Thus, the inorganic photoactive compounds operable in the instant invention may be classified in these groups: first, inorganic luminescent or phosphorescent compounds; second, inorganic, intrinsically colored compounds having an index of refraction of at least 2; third, inorganic compounds possessing at least one index of refraction greater than 2.10 over at least 5% of the wavelength range of visible light; and, fourth, inorganic compounds which have two different valence states of at least one elemental constituent between which electron transfers can occur.
First, in general, luminescence or phosphorescence is evidence of the elevation of one or more electrons to a higher energy level. Therefore, whenever the elevation is sufficient so that the electric charge is free to migrate upon the application of an electric field the material is photoconductive. It is assumed that materials classed herein as phosphors are either intrinsically phosphors or are made so by the inclusion or addition of specified impurities or promoters as is well known to those skilled in the art.
Another class of inorganic photoconducting insulating compounds is intrinsically colored ionic compounds. Colored compounds, due to their greater light absorption, have a greater light eliiciency than colorless compounds at certain wavelengths. An intrinsic color is the term used to describe the color resulting from the interaction of ions on each other whereby there is produced a color different than that produced by the ions separately and additively. The interaction is a property of the compound itself and is a constant phenomenon, that is, it is the same by whatever process the compound is prepared. Thus, an intrinsic color is direct physical evidence either of a maintained distribution of excited valence orbitals or of the presence of constantly occurring electron shifts. Such materials are often photoconductors. This prop erty by itself is not, however, sufiicient evidence of photoconductivity. Another physical property related to photoconductivity is the refractive index. The refractive index is equated to the square root of the dielectric constant and is directly proportional to the number of mobile electrons, that is, electrons free to vibrate. Such mobile electrons are easily excited to the conductive band by the absorption of energy which is the necessary requirement for photoconductivity. The index of refraction gives a rough approximation of the number of such electrons. When the index of refraction is at least two and we have the concurring evidence of intrinsic color, the compound is generally photoconductive. Thus, another class of inorganic compounds are photoconductive insulating compounds which are intrinsically colored and possess an index of refraction of at least 2.
Still another class of photoconductive insulating compounds are those inorganic compounds which have at least one index of refraction greater than 2.10 over at least 5% of the wavelength range of visible light. For this class of compounds it may be considered that there are sufiicient free electrons that it is not necessary to have the confirming evidence of intrinsic color to classify the compound a priori as a photoconductor.
A final class of compounds in which the requsite electron transfers can occur for photoconductivity are inorganic compounds which have two different valence states of at least one elemental constituent between which electron transfers can occur. One evidence of such compounds occurs when the stoichiometric composition of the material implies the presence of an unusual oxidation state of one or more of the chemical elements present. The Berthollides are in this group, particularly that class of Berthollides called perovskites.
Generally, the inorganic photoconductive insulating compounds found suitable for use in xerographic binder plates may be described as being characterized by having electrons in the non-conductive energy level activatable by illumination to a different energy level whereby an electric charge is free to migrate under an applied electric field in the order of at least 10 volts per centimeter, the composite resistivity of the binder and photoactive material in the layer being at least 10 ohms-cm. in the absence of illumination and the decay factor being less than 3.0. The measured apparent specific resistivity of the composite layer tends to vary with the field strength and, therefore, should be determined under the approximate conditions of use which may, in the absence of other indications, be a field strength in the order of 10 to 10 volts per centimeter.
The decay factor is determined by the rate of charge decay in the absence of activating radiation. A xerographic plate, in general, is closely analogous to a condenser. The potential decay of a condenser may be expressed by the equation:
V V t/RC where:
V=potential in volts at time t V =initial potential t=time in seconds R=resistance in ohms C=capacitance in farads c base of natural logarithms In this equation, l/RC is the decay factor; when 1 /RC is large, the decay will be rapid and when it is small the decay will be slow.
Actually, for these new members, l/RC may change, as decay proceeds, but an average value of l/RC over the range employed adequately describes this critical factor. By mathematical derivation, it can be seen that if a potential decays from 200 v. to v. in as much as 100 sec., the decay factor is less than 0.01, this representing a high quality performance. Similarly, if such'decay requires only 10 sec., the factor is less than 0.1, this representing a preferred upper limit of the decay factor. As an approximate maximum, if the decay factor is about 3.0, the potential decay would be from about 200 volts to about 100 volts in about 4 sec., and this represents substantially the maximum decay rate that can be tolerated in accordance with presently known xerographic techmques.
It is evident that the gap between the valence and the conducting band of a compound is determinant of the energy needed to make electron transitions. The more energy needed the higher the frequency to which the photoconductor will respond. As have been described above, there are various external evidences of stress on the electronic configuration of inorganic compounds which are evidence of the desired electronic structure. It is obvious that it is possible to reduce the band-gap for these compounds by adding a foreign compound as an activator which either by virtue of its atomic dimensions or by possessing a particular electronic forbidden zone structure or through the presence of traps as donor levels in the intermediate zone between the valence and the conduction band stresses the electronic configuration of the photoconductive compound so as to reduce its band-gap and, hence, increased its ability to release electrons to its conduction band. Phosphors almost necessarily imply the presence of such activating substances. The effect of such impurities may be such as to confer photoconducan tivity upon a compound which intrinsically is non-photoconductive. The (Ca-Sr)S phosphors used herein are believed to be in this group. However, excessive impurity content can be deleterious. Thus, many CO1-- pounds which are intrinsically operable as photoconductive insulators are reported in the literature as photo conductive semiconductors ecause of the unsuspeceted presence of conducting impurities.
The last class of compounds described above, that is, those possessing two different valence states of the same elemental constitutent, is also thought to represent such a mechanism. These compounds include the class of compounds known as defect compounds in that they possess defects in their crystal lattices which stress the electronic structure.
It is possible for a compound to belong in more than one of these classes, sometimes depending on the method of preparation. Thus, when suitably activated as with manganese, calcium, cadmium, copper, etc. zinc sulfide is a phosphor and belongs in that group. With proper treatment, ZnS may also be classified 'as a defect compound (the fourth group in the above classification). However, this is largely a theoretical classification due to the great difficulty of not activating ZnS as to render it phosphorescent. Another example is Pb O which in the above classification belongs in both group two and group tour.
"In considering specific compounds, oxygen generally forms uncolored compounds with colorless cations. Hence, unless the oxide possesses phosphorescence or a high refractive index, as in the case of titanium dioxide, the oxides are not apt to be photoconductive. On the other hand, the remaining chalkogenides often .formintrinsically colored compounds particularly with polyvalent metals. Thus, the sulfides, selcnides and tellurides of these metals are generally photoconductive compounds.
iodides are often intrinsically colored. Mercuric iodide is an excellent photoconductor. However, the iodide ion does not always confer a high color to salts. Certain iodides, simple and complex, which contain, for example mercury, may be viewed as intrinsically colored. In the instances of Cullgl Cu ligl among others, the intrinsically is quite obvious because such compounds undergo a reversible color change from red to yellow at about 150 C. depending on the compound. Stibnides, arsenides, phosphides and similar compounds also are often photoconductive but possess complicated net strucures. The same is true of the Berthollides and perovslrites. Zinc titanate may possess the perovskite structure. Specific photoconductive insulating compounds investigated by us include but are not limited to phosphors such as zinc oxide, zinc sulfide, zinc-cadmium sulfide, zinc-magnesiiun oxide, cadmium selenide, zinc silicate, CQlCllllTleSilOIlllUl'll sulfide, etc.; intrinsically colored compounds such as cadmium sulfide, mercuric iodide, mercuric oxide, mercuric sulfide, indium trisulfide, gallium triselcnide, arsenic disulfide (A5 8 arsenic trisullide, arsenic triselenide, antimony trisulfide, red lead (1 13 0,), etc.; compounds having a high index of retraction such as titanium dioxide; and defect compounds such as zinc titanate, red lead, zinc sulfide (GP. grade) etc.
The binder material which is employed in cooperation with the photoactive compound is a material which is an insulator to the extent that an electrostatic charge placed on the layer is not conducted by the binder at a rate to prevent the formation and retention of an electrostatic latent image or charge thereon. The binder material is adhered tightly to the base material and provides efiicient dispersing medium for the photoactive particles. Further, the binder should not react chemically with the photoactive compound.
Satisfactory binder materials for the practice of the invention are polystyrene; silicone resins such as DC-SOl, DC-804, and DC996 all manufactured by the Dow Corning Corp. and SR-82 manufactured by the General Electric Company; acrylic and mcthacrylic ester polymers such as Acryloid A10 and Acryloid E72, polymerized ester derivatives of acrylic and alpha acrylic acids both supplied by Rohm and Haas Company, and Lucite 44, Lucite 45 and Lucite 46 polymerized butyl methacryiates supplied by the E. I. du Pont de Nemours & Company; chlorinated rubber such as Parlon supplied by the Hercules Fowder Company; vinyl polymers and copolymers such as polyvinyl chloride, polyvinyl acetate, etc. including Vinylite VYHH and VMCH n1anufactured by the Bakelite Corporation; cellulose esters and ethers such as ethyl cellulose, nitrocellulose, etc.; alkyrd resins such as Glyptal 2469 manufactured by the General Electric (10.; etc. In addition, mixture of such resins with each other or with plasticizers so as to improve adhesion, flexibility, blocking, etc. of the coatings may be used. Thus, Rezyl 869 (a linseed oil-glycerol alkyd manufactured by American Cyana-mid Company) may be added to chlorinated rubber to improve its adhesion and flexibility. Similarly, Vinylites VYHH and VMCH (polyvinyl chloride-acetate copolymens manufactured by the Bakelite Company) may be blended together. Plasticizers include phthalates, phosphates, adipates, etc. such as tricresyl phosphate, dioctyl phthalate, etc. as is Well known to those skilled in the plastics art.
While the nature of the resin is not critical it does have a definite effect upon the light sensitivity of the composite layer. In general, those binders having strongly polar groups such as carboxyl, chloride, etc. are preferred over the straight hydrocarbon binders. it is believed that injection of carriers from the photoconductor to the binder is facilitated through the presence of such groupings and further that the bonding of the photoactive compounds to the binder is improved thereby.
T he method of preparation of the binder has a significant effect upon its conductivity and, therefore, its operability in a xerographic plate. Certain methods of polymerization lead to the inclusion of significant quantities of ionic materials such as emulsifying agents, salts, etc. in the binder which contaminants would render inoperable a resin in itself quite operable. Furthermore, a resin may be operative with one pigment and not with another. Thus, a particular resin may have a border-line resistivity so that when blended with a high resistant p'hotoactive compound such as the proper rform of cadimiuni sulfide, there results an operable xerographic binder plate whereas when blended with a less resistive photoactive compound such as zinc oxide, the cumulative effect of the compound and binder is to result in an inoperable xerographic binder plate, i.e., one which is unable to hold an electrostatic charge in the dark.
The matter of possible reactivity between the binder and compound has been mentioned. Silicone resins are particularly subject to this disability. Thus, mercuric salts and lead salts are very apt to react with silicone resins when dispersed therein. Within these general considerations, which are obvious to any chemist skilled in the art, any material which is an insulator to the extent defined above is operative as the binder in the instant invention.
The function of the base or backing material used in preparing xerographic binder plates is to provide physical support for the photoconductive insulating layer and to act as a ground thereby permitting the photoconductive insulating layer to receive an electrostatic charge in the dark and permitting the charges to migrate when exposed to light. lt is evident that a wide variety of materials may be used, for example, metal surfaces such as aluminum, brass, stainless steel, copper, nickel, zinc, etc.; conductively coated glass as tinor indium-oxide coated glass, aluminum coated glass, etc.; similar coatings on plastic substrates; or paper rendered conductive by the inclusion of a suitable chemical therein or through conditioning in a humid atmosphere to insure the presence therein of sufficient water content to render the ma- 6 terial conductive. T act as a ground plane as described herein, the backing material may have a surprisingly high resistivity such as 16 or ohms-cm.
Where the composite layer of binder and photoactive compound has suucient strength to form a self-supporting layer (termed pellicle), it is possible to eliminate a physical base or support member and substitute therefor any of the various arrangements well known in the art in place of the ground plane previously supplied by the base layer. A ground plane, in effect, provides a source of mobile charges of both polarities. The deposition on the other side of the photoconductive insulating layer (from the ground plane) of sensitizing charges of the desired polarity causes those charges in the ground plane of opposite polarity to migrate to the interface at the photoconductive insulating layer. Without this the capacity of the insulating layer by itself would be such that it could not accept enough charge to sensitize the layer to a xerographically useful potential. it is the electrostatic field between the deposited charges on one side of the photoconductive layer and the induced charges (from the ground plane) on the other side that stresses the layer so that when an electron is excited to the conduction band by a photon thereby creating a hole-electron pair, the charges migrate under the influence of this field thereby creating the latent electrostatic image. It is thus obvious that if the physical ground plane is omitted a substitute therefor may be provided by depositing on opposite sides of the photoconductive insulating pellicle simultaneously electrostatic charges of opposite polarity. Thus, if positive electrostatic charges are placed on one side of the pellicle as by corona charging as described in US. 2,777,957 to L. E. Walkup, the simultaneous deposition of negative charges on the other side of the pellicle also by corona charging Will create an induced, that, is a virtual, ground plane within the body of the pellicle just as if the charges of opposite polarity had been supplied to the interface by being induced from an actual ground plane. Such an artificial ground plane permits the acceptance of a usable sensitizing charge and at the same time permits migration of the charges under the applied field when exposed to activating radiation. As used hereafter in the specification and claims, the term conductive base includes both a physical base and an artiiicia one as described herein.
1 he physical shape or conformation of the xerographic binder plate may be in any form whatsoever as desired by the formulator such as flat, spherical, cylindrical, etc. The plate may be flexible or rigid.
Due to the great variety of photoconductive materials used in preparing the photoconductive insulating layers in the instant invention, it is possible to prepare xcrographic plates having a variety of colors and hues with light sensitivities ranging from complete panchromaticity over the visible spectrum to sensitivity to a specific narrow range of Wavelengths anywhere from the near ultraviolet to the near infrared. A series of pigments, each in itself being sensitive to a series of wavelengths, may be combined in the photoconductive insulating layer. In cases of such combination the sensitivity in the resulting plate is not necessarily the sum of the sensitivities of the individual pigments. In some cases it has been observed that the pigment will have a quenching effect on the other pigment or pigments. The reason for this effect is not known.
.The spectral sensitivity of plates prepared in accordance with the instant invention may, as is obvious to those skilled in the art, be modified through the inclusion of photosensitizing dyes therein. The dyes useful for this purpose are those commonly used in photographic sensitization and the basic mechanism of dye sensitization in xerographic binder plates is believed to be the same as that in photographic sensitization. By using such dyes singly or in combination, it is possible to further modify and, in effect, tailor-make the resulting binder plate.
The general nature of the invention having been set forth, the following examples are now presented as illustrations but not limitations of the methods and means of carrying out the invention.
Example 1 A mixed cadmiurnsultfide zinc-sulfide phosphor commercially available under the name Phosphor 2225 (New Jersey Zinc Company) was mixed with an adhesive binder which was a silicone resin commercially available under the name DC-996 (Dow Corning Corp). The phosphor material had a particle size of about one micron. The phosphor crystals and the binder material were mixed together in equal parts by weight together with toluene in an amount equal to the volume of the binder material. The resulting mixture was painted on the surface of a mirror-finished aluminum plate and was allowed to dry. I
The product is a xerographic plate comprising a metallic backing and a photoconductive insulating layer thereon. In the absence of illumination, the photoconductive insulating surface is characterized by the ability to accept and retain an electrostatic charge of at least about 300 volts and upon suitable exposure to activating radiation rapidly to dissipate this charge. Once the cadmium-sulfide zinc-sulfide material has been exposed to radiation it has a residual electrical conductivity which causes it to dissipate an electric charge imposed on its surface, this conductivity decreasing with time and capable of being terminated by a heat or infrared quench. For this reason, the usual process steps of electrophotography must be somewhat modified when employing the sensitive member of this invention.
Thus, it is usual to carry out the xerographic process by applying an electric charge to the photoconductive insulating surface, exposing the surface to a light pattern to selectively dissipate the electric charge and thereafter developing the electrostatic latent image by exposure to an electrostatically attractable material. In the case of the present invention, it is necessary to interpose the step of quenching in order to destroy residual conductivity from a prior exposure and it is, therefore, recommended that such a quench be applied, for example, immediately prior to the charging step if the plate is to be used in a repetitive fashion. Storage in the dark will also generally restore a plate to its original sensitive condition. While the mechanism of fatigue is not understood, it is believed to be due to charge carriers being caught in traps in the photoconductor. Thermal excitation as by heating supplies the energy needed to free the carrier from the trap. Other means of relieving fatigue known to those skilled in xcrography may also be used. Where the xerographic plate is not to be reused, fatigue is not a problem, though in the case of easily fatigued photoconductors it may be desirable to store the plate in the dark until use.
Examples 2 Through 18 A series of xerographic plates were prepared in the following manner: In each case a 4 x 5-inch sheet of polished aluminum was dipped in a solution of 5% sodium hydroxide long enough to dull the finish of the aluminum. A coating emulsion was formulated by adding 10 millimeters of distilled water to 15 millimeters of an aqueous polystyrene emulsion commercially available under the name BKS-92 from the Bakelite Company, a division of Union Carbide and Carbon Company. Enough of the photoconductive material was then added to the emulsion to bring the total volume to 30 millimeters. The emulsion was then agitated and after thorough mixing, 8 millimeters was spread evenly over the metal plate. The plate was air dried, baked for 15 minutes in an oven at 250 F. and then cooled to room temperature. The plates so prepared were tested by being passed under a corona charging unit which unit had been adjusted to give a plate-to ground current of 7 microamperes when using electrically positive sensitization and 26 microamperes when using negative sensitization. Immediately after charging the potential on the plate was measured with a vibrating probe electrometer. After 30 seconds in the dark, potential was remeasured. The plate was then recharged, exposed to the light from a Bausch & Lomb photomicrograph lamp for 30 seconds and the voltage on the plate remeasured. When prepared and tested in this manner the following materials were found to accept an electrostatic charge and dissipate the charge upon illumination: Zinc sulfide (C.P.), antimony sulfide (C.P.); the following phosphors obtained from the E. I. du Pont 'de Nernours & Company-511 (zinc oxide), 601 (zinc silicate), 1200 (zinc-cadmium sulfide); the following phosphors from RCA-F-2032 (zinc oxide), F2039 (zinc-cadmium sulfide) and F- 2046 (zinc sulfide); and the following phosphors from New Jersey Zinc Company2ll0 (zinc-magnesium oxide), 2115 (zinc magnesium oxide), 2200 (zinc sulfide), 2205 (zinc sulfide), 2215 (zinc cadmium sulfide), 2301 (zinc sulfide), 2304 (zinc-cadmium sulfide), 2330 (zinc sulfide) and 2469 (calcium strontium sulfide). The chemically pure zinc sulfide and Phosphor 2330 were found useful only with negative sensitization. The antimony sulfide and Phosphors 511, 2215 and 2301 while useful with both polarities of sensitization were slightly more sensitive for positive sensitization. Phosphors 601, 1200, 2032, 2200, 2304 and 2469 while useful with both polarties of sensitization showed a preferential light sensitivity when negatively charged. The remaining materials were approximately equally sensitive for both polarities of charging.
Examples 1 9 Through 30 A series of xerographic plates were prepared by making a 1 to 1 mixture, by volume, of a particular photoconductive material with the silicone resin DC-996. This mixture was spread over a 4 x 5-inch aluminum plate by means of a doctor plate to give a coating approximately 0.007-inch thick. The photoconductive materials used in these examples were the following phosphors obtained from the New Jersey Zinc Company: 2100 (zinc oxide), 2110 (zinc magnesium oxide), 2115 (zinc-magnesium oxide), 2200 (zinc sulfide), 2205 (zinc sulfide), 2215 (zinc-cadmium sulfide), 2220 (zinc-cadmium sulfide), 2301 (zinc sulfide), 2304 (zinc-cadmium sulfide), 2469 (calcium-strontium sulfide), 2479 (calcium-strontium sulfide) and 2703 (calcium-strontium sulfide). In each case xerographic plates obtained with these ingredients were operable as in Example 1 to accept an electrostatic charge and to dissipate the charge upon illumination. The sulfur-containing photoconductors showed a higher light sensitivity than the oxygen-containing photoconductors. Accordingly, these xerographic plates of Examples 22 through 30, inclusive, were retested as described excepting that instead of uniform light they were exposed to light projected through a transparent photographic positive of a continuous-tone subject to produce on the plate a pattern of electrostatic charges corresponding to the pattern of light and shadow to be reproduced. The electrostatic charges were developed using the powder cloud development apparatus and method described in detail in US. 2,784,109 by Lewis E. Walkup. In each case an accurate reproduction of the continuous-tone original was obtained.
Examples 3] Through 33 A series of three xerographic plates were prepared as described in Examples 19 through 30 except that in Ex ample 31, 0.5 milliliter of a 1% toluene solution of monoaluminum stearate for each 5 grams of photoconductor were added to the resin-photoconductor mix. In Example 32 the same amount of dialluminum stearate and in Example 33 the same amount of trialuminum stearate was used. In each case the resin was silicone resin DC-996 and the photoconductor was Phosphor F-2039 (zinc-cadmium sulfide). It was found that the aluminum soaps tried were equally satisfactory and in each case produced a significant improvement in the texture of the plate surface and the quality of xerographic powder images developed on the surface as described in Examples 22 through 30.
Examples 34 and 35 Two xerog-raphic plates were prepared using a 1 to 1 mixture, by volume, of Phosphor 2225 (zinccadmium sulfide) and silicone resin DC-996. The mixture was thoroughly agitated to disperse the photoconduotor in the resin solution. In Example 34 the photoconduotorbinder mixture was coated on a 4 x 5-inch aluminum sheet using a doctor blade giving a coating of 0.005-inch thick. In Example 35, the mixture was sprayed on the aluminum plate giving a coating 0.003 inch thick. Both plates were then tested and were found to accept an electrostatic charge and to dissipate the charge upon illumination. There was no significant diiference between the plates in their xerographic properties or physical properties.
Examples 36 Through 39 A series of four xerographic plates were prepared using Phosphor 1 -2039 and silicone resin Bil-996. The photoconductor-binder mixture was applied to the 4 x 5 aluminum sheets by dipping the plates in the solution and withdrawing them at the rate of one-inch per minute. In Example 36 plate was Clipped once giving a coating thickness of 0.0035 inch. In Example 37 the plate was dipped twice giving a coating thickness of 0.007 inch. in Example 38 the plate was dipped three times giving a coating thickness of 0.011 inch and in Example 39 the plate was dipped four times giving a coating thickness of 0.0145 inch. The plates were then charged and charge acceptance and light and dark decay measured as in Examples 2 through 18. The results are set forth for both positive and negative charging in FIGS. 1 through 4.
It can be seen from the figures that the maximum poten ial accepted by the plate increases with the thickness of the photoconductive layer from 0.0035 to 0.007 inch. When the thickness increases beyond 0.007 inch, no significant change in accepted potential is observed. Continuous tone prints were also made on these plates as described for Examples 22-30. Improvement in the tone quality of the prints made on these plates followed the same pattern as charge acceptancetone improved up to a thickness of 0.007 inch with no further improvement observed with further increases in thickness.
Example 40 A l to mixture, by volume, of Phosphor F2039 and silicone resin DC-996 was prepared. The mixture was then ball-milled for four hours. At the end of this time particle size had been reduced from the range of 5 to 50 microns to a range of 0.5 to 5 microns. This treatment eliminated the fluorescence of the phosphor. A continuous tone xerographic image was developed on this plate as described in Examples 22 through 30. There was observed a substantial improvement in grain quality which was ascribed to the reduction in particle size of the photoconductor.
Examples 41 Through 43 A series of three xerographic plates were prepared us ing a 1 to 1, by volume, mixture of silicone DC-996 and, respectively, Phosphor 1200 (zinc-cadmium sulfide), Phosphor 1 -2039 (zinc-cadmium sulfide) and Phosphor 2225 (zinc-cadmium sulfide). The binder-photoconductor mixtures were applied to 4 x 5 aluminum. sheets using a doctor blade to give a coating about 0.005 inch thick. Phosphor 1200 had a particle size of about 75 l. l microns or more, Phosphor F2039 had a particle size of about to 30 microns and Ehosphor 2225 had a particle size or about 0.5 to 5 microns. The plates so prepared were electrically charged and charge acceptance and light and dark decay determined for both positive and negative electrical sensitization. The results are shown in FIGS. 5 and 6.
Example 44 Eighty parts of titanium dioxide, by weight and twenty parts, by weight, of polystyrene were mixed with sufficient toluene to give a free flowing solution. The suspension was fiowed onto a 4 x 5 aluminum sheet and air dried at room temperature. The plate was then baked for 2 /2 days at 65 C. and then at 120 C. for 5 hours. The plate so prepared was then tested for electrical charge acceptance and light and dark decay as in Examples 2-18. The plate accepted both positive and negative electrostatic charges and was appriximately equally light sensitive for both polarities of charging. The plate was approximately as sensitive to light as a plate coated with anthracene by vacuum evaporation but appeared to be rather humidity sensitive.
Example 45 A xerographic plate was prepared by adding to a porcelain ball-mill 2.1 parts by weight of a commercial antimony trisulfide obtained from the l. T. Baker Chemical Company, 1.0 part by weight of a poly-n-butyl methacrylate resin obtained from E. I. du Pont de Nemours & Company under the trade name Lucite 44 and 2.3 parts by weight of toluene. The mixture was ball-milled for 3 hours using porcelain balls about 0.5 inch in diameter. The mixture Was whirl-coated on a 4 x S-inch aluminum plate rotating at about 120 r.p.m. to give a coating about 61 microns thick. An electrostatic charge was placed on the plate using corona charging as described in US. 2,777,957 to L. E. Walkup. Initial charge acceptance, dark decay rate and light sensitivity were then determined using a vibrating probe electrometer. The light source used was a 60 watt incandescent lamp operating at a color temperature of 2775 K. to provide an illumination of 36 foot-candles on the plate. Under these conditions the plate was found to accept both positive and negative electrostatic charges and to show sensitivity to light for both polarities of sensitization. The plate had slightly better charge acceptance and light decay characteristics for negative sensitization than for positive.
Example 46 A xerographic plate was prepared and tested as in Example 45 using 3.68 parts of GP. grade HgS (l. T. Baker Chemical Co.) to 1.0 part Lucite 44 to 2.3 parts toluene (all parts by weight). The coating was 23 microns thick. The plate accepted both positive and negative electrostatic charges and was found to dissipate these charges upon illumination as in Example 45.
Example 47 A xerographic plate was prepared and tested as in Example 45 using 5.1 parts of GP. grade mercuric oxide (J. T. Baker Chemical Company) to 1.0 part of Lucite 44 to 1.3 parts of toluene (all parts by weight) and ballmilling for 8 hours. The coating was 25 microns thick. The plate was operable to accept an electrostatic charge and to dissipate the charge upon illumination using both positive and negative electrical sensitization.
Example 48 A xexrographic plate was prepared and tested as in Example 45 using 1.5 parts of chemically pure indium trisulfide, 1 part of a copolymer of n-butyl and isobutyl mcthacrylate obtained from the E. I. du Pont de Nemours and Company under the trade name of Lucite 46 and 4 parts of toluene (all parts by weight). The mixture was ball-milled for 6 hours using Pyrex glass beads T2 6 millimeters in diameter. The coating was 17 microns thick. The plate was operable to accept both positive and negative electrostatic charges and to dissipate the charges upon illumination as in Example 47.
Example 49 A xerographic plate was prepared and tested as in Example 48 using 1.5 parts of chemically pure AS 8 (Coleman and Bell Co.), 1.0 part of Lucite 46 and 3 parts of toluene (all parts by weight) and ball-milling for 5 hours. The coating was 53 microns thick. The xerographic plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The charge acceptance and light sensitivity of the plate was slightly better for positive sensitization than for negative.
Examples 50 Through 52 A series of three xerographic plates were prepared as in Example 45 using as the pigment Pb O Because of the high density of the pigment the ratio of binder to pigment is based on true volume using the density of the binder and pigment to compute the actual volume of the materials used. In each case 1 part by volume of Lucite 46 was used as the binder. The amounts of Pb O for Examples 50-52 Were, by volume, 0.55, 0.88 and 1.0, respectively, to 5.8, 6.8 and 7.4 volumes of toluene, respectively. The coatings were about 22 microns thick. In each case the xerographic plates were operable to accept either positive or negative charges and to dissipate the charges upon illumination. Upon retesting, using a monochromatic lighting source, it was found that the peak sensitivity of these plates was at about 500 millimicrons Wavelength of the incident light. Spectral sensitivity in this and in the succeeding examples was determined using a Backmau spectrophotometer at an intensity of 0.12 microwatt per square centimeter.
Example 53 A xerographic plate was prepared and tested as in Example 45 using 1.4 parts of phosphor grade CdSe (copper activated, Merck & Co.), 1 part Lucite 44 and 5 parts of toluene and the solution ball-milled for 19 hours. Additional toluene and Lucite 44 were added to change the volume ratio to 0.7 part cadmium selenide to 1 part of Lucite 44 (all parts by volume, adjusted by density to give true volume). The mixture was ball-milled an additional hour and a 4 x 5-inch aluminum plate whirlcoated to give a coating 25 microns thick. The plate so obtained was operable to accept an electrostatic charge of either polarity and to dissipate the charge upon illumination. On retesting with a monochromatic light source, as in Examples 50 through 52, it was found that the plate showed photosensitivity over the wavelength range of 650 to 800 millimicrons. The peak sensitivity was at 750 millimicrons.
Example 54 A xerographic plate was prepared and tested as in Example 45 using 1.56 parts of a chemically pure arsenic trisulfide, 1 part of Lucite 46 and 5.6 parts of toluene (all parts by weight) and ball-milling for 6.5 hours. The coating was 20 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges upon illumination to light.
Example 55 A xerographic plate was prepared and tested as in Example 45 using 1.34 parts of CF. grade gallium triselenide, 1 part of Lucite 46, 5.66 parts of toluene (all parts by weight) and ball-milling for 6.5 hours. The coating was 18 microns thick. The xerographic plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges upon illumination. The plate was sensitive over the entire range of wavelengths from 400 to 700 millimicrons with peak sensitivity at about 600. The plate showed a higher light sensitivity when positively sensitized.
Example 56 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor 2205 (zinccadmium sulfide), 1 part of Lucite 46 and 5.66 parts by weight of toluene (all parts by weight), and ball-milling for 7.5 hours. The coating was microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate had slightly better xerograpln'c properties for negative sensitization than for positive.
Example 57 A xerographic plate was prepared and tested as in Example 45 using 5.0 parts of Phosphor 2330 (zinccadmium sulfide), 1 part of Lucite 46 and 5.66 parts of toluene (all parts by weight), and ball-milling for 7.5 hours. The coating was 41 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate was sensitive only in the bluegreen with peak sensitivity in the near ultraviolet.
Example 58 A xerographic plate was prepared and tested as in Example 45 using 5.0 parts of Phosphor 2225 (zinccadmium sulfide), 1 part of Lucite 46, and 5.66 parts of toluene (all parts by weight), and ball-milling for 17 hours. The coating was 28 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate had slightly better charge acceptance and light sensitivity when negatively sensitized than when positively sensitized. Light sensitivity extended from the near ultraviolet out to the orange (about a wavelength of 600 millimicrons). Peak sensitivity was at about 500 millimicrons.
Example 59 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor F4039 (zinccadmium sulfide), 1 part of Lucite 46 and 3.0 parts of toluene (all parts by weight), and ball-milling 17.5 hours. The coating was 46 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. The plate had much more light sensitivity for positive sensitization than for negative. The plate was sensitive over the entire visible spectrum with a peak at a wavelength of about 500 millimicrons when negatively charged.
Example 60 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor 1200 (zinccadmium sulfide), 1 part of Lucite 46 and 3.0 parts of toluene (all parts by weight), and ball-milling 17 hours. The coating was 43 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination.
Example 61 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of Phosphor 2703 (calciumstrontium sulfide), 1 part of Lucite 46 and 5.66 parts of toluene (all parts by Weight), and ball-milling for 7 hours. The coating was 23 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination.
Example 62 Example 63 A xerographic plate was prepared and tested as in Example using 1.8 parts of a GP. grade Zinc sulfide, 1.0 part of a silicone resin obtained from General Electric and sold under the trade name SR82, 3.2 parts of toluene (all parts by weight), and ball-milling for 21 hours. The coating was 106 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. This plate displayed much better charge acceptance and light sensitivity when negatively charged. Moreover, it Was particularly outstanding in having extremely low residual potentials after light exposure.
Example 64 A xerographic plate was prepared and tested as in Example 45 using 2.5 parts of a GP. grade Pb o 1 part of Lucite 46, 4 parts of toluene (all parts by weight), and ball-milling for 5 hours. The coating was 23 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination.
Example 65 A xerographic plate was prepared and tested as in Example 45 using 0.44 part of a GP. grade cadmium sulfide, 1 part of Lucite 46, 4 parts of toluene (all parts by weight) and ball-milling for 3 hours. The coating was 20 microns thick. The plate so prepared was operable to accept both positive and negative electrostatic charges and to dissipate the charges on illumination. This plate displayed a definitely higher charge acceptance and light sensitivity for negative charge than for positive.
Example 66 A xerographic plate was prepared and tested as Example 45 using 5 parts of Phosphor 2225 (zinc-cadmium sulfide), 1 part of CE. grade mercuric sulfide, 1 part of Lucite 46 and 5 parts of toluene (all parts by true volume). The ratio of total pigment to binder was 1.4 to 1 by volume. The mixture was ball-milled for 15 hours and whirl-coated on an aluminum plate to give a coating 28 microns thick. The plate so prepared accepted relatively high electrical potentials of either positive or ne ative polarity with very low dark decay rates. The plate had a low but definite sensitivity over the entire spectral range from 375 to 700 millimicrous with peak sensitivity at about 600. As compared to the light sensitivities of the separate pigments, peak sensitivity was less for this plate and extended much further into the red.
Example 67 A xerographic plate was prepared and tested as in Example 45 using 10 parts zinc oxide (a pigment grade obtained from New lersey Zinc Co. under the trade name Florence Green Seal No. 8), 1 part C.P. grade arsenic triselenide, 1 part Lucite 46, 6.3 parts of toluene (all parts by true volume) and ball-milling for 15 hours to give a coating microns thick. The volume ratio of total pigment to binder was 1.4 to 1. As noted in Example 62, arsenic triselenide has a peak sensitivity in the red. Zinc oxide has a peak sensitivity in the near ultraviolet. This plate with the pigment mixture showed a high photosensitivity at 375 millirnicrons (substantially higher than Zinc oxide alone) falling off to virtually zero at 400 millimicrons. No photo-sensitivity could be detected at longer wavelengths. The separate sensitivity of the arsenic triselenide was apparently quenched. The plate did not accept a positive charge.
Examples 68 Through 69 A series of three xerographic plates were prepared and tested as in Example 45 using parts of Florence Green Seal No. 8 zinc oxide, 1 part of a phosphor, one part of Lucite 4-6, 5.5 parts of toluene and ball-milling for 14 hours. The phosphors for Examples 68 through 69 were 2225, 2330 and F2Q39, with coating thicknesses of 28 microns, 13 microns and 23 microns, respectively. The ratio of pigment to binder was 1: 1. All parts are by true volume. The spectral sensitivity of the plates were determined and the results are shown in FIGURE 7.
Example 70 A xerographic plate was prepared by using 2.5 parts by weight of Florence Green Seal No. 8 zinc oxide, 1 part by weight SR-82 and sufficient toluene to give good grinding viscosity and ball-milled to uniformly disperse the pigment in the binder. The resulting mixture was whirlcoated on an aluminum plate and air dried for 48 hours. The coating was 23 microns thick. The spectral sensitivity of the plate was determined and the results are shown in FIG. 7.
Relative white-light sensitivities of various plates were calculated for sunlight and photofiood light by numerical integration of the emission curve of the light source and the spectral sensitivity curve of the photoactive material. The curve for sunlight was average from data given by Abbott, Progress Committee Report, Journal of the Optical Society of America, 10, 234 (1925), and by Bulletin LD1, published by the Nela Park Engineering Division, General Electric Co., 1946. The curves used for these light sources are shown in FIG.
The spectral sensitivities of the photoactive materials were calculated using the equation a 1 I T T where:
T is the time in seconds for the potential on the plate to decay in the dark to one-half of some given value,
T is the time in seconds for the potential on the plate to decay under given illumination to one-half of the same initial value used in the determination of T and I is the intensity of the light in microwatts per square centimeter.
The spectral sensitivities to sunlight of the plates of Examples 46, 48, 55, 59, 62 and 70 were then determined. The spectral sensitivity to sunlight was similariiy calculated for a commercial xerographic plate comprising vacuum evaporated selenium on an aluminum backing obtained from The Haloid Company, Rochester, New York. The results are shown in bar-graph form in FIG. 8 with the numbers normalized to 100 for selenium. The same calculation was then repeated to determine the relative spectral sensitivity of these plates to a photofiood source. In addition, the spectral sensitivity of the plate in Example 68 was calculated for this light source. The relative sensitivity in the terms of 100 for the commercial selenium plate is shown in bar-graph form in FIG. 9.
The choice of a particular pigment will depend upon the needs of the formula-tor. Thus, if spectral sensitivity is the determining factor, pigment grade zinc oxide is sensitive only in the far blue and near ultraviolet while cadmium selenide is sensitive only in the red and near infrared. Mercuric sulfide is sensitive only in the range Within about 25 millimicrons of 600. Arsenic triselenide is sensitive over the entire visible spectrum with a peak in the far red. Gallium trisclcnide and indium trisulfide are sensitive from the green to far red with a high peak in the orange. Costs vary widely. Pigment grade zinc oxide is relatively cheap but has low sensitivity. Gallium triselenide, indium trisulfide and arsenic triselenide, although quite sensitive to incandescent light sources are relatively expansive and not readily available commercially.
A particularly preferred material for use in xerographic binder plates are the zinc-cadmium sulfide phosphors. These materials are readily available commercially and in themselves offer an extremely wide range of choice in spectral characteristics. Thus, Phosphor 23 30 is sensitive only in the near ultraviolet to green region of the spectrum while Phosphor F2039 is sensitive over the entire spectral range from the near ultraviolet to the far red. Whereas materials such as pigment grade zinc oxide and GP. grade zinc sulfide are generally useful xerographically only when neagtively charged, the zinc-cadmium sulfide phosphors are usable when sensitized with either polarity of electrical charge. These materials also offer a wide variety of choice in modifying their properties as by combining with other pigments as in the case of combining with the cheaper zinc oxide pigment to give sensitivity to the green (in the case of Phosphor 2225) combined with an extremely high peak in the near ultraviolet. This extremely high peak sensitivity makes such a combination eminently suit-able for dye sensitization (as with rose bengal or other known photographic sensitizing dyes) which would further extend the sensitivity at longer wavelengths. These and other factors will, of course, be obvious to those skilled in the art.
As can be seen in the previous examples, the thickness of the photoconductive insulating layer is not critical. In general, the layer may be anywhere from about 10 to 200 microns thick. For best operation it is preferred that the layer not be over about microns thick.
In general, the ratio between binder and the inorganic photoconductive insulating compound is from about 1 part binder and 10 parts photoconductor to about 2 parts binder and 1 part photoconductor by weight. The actual proportion will, of course, depend on the specific binder as well as on the properties and characteristics desired. As a general guide, it is indicated that the quantities of the binder should be the least amount which will adequately secure the photoconductor to the surface of the backing member and which will form a smooth and useful surface for the ultimate deposition thereon of electr-ostatically charged powder particles.
The mechanism of operation of a xerographic binder plate is not understood. It has been postulated that the individual particles of operable inorganic compounds exist with two different conductive states in the particles, that is, the surface may be p-type while the interior of the particles may be n-type or vice versa. The difference of conductivity type may be due to the method of the preparation of the crystal or to the interaction of the binder in the preparation of the xerographic plate. These pigment particles may form irregular chains of conductive paths leading from the surface of the binder plate to the interface with the backing material. Such a path would offer a large number of p-n junctions.
Alternatively, the pigment particles may be coated with a thin insulating film of binder offering a resistive barrier between adjacent pigment particles. As compared to amorphous photoconductive films wherein carrier movement is controlled primarily by trapping and consequent space charges, and perhaps secondarily by interchain potential barriers, in the binder plate, carrier movement is probably limited primarily by interparticle barriers. It is not intended to limit the invention to this or any other theory of operation. The critical requirement or property, as discussed hcreinbefore, is that the excited photoelectrons or holes left behind can migrate when under an applied electric field. Regardless of theory of operation, it is observed that the xerographic members a-- cording to this invention have a very high specific resistivity in the absence of activating illumination and are such as to have a decay factor as previously defined of less than about 30, generally less than about 0.1. Typical compounds possessing these properties are cadmium sulfide, zinc sulfide, cadmium selenide, zinc selenide, mixed sulfides or selenides of these metals and other compounds sometimes available under the class of phosphors and believed to have activating crystal imperfections or impurities, such as amounts of other elements, for example, up to about 1% and generally about 0.001 to 0.01% of elements, such as copper, zinc, calcium, silver, magnesium and the like.
This application is a continuation-in-part of our earlier filed co-pending application Ser. No. 311,546, filed on September 25, 1952, which in turn was a continuation in-part of Ser. No. 95,374, filed May 25, 1949, by Arthur E. Middleton now US. Patent 2,663,636.
What is claimed is:
1. A process for recording a pattern of light and shadow comprising in the absence of activating radiation placing sensitizing electrostatic charges of one polarity on the surface of a xcrographically sensitive member comprising a conductive backing and a thin photoconductive insulating layer thereon comprising an insulating organic resin binder and dispersed therein finely-divided particles of an inorganic photoconductive insulating metallicdons containing crystalline compound having electrons in the nonconductive energy level activatable by illumination to a different energy level whereby an electric charge is free to migrate under an applied electric field in the order of at least volts per cm., the composite resistivity of the layer being at least 10 ohms-cm. in the absence of illumination and having a decay factor of less than 3.0, exposing the thus charged surface to a pattern of light and shadow to be recorded whereby an electrostatic latent image is formed corresponding to said pattern and de positing electrically attractable finely-divided marking material selectively in conformity with the electrostatic image thus produced.
2. A process according to claim 1 wherein said compound is zinc sulfide.
3. A process according to claim pound is cadmium sulfide.
4. A process according to claim pound is zinc selenide.
5. A process according to claim pound is cadmium selenide.
6. A process according to claim pound is titanium dioxide.
7. A process for recording a pattern of light and shadow comprising in the absence of activating radiation placing sensitizing electrostatic charges of one polarity on the surface of a xerographically sensitive member comprising a conductive backing and a thin photoconductive insulating layer thereon comprising an insulating organic resin binder and dispersed therein finely-divided particles of an inorganic photoconductive insulating metallic-ion containing crystalline phosphor, said phosphor showing photoluminescence when excited by low energy photons, exposing the thus charged surface to a pattern of light and shadow to be recorded whereby an electrostatic latent image is formed corresponding to said pattern and depositing electrically attractable finely-divided marking material selectively in conformity with the electrostatic image thus produced.
8. A process according to claim 7 wherein said particles comprise a phosphor-grade zinc chalkogenide, the chalkogen having an atomic weight not more than about 128.
1 wherein said com- 1 wherein said com- 1 wherein said com- 1 wherein said com- 9. A process according to claim 7 wherein said particles comprise a phosphor-grade zinc sulfide.
10. A process according to claim 7 wherein said particles comprise a phosphor-grade zinc selenide..
11. A process according to claim 7 wherein said particles comprise a phosphor-grade cadmium chalkogenide, the chalkogen having an atomic weight not more than about 128.
12. A process according to claim 7 wherein said particles comprise a phosphor-grade cadmium sulfide.
13. A process according to claim 7 wherein said particles comprise a phosphor-grade cadmium selenide.
14. A xerographic process comprising imposing an electrostatic field through a photoconductive insulating layer of an insulating organic resin binder having dispersed therein finely divided particles of an inorganic photoconductive insulating metallic-ion containing crystalline compound having electrons in the non-conductive energy level activatable by illumination to a different energy level whereby an electric charge is free to migrate under an applied electric field in the order of at least 10 volts per cm., the composite resistivity of the layer being at least 10 ohms-cm. in the absence of illumination and having a decay factor of less than 3.0, said photoconductive insulating layer being positioned in electrical contact with a non-light sensitive electrically conductive backing and, while the field is imposed, selectively flowing charge through portions of the photoconductive insulating layer by selectively exposing said portions to activating radiation forming a varying charge pattern of intelligence to be reproduced which is adapted to be developed with marking material.
15. A xerographio process comprising imposing an electrostatic field through a photoconductive insulating layer of an insulating organic resin binder having dispersed therein finely divided particles of an inorganic photoconductive insulating metallic-ion containing crystalline phosphor, said phosphor showing photoluminescence when excited by low energy photons, said photoconductive insulating layer being positioned in electrical contact with a nonlight sensitive electrically conductive backing and, while the field is imposed, selectively flowing charge through portions of the photoconductive insulating layer by selectively exposing said portions to activating radiation forming a varying charge pattern of intelligence to be reproduced which is adapted to be developed with marking material.
References Cited in the file of this patent UNITED STATES PATENTS 2,169,840 Lewis et a1 Aug. 15, 1939 2,297,691 Carlson Oct. 6, 1942 2,408,475 Nickle Oct. 1, 1946 2,599,542 Carlson June 10, 1952 2,663,636 Middleton Dec. 22, 1953 2,692,178 Grandadam Oct. 19, 1954 2,735,785 Greig Feb. 21, 1956 2,811,465 Greig Oct. 29, 1957 2,857,271 Sugarman Oct. 21, 1958 2,901,348 Dessauer et al. Aug. 25, 1959 FOREIGN PATENTS 201,301 Australia Apr. 21, 1955 OTHER REFERENCES McNaughton: Paint Manufacture, March 1937, pages 82 and 84.
Wainer: Photographic Engineering, vol. 3, No. 1, 1952, pages 12 to 22, originally presented May 24, 1951.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 121,006 Februaryll, 1964 Arthur E, Middleton et a1.
It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
(SEAL) Attest:
ERNEST W. SWIDER EDWARD J. BRENNER Attesting Officer Commissioner of Patents
Claims (1)
1. A PROCESS FOR RECORDING A PATTERN OF LIGHT AND SHADOW COMPRISING IN THE ABSENCE OF ACTIVATING RADIATION PLACING SENSITIZING ELECTROSTATIC CHARGBES OF ONE POLARITY ON THE SURFACE OF A XEROGRAPHICALLY SENSITIVE MEMBER COMPRISING A CONDUCTIVE BACKING AND A THIN PHOTOCONDUCTIVE INSULATING LAYER THEREON COMPRISING AN INSULATING ORGANIC RESIN BINDER AND DISPERSED THEREIN FINELY-DIVIDED PARTICLES OF AN INORGANIC PHOTOCONDUCTIVE INSULATING METALLIC-IONS CONTAINING CRYSTALLINE COMPOUND HAVING ELECTRONS IN THE NONCONDUCTIVE ENERGY ELVEL ACTIVATABLE BY ILLUMINATION TO A DIFFERENT ENERGY ELVEL WHEREBY AN ELECTRIC CHARGE IS FREE TO MIGRATE UNDER AN APPLIED ELECTRIC FIELD IN THE ORDER OF AT LEAST 10**3 VOLTS PER CM., THE COMPOSITE RESISTIVITY OF THE LAYER BEING AT LEAST 10**10 OHMS-CM. IN THE ABSENCE F ILLUMINATION AND HAVING A DECAY FACTOR OF LESS THAN 3.0, EXPOSING THE THUS CHARGED SURFACE TO A PATTERN OF LIGHT AND SHADOW TO BE RECORDED WHEREBY AN ELECTROSTATIC LATENT IMAGE IS FORMED CORRESPONDING TO SAID PATTERNA ND DEPOSITING ELECTRICALLY ATTRACTABLE FINELY-DIVIDED MARKING MATERIAL SELECTIVELY IN CONFORMITY WITH THE ELECTROSTATIC IMAGE THUS PRODUCED.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US668165A US3121006A (en) | 1957-06-26 | 1957-06-26 | Photo-active member for xerography |
BE656892D BE656892A (en) | 1957-06-26 | 1964-12-09 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US668165A US3121006A (en) | 1957-06-26 | 1957-06-26 | Photo-active member for xerography |
CA674311 | 1963-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3121006A true US3121006A (en) | 1964-02-11 |
Family
ID=25673266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US668165A Expired - Lifetime US3121006A (en) | 1957-06-26 | 1957-06-26 | Photo-active member for xerography |
Country Status (2)
Country | Link |
---|---|
US (1) | US3121006A (en) |
BE (1) | BE656892A (en) |
Cited By (424)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3251686A (en) * | 1960-07-01 | 1966-05-17 | Xerox Corp | Xerographic process |
US3268332A (en) * | 1962-05-25 | 1966-08-23 | Itek Corp | Electrophotographic element |
US3291601A (en) * | 1960-12-29 | 1966-12-13 | Gen Electric | Process of information storage on deformable photoconductive medium |
US3293037A (en) * | 1962-11-21 | 1966-12-20 | American Cyanamid Co | Compositions of matter comprising inorganic photochromic material dispersed in an aminoplast resin |
US3334229A (en) * | 1963-06-15 | 1967-08-01 | Fuji Photo Film Co Ltd | Recording method and member of x-ray images and means for displaying said images |
US3345162A (en) * | 1963-06-17 | 1967-10-03 | Sun Chemical Corp | Photoconductive composition and article |
US3347670A (en) * | 1963-06-19 | 1967-10-17 | Dennison Mfg Co | Recording elements for electrostatic printing |
US3378370A (en) * | 1964-02-06 | 1968-04-16 | Interchem Corp | Recording elements for electrostatic printing |
US3399060A (en) * | 1963-04-16 | 1968-08-27 | Little Inc A | Electrophotographic product and method for achieving electrophotographic copying |
US3401037A (en) * | 1964-11-25 | 1968-09-10 | Interchem Corp | Electrostatic printing on metal substrates |
US3418640A (en) * | 1964-10-22 | 1968-12-24 | Minnesota Mining & Mfg | Method for storing and retrieving information onto and from an electroplatable recording medium |
US3425829A (en) * | 1960-11-08 | 1969-02-04 | Agfa Gevaert Nv | Electrophotographic recording process |
US3428452A (en) * | 1965-01-18 | 1969-02-18 | Rca Corp | Photoconductive compositions and electrophotographic recording elements made therefrom |
US3437481A (en) * | 1965-02-15 | 1969-04-08 | Ashland Oil Inc | Resin compositions |
US3440045A (en) * | 1964-09-01 | 1969-04-22 | Azoplate Corp | Electrophotographic process for the manufacture of a highly heat-resistant image |
US3447957A (en) * | 1964-08-19 | 1969-06-03 | Xerox Corp | Method of making a smooth surfaced adhesive binder xerographic plate |
US3453106A (en) * | 1965-06-21 | 1969-07-01 | Owens Illinois Inc | Compositions exhibiting persistent internal polarization where a photoconductive material is dispersed in a polysiloxane resin derived from trifunctional monomers |
US3460963A (en) * | 1964-05-25 | 1969-08-12 | Lumiere Soc | Process for the manufacture of an electrophotographic material |
US3469978A (en) * | 1965-11-30 | 1969-09-30 | Xerox Corp | Photosensitive element |
US3471288A (en) * | 1966-04-21 | 1969-10-07 | Itek Corp | Combination electrostatic and electro-chemical data storage process |
US3472676A (en) * | 1965-11-18 | 1969-10-14 | Gevaert Photo Prod Nv | Process for developing electrostatic charge patterns |
US3476559A (en) * | 1964-07-01 | 1969-11-04 | Olivetti & Co Spa | Electrostatic printing element comprising a dye sensitized zinc oxide coating on a high resistivity paper backing sheet and a process of using said element |
US3486922A (en) * | 1967-05-29 | 1969-12-30 | Agfa Gevaert Nv | Development of electrostatic patterns with aqueous conductive developing liquid |
US3494766A (en) * | 1964-12-19 | 1970-02-10 | Fuji Photo Film Co Ltd | Light sensitive layer for electrophotography |
US3501295A (en) * | 1966-06-17 | 1970-03-17 | Riegel Paper Corp | Electrophotographic reproduction system utilizing lightweight copy papers |
US3508961A (en) * | 1964-12-19 | 1970-04-28 | Fuji Photo Film Co Ltd | Process for the production of a light sensitive body having an insulating photoconductive layer |
US3510299A (en) * | 1967-06-26 | 1970-05-05 | Clifford E Herrick Jr | Method and material for the production of continuous - tone electrophotographic images |
US3512969A (en) * | 1964-09-22 | 1970-05-19 | Jean J A Robillard | Photographic process based on the quenching of color centers |
US3522040A (en) * | 1965-11-30 | 1970-07-28 | Xerox Corp | Photosensitive insulating material |
US3569803A (en) * | 1967-08-15 | 1971-03-09 | Fuji Photo Film Co Ltd | Electrophotographic process utilizing friction charging |
US3607259A (en) * | 1967-01-06 | 1971-09-21 | Australia Res Lab | Package of charged photoconductive recording elements for electrophotography |
US3619154A (en) * | 1968-07-30 | 1971-11-09 | Westvaco Corp | Infrared sensitization of photoconductive compositions employing cyanine dyes |
US3635706A (en) * | 1965-05-29 | 1972-01-18 | Agfa Gevaert Ag | Sensitized electrophotographic layers |
US3652270A (en) * | 1969-01-10 | 1972-03-28 | Matsushita Electric Ind Co Ltd | Recording devices |
US3656990A (en) * | 1964-10-12 | 1972-04-18 | Xerox Corp | Electrosolography |
US3753706A (en) * | 1969-10-29 | 1973-08-21 | Xerox Corp | A photoelectrosolographic imaging method wherein an absorbent material is used |
US3787208A (en) * | 1970-09-25 | 1974-01-22 | Xerox Corp | Xerographic imaging member having photoconductive material in inter-locking continuous paths |
US3819370A (en) * | 1968-06-04 | 1974-06-25 | Canon Kk | Photoconductive element and process of preparing same using thermo-shrinkable material |
US3873309A (en) * | 1970-06-18 | 1975-03-25 | Xerox Corp | Imaging method using migration material |
US3888668A (en) * | 1969-02-03 | 1975-06-10 | Itek Corp | Imaging medium comprising photoconductor of tio' 2 'and sensitizing dye |
US3896184A (en) * | 1973-06-27 | 1975-07-22 | Xerox Corp | Polymers of benzanthracene as active matrix materials |
US3899329A (en) * | 1970-12-01 | 1975-08-12 | Xerox Corp | Mixture of photoconductors in an active matrix |
US3903797A (en) * | 1968-05-14 | 1975-09-09 | Itek Corp | Multiple copy photographic system |
US3905813A (en) * | 1973-05-21 | 1975-09-16 | Ici America Inc | Low weight photoconductive compositions |
US3907557A (en) * | 1971-02-08 | 1975-09-23 | Avery Products Corp | Pressure-sensitive electrostatic imaging labels |
US3909261A (en) * | 1970-09-25 | 1975-09-30 | Xerox Corp | Xerographic imaging member having photoconductive material in interlocking continuous paths |
US3944682A (en) * | 1972-12-28 | 1976-03-16 | Rank Xerox, Ltd. | Method of providing an electrophotographic coating and compositions for the method |
US3950167A (en) * | 1973-09-26 | 1976-04-13 | Xerox Corporation | Imaging system |
US3956526A (en) * | 1972-06-26 | 1976-05-11 | Matsushita Electric Industrial Co., Ltd. | Method of making a photoconductive layer for an image converting panel |
US3960555A (en) * | 1964-10-12 | 1976-06-01 | Xerox Corporation | Photographic charging and imaging process |
US3966465A (en) * | 1970-09-30 | 1976-06-29 | Xerox Corporation | Multiple layer migration imaging system |
US3985560A (en) * | 1969-08-21 | 1976-10-12 | Xerox Corporation | Migration imaging member with fusible particles |
US3998634A (en) * | 1973-04-24 | 1976-12-21 | Fuji Photo Film Co., Ltd. | Powder electrophotographic method |
US4009041A (en) * | 1974-10-03 | 1977-02-22 | Polaroid Corporation | Fogged, direct-positive silver halide emulsion containing a gallium sulfide semiconductor |
US4047945A (en) * | 1975-02-18 | 1977-09-13 | Xerox Corporation | Xeroprinting master and process |
US4053309A (en) * | 1974-06-10 | 1977-10-11 | Varian Associates, Inc. | Electrophotographic imaging method |
US4134762A (en) * | 1976-07-02 | 1979-01-16 | The Commonwealth Of Australia | Selective photoconductor-binder coating of absorbent surfaces |
US4135928A (en) * | 1976-10-23 | 1979-01-23 | Ricoh Co., Ltd. | Electrophotographic light-sensitive member |
US4139380A (en) * | 1975-12-10 | 1979-02-13 | Ricoh Company, Ltd. | Electrophotographic sensitive material with rubber interlayer |
US4150986A (en) * | 1976-09-17 | 1979-04-24 | Ishihara Sangyo Kaisha, Ltd. | Doped TiO2 electrophotographic photosensitive materials |
US4220697A (en) * | 1977-07-29 | 1980-09-02 | Hoechst Aktiengesellschaft | Electrophotographic recording material |
US4233384A (en) * | 1979-04-30 | 1980-11-11 | Xerox Corporation | Imaging system using novel charge transport layer |
US4236715A (en) * | 1978-09-19 | 1980-12-02 | Phillips Petroleum Company | Amusement device of coated paper and adherable object of oil-extended radial teleblock copolymer |
US4263388A (en) * | 1979-12-04 | 1981-04-21 | Xerox Corporation | Electrophotographic imaging device |
US4356246A (en) * | 1979-06-15 | 1982-10-26 | Fuji Photo Film Co., Ltd. | Method of making α-silicon powder, and electrophotographic materials incorporating said powder |
US4395474A (en) * | 1977-10-15 | 1983-07-26 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member with cured cyclized rubber binder |
US4439507A (en) * | 1982-09-21 | 1984-03-27 | Xerox Corporation | Layered photoresponsive imaging device with photogenerating pigments dispersed in a polyhydroxy ether composition |
EP0149914A1 (en) * | 1984-01-03 | 1985-07-31 | Xerox Corporation | Overcoated electrophotographic imaging member |
US4543314A (en) * | 1983-12-01 | 1985-09-24 | Xerox Corporation | Process for preparing electrostatographic photosensitive device comprising sodium additives and trigonal selenium particles |
US4559286A (en) * | 1984-09-13 | 1985-12-17 | Xerox Corporation | Mixed squaraine photoconductive compositions |
US4606986A (en) * | 1983-12-05 | 1986-08-19 | Xerox Corporation | Electrophotographic elements containing unsymmetrical squaraines |
US4668600A (en) * | 1984-05-15 | 1987-05-26 | Hoechst Aktiengesellschaft | Electrophotographic recording material containing an n-type conducting pigment |
US4792511A (en) * | 1986-03-14 | 1988-12-20 | Fuji Photo Film Co., Ltd. | Electrophotographic zinc oxide-resin binder lithographic printing plate precursor |
US4818654A (en) * | 1984-02-10 | 1989-04-04 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member with combination of polymethyl methacrylate resins |
US4818653A (en) * | 1985-10-25 | 1989-04-04 | Hoechst Aktiengesellschaft | Electrophotographic recording material with mopomeril alleptor additive |
US4828952A (en) * | 1986-05-02 | 1989-05-09 | Fuji Photo Film Co., Ltd. | Electrophotographic lithographic printing plate precursor |
US4954413A (en) * | 1987-03-17 | 1990-09-04 | Mitsubishi Denki Kabushiki Kaisha | Method of making photoconductive particles |
US5008167A (en) * | 1989-12-15 | 1991-04-16 | Xerox Corporation | Internal metal oxide filled materials for electrophotographic devices |
US5021309A (en) * | 1990-04-30 | 1991-06-04 | Xerox Corporation | Multilayered photoreceptor with anti-curl containing particulate organic filler |
US5055366A (en) * | 1989-12-27 | 1991-10-08 | Xerox Corporation | Polymeric protective overcoatings contain hole transport material for electrophotographic imaging members |
US5063397A (en) * | 1990-05-25 | 1991-11-05 | Xerox Corporation | Variable-thickness imaging members |
US5069993A (en) * | 1989-12-29 | 1991-12-03 | Xerox Corporation | Photoreceptor layers containing polydimethylsiloxane copolymers |
US5089369A (en) * | 1990-06-29 | 1992-02-18 | Xerox Corporation | Stress/strain-free electrophotographic device and method of making same |
US5091278A (en) * | 1990-08-31 | 1992-02-25 | Xerox Corporation | Blocking layer for photoreceptors |
US5096795A (en) * | 1990-04-30 | 1992-03-17 | Xerox Corporation | Multilayered photoreceptor containing particulate materials |
US5110700A (en) * | 1990-12-28 | 1992-05-05 | Xerox Corporation | Electrophotographic imaging member |
US5120628A (en) * | 1989-12-12 | 1992-06-09 | Xerox Corporation | Transparent photoreceptor overcoatings |
US5132627A (en) * | 1990-12-28 | 1992-07-21 | Xerox Corporation | Motionless scanner |
US5162183A (en) * | 1990-07-31 | 1992-11-10 | Xerox Corporation | Overcoat for imaging members |
US5166381A (en) * | 1990-08-31 | 1992-11-24 | Xerox Corporation | Blocking layer for photoreceptors |
US5175503A (en) * | 1990-12-28 | 1992-12-29 | Xerox Corporation | Ascertaining imaging cycle life of a photoreceptor |
US5187039A (en) * | 1990-07-31 | 1993-02-16 | Xerox Corporation | Imaging member having roughened surface |
US5190608A (en) * | 1990-12-27 | 1993-03-02 | Xerox Corporation | Laminated belt |
US5223361A (en) * | 1990-08-30 | 1993-06-29 | Xerox Corporation | Multilayer electrophotographic imaging member comprising a charge generation layer with a copolyester adhesive dopant |
US5242774A (en) * | 1992-03-27 | 1993-09-07 | Xerox Corporation | Photoconductive imaging members with fluorinated polycarbonates |
US5258461A (en) * | 1990-11-26 | 1993-11-02 | Xerox Corporation | Electrocodeposition of polymer blends for photoreceptor substrates |
US5281503A (en) * | 1992-04-17 | 1994-01-25 | Xerox Corporation | Couplers for photogenerating azo pigments |
US5306586A (en) * | 1992-08-06 | 1994-04-26 | Xerox Corporation | Dual layer switch photoreceptor structures for digital imaging |
US5316880A (en) * | 1991-08-26 | 1994-05-31 | Xerox Corporation | Photoreceptor containing similar charge transporting small molecule and charge transporting polymer |
US5322755A (en) * | 1993-01-25 | 1994-06-21 | Xerox Corporation | Imaging members with mixed binders |
US5324615A (en) * | 1993-08-13 | 1994-06-28 | Xerox Corporation | Method of making electrostatographic imaging members containing vanadyl phthalocyanine |
US5350654A (en) * | 1992-08-11 | 1994-09-27 | Xerox Corporation | Photoconductors employing sensitized extrinsic photogenerating pigments |
US5356744A (en) * | 1989-12-27 | 1994-10-18 | Xerox Corporation | Conductive layers using charge transfer complexes |
US5409792A (en) * | 1991-08-26 | 1995-04-25 | Xerox Corporation | Photoreceptor containing dissimilar charge transporting small molecule and charge transporting polymer |
US5418107A (en) * | 1993-08-13 | 1995-05-23 | Xerox Corporation | Process for fabricating an electrophotographic imaging members |
US5422213A (en) * | 1992-08-17 | 1995-06-06 | Xerox Corporation | Multilayer electrophotographic imaging member having cross-linked adhesive layer |
US5453344A (en) * | 1994-01-28 | 1995-09-26 | Xerox Corporation | Layered imaging members with binder resins |
US5462825A (en) * | 1992-11-16 | 1995-10-31 | Mita Industrial Co., Ltd. | Electrophotographic photoconductor having a photosensitive layer with charge generating particles and a charge transporting material dispersed in a binder |
EP0684527A1 (en) | 1994-05-27 | 1995-11-29 | Xerox Corporation | Photoconductive charging processes |
DE4429564C1 (en) * | 1994-08-19 | 1996-01-18 | Licentia Gmbh | Electrophotographic material with high photosensitivity in repeated use |
EP0721151A1 (en) | 1995-01-06 | 1996-07-10 | Xerox Corporation | Flexible electrostatographic imaging member method |
US5582949A (en) * | 1990-12-27 | 1996-12-10 | Xerox Corporation | Process for improving belts |
US5681678A (en) * | 1997-01-21 | 1997-10-28 | Xerox Corporation | Charge generation layer containing hydroxyalkyl acrylate reaction product |
US5714248A (en) * | 1996-08-12 | 1998-02-03 | Xerox Corporation | Electrostatic imaging member for contact charging and imaging processes thereof |
US5725985A (en) * | 1997-01-21 | 1998-03-10 | Xerox Corporation | Charge generation layer containing mixture of terpolymer and copolymer |
US5830613A (en) * | 1992-08-31 | 1998-11-03 | Xerox Corporation | Electrophotographic imaging member having laminated layers |
US5843607A (en) * | 1997-10-02 | 1998-12-01 | Xerox Corporation | Indolocarbazole photoconductors |
US5846681A (en) * | 1992-09-30 | 1998-12-08 | Xerox Corporation | Multilayer imaging member having improved substrate |
US5902901A (en) * | 1998-05-07 | 1999-05-11 | Xerox Corporation | Arylamine processes |
US6015645A (en) * | 1998-05-29 | 2000-01-18 | Xerox Corporation | Photoconductive imaging members |
US6030735A (en) * | 1999-10-12 | 2000-02-29 | Xerox Corporation | Photoconductive imaging members with polymetallosiloxane layers |
US6099997A (en) * | 1992-06-04 | 2000-08-08 | Agfa-Gevaert, N.V. | Photoconductive recording material comprising a crosslinked binder system |
US6165660A (en) * | 1999-11-29 | 2000-12-26 | Xerox Corporation | Organic photoreceptor with improved adhesion between coated layers |
US6165670A (en) * | 1999-05-24 | 2000-12-26 | Xerox Corporation | Method of treating electrostatographic imaging web and method of making electrostatographic imaging members using such imaging web |
US6180309B1 (en) | 1999-11-26 | 2001-01-30 | Xerox Corporation | Organic photoreceptor with improved adhesion between coated layers |
US6183921B1 (en) | 1995-06-20 | 2001-02-06 | Xerox Corporation | Crack-resistant and curl free multilayer electrophotographic imaging member |
US6194110B1 (en) | 2000-07-13 | 2001-02-27 | Xerox Corporation | Imaging members |
US6194111B1 (en) | 1999-06-04 | 2001-02-27 | Xerox Corporation | Crosslinkable binder for charge transport layer of a photoconductor |
US6197461B1 (en) | 1999-11-24 | 2001-03-06 | Xerox Corporation | Multiple-seam electrostatographic imaging member and method of making electrostatographic imaging member |
US6214505B1 (en) | 2000-07-18 | 2001-04-10 | Xerox Corporation | Imaging members |
US6214504B1 (en) | 2000-06-27 | 2001-04-10 | Xerox Corporation | Photoconductive imaging members |
US6287738B1 (en) | 2000-05-25 | 2001-09-11 | Xerox Corporation | Photoconductive imaging members |
US6294300B1 (en) | 2000-01-19 | 2001-09-25 | Xerox Corporation | Charge generation layer for electrophotographic imaging member and a process for making thereof |
US6300027B1 (en) | 2000-11-15 | 2001-10-09 | Xerox Corporation | Low surface energy photoreceptors |
US6309785B1 (en) | 2000-10-30 | 2001-10-30 | Xerox Corporation | Imaging members |
US6322941B1 (en) | 2000-07-13 | 2001-11-27 | Xerox Corporation | Imaging members |
US6326111B1 (en) | 2000-11-15 | 2001-12-04 | Xerox Corporation | Stable charge transport layer dispersion containing polytetrafluoroethylene particles and hydrophobic silica |
US6337166B1 (en) | 2000-11-15 | 2002-01-08 | Xerox Corporation | Wear resistant charge transport layer with enhanced toner transfer efficiency, containing polytetrafluoroethylene particles |
US6379853B1 (en) | 2000-11-28 | 2002-04-30 | Xerox Corporation | Electrophotographic imaging member having two charge transport layers for limiting toner consumption |
US6444386B1 (en) | 2001-04-13 | 2002-09-03 | Xerox Corporation | Photoconductive imaging members |
US6464902B1 (en) | 2000-05-25 | 2002-10-15 | Xerox Corporation | Perylene mixtures |
US6495300B1 (en) | 2001-07-02 | 2002-12-17 | Xerox Corporation | Photoconductive imaging members |
US6528226B1 (en) | 2000-11-28 | 2003-03-04 | Xerox Corporation | Enhancing adhesion of organic electrostatographic imaging member overcoat and anticurl backing layers |
US6596450B2 (en) | 2001-09-10 | 2003-07-22 | Xerox Corporation | Charge transport components |
US6656651B1 (en) | 2002-05-22 | 2003-12-02 | Xerox Corporation | Photoconductive members |
US6713220B2 (en) | 2002-05-17 | 2004-03-30 | Xerox Corporation | Photoconductive members |
EP1403719A2 (en) | 2002-09-30 | 2004-03-31 | Xerox Corporation | Photosensitive member having deletion control additive |
US20040063011A1 (en) * | 2002-09-24 | 2004-04-01 | Xerox Corporation | Imaging members |
US20040096761A1 (en) * | 2002-11-20 | 2004-05-20 | Xerox Corporation | Imaging members |
US20040151996A1 (en) * | 2003-01-30 | 2004-08-05 | Xerox Corporation | Photoconductive members |
US20040161683A1 (en) * | 2003-02-19 | 2004-08-19 | Xerox Corporation | Photoconductive imaging members |
US20040161682A1 (en) * | 2003-02-19 | 2004-08-19 | Xerox Corporation | Photoconductive imaging members |
US20040173943A1 (en) * | 2003-03-07 | 2004-09-09 | Xerox Corporation | Endless belt member stress relief |
US20050023686A1 (en) * | 2000-06-05 | 2005-02-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multilayer diffusion barrier for copper interconnections |
US6858363B2 (en) | 2003-04-04 | 2005-02-22 | Xerox Corporation | Photoconductive imaging members |
EP1515191A2 (en) | 2003-09-05 | 2005-03-16 | Xerox Corporation | Dual charge transport layer and photoconductive imaging member including the same |
US20050058919A1 (en) * | 2003-09-17 | 2005-03-17 | Xerox Corporation. | Photoconductive imaging members |
US20050089344A1 (en) * | 2003-10-28 | 2005-04-28 | Xerox Corporation | Photoreceptor for highlight color printing machine |
US20050089348A1 (en) * | 2003-10-28 | 2005-04-28 | Xerox Corporation | Highlight color printing machine |
US20050136348A1 (en) * | 2003-12-19 | 2005-06-23 | Xerox Corporation | Sol-gel processes for photoreceptor layers |
US20050133147A1 (en) * | 2003-12-23 | 2005-06-23 | Xerox Corporation | Process for producing an imaging member belt having a butt-lap seam |
US20050154178A1 (en) * | 2003-11-25 | 2005-07-14 | Xerox Corporation | Process for preparing branched polyarylene ethers |
US20050158452A1 (en) * | 2004-01-16 | 2005-07-21 | Xerox Corporation | Dip coating process using viscosity to control coating thickness |
US20050202330A1 (en) * | 2004-03-15 | 2005-09-15 | Xerox Corporation | Reversibly color changing undercoat layer for electrophotographic photoreceptors |
US20050208416A1 (en) * | 2003-11-25 | 2005-09-22 | Xerox Corporation | Branched polyarylene ethers and processes for the preparation thereof |
US20050233231A1 (en) * | 2004-04-14 | 2005-10-20 | Xerox Corporation | Photoconductive imaging members |
US20060029871A1 (en) * | 2004-08-04 | 2006-02-09 | Xerox Corporation | Polycarbonates and photoconductive imaging members |
US20060030653A1 (en) * | 2004-08-04 | 2006-02-09 | Xerox Corporation | Polycarbonates and photoconductive imaging members |
US20060034634A1 (en) * | 2004-08-10 | 2006-02-16 | Xerox Corporation. | Imaging member belt support module |
US20060057480A1 (en) * | 2004-09-16 | 2006-03-16 | Xerox Corporation | Photoconductive imaging members |
US20060068309A1 (en) * | 2004-09-30 | 2006-03-30 | Xerox Corporation | Imaging member |
US20060099525A1 (en) * | 2004-11-05 | 2006-05-11 | Xerox Corporation | Imaging member |
US20060151922A1 (en) * | 2005-01-10 | 2006-07-13 | Xerox Corporation | Apparatus and process for treating a flexible imaging member web stock |
US20060166116A1 (en) * | 2005-01-26 | 2006-07-27 | Xerox Corporation | Photoconductive imaging members |
US20060177751A1 (en) * | 2005-02-09 | 2006-08-10 | Xerox Corporation | Imaging members |
US20060177748A1 (en) * | 2005-02-10 | 2006-08-10 | Xerox Corporation | High-performance surface layer for photoreceptors |
US20060204872A1 (en) * | 2005-03-08 | 2006-09-14 | Xerox Corporation | Hydrolyzed semi-conductive nanoparticles for imaging member undercoating layers |
US20060216620A1 (en) * | 2005-03-23 | 2006-09-28 | Xerox Corporation | Photoconductive imaging member |
US20060216618A1 (en) * | 2005-03-24 | 2006-09-28 | Xerox Corporation | Mechanical and electrical robust imaging member and a process for producing same |
US20060222978A1 (en) * | 2005-03-31 | 2006-10-05 | Xerox Corporation | Photoconductive imaging members |
US20060246365A1 (en) * | 2005-04-28 | 2006-11-02 | Xerox Corporation | Process for preparing a polyformyl arylamine |
US20060257766A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Photoconductive members |
US20060257767A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Imaging member |
US20060257769A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Photoconductive members |
US20060263708A1 (en) * | 2005-05-20 | 2006-11-23 | Xerox Corporation | Imaging member |
US20060269856A1 (en) * | 2005-05-27 | 2006-11-30 | Xerox Corporation | Photoconductive imaging members |
US7144971B2 (en) | 2004-08-04 | 2006-12-05 | Xerox Corporation | Polycarbonates and photoconductive imaging members |
US20060284194A1 (en) * | 2005-06-20 | 2006-12-21 | Xerox Corporation | Imaging member |
US20060286471A1 (en) * | 2005-06-21 | 2006-12-21 | Xerox Corporation | Imaging member |
US20060292466A1 (en) * | 2005-06-28 | 2006-12-28 | Xerox Corporation | Photoreceptor with three-layer photoconductive layer |
US20070015072A1 (en) * | 2005-07-12 | 2007-01-18 | Xerox Corporation | Imaging members |
US7166397B2 (en) | 2003-12-23 | 2007-01-23 | Xerox Corporation | Imaging members |
US20070020540A1 (en) * | 2005-07-19 | 2007-01-25 | Xerox Corporation | Silane-phenol compound, overcoat formulation, and electrophotographic imaging member |
US20070022861A1 (en) * | 2005-07-29 | 2007-02-01 | Xerox Corporation. | Apparatus for producing an imaging member belt having an angular seam |
US20070023747A1 (en) * | 2005-07-28 | 2007-02-01 | Xerox Corporation | Positive charging photoreceptor |
US20070023133A1 (en) * | 2005-07-29 | 2007-02-01 | Xerox Corporation | Process for producing an imaging member belt having an angular seam |
US20070037081A1 (en) * | 2005-08-09 | 2007-02-15 | Xerox Corporation | Anticurl backing layer for electrostatographic imaging members |
US20070048636A1 (en) * | 2005-08-31 | 2007-03-01 | Xerox Corporation | Photoconductive imaging members |
US20070048638A1 (en) * | 2005-08-30 | 2007-03-01 | Xerox Corporation | Charge generating composition and imaging member |
US20070054208A1 (en) * | 2005-09-07 | 2007-03-08 | Xerox Corporation | Imaging member |
US20070059620A1 (en) * | 2005-09-09 | 2007-03-15 | Xerox Corporation | High sensitive imaging member with intermediate and/or undercoat layer |
US20070059623A1 (en) * | 2005-09-15 | 2007-03-15 | Xerox Corporation | Anticurl back coating layer for electrophotographic imaging members |
US20070059622A1 (en) * | 2005-09-15 | 2007-03-15 | Xerox Corporation | Mechanically robust imaging member overcoat |
US20070059616A1 (en) * | 2005-09-12 | 2007-03-15 | Xerox Corporation | Coated substrate for photoreceptor |
US20070072101A1 (en) * | 2005-09-26 | 2007-03-29 | Xerox Corporation | Photoreceptor with improved overcoat layer |
US7205079B2 (en) | 2004-07-09 | 2007-04-17 | Xerox Corporation | Imaging member |
US20070087276A1 (en) * | 2005-10-13 | 2007-04-19 | Xerox Corporaton. | Phenolic hole transport polymers |
US20070087277A1 (en) * | 2005-10-14 | 2007-04-19 | Xerox Corporation | Photoconductive members |
US20070092814A1 (en) * | 2005-10-25 | 2007-04-26 | Xerox Corporation | Imaging member with dialkyldithiocarbamate additive |
US20070092817A1 (en) * | 2005-10-25 | 2007-04-26 | Xerox Corporation | Imaging member |
US20070092815A1 (en) * | 2006-03-20 | 2007-04-26 | Xerox Corporation | Imaging member having barrier polymer resins |
US20070099101A1 (en) * | 2005-10-28 | 2007-05-03 | Xerox Corporation | Imaging member |
US20070098994A1 (en) * | 2005-11-03 | 2007-05-03 | Xerox Corporation | Imaging member having sulfur-containing additive |
US20070134571A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070135646A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070134573A1 (en) * | 2005-12-13 | 2007-06-14 | Xerox Corporation | Photoreceptor with overcoat layer |
US20070134572A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070134575A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070141488A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation. | Imaging member |
US20070141490A1 (en) * | 2005-12-19 | 2007-06-21 | Jin Wu | Imaging member |
US20070141489A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation | Imaging member |
US20070141487A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation | Imaging member |
US20070141493A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation | Imaging member |
US20070148575A1 (en) * | 2005-12-27 | 2007-06-28 | Xerox Corporation | Imaging member |
US20070148572A1 (en) * | 2005-12-22 | 2007-06-28 | Xerox Corporation | Imaging member |
US20070148573A1 (en) * | 2005-12-27 | 2007-06-28 | Xerox Corporation | Imaging member |
US20070166634A1 (en) * | 2006-01-13 | 2007-07-19 | Xerox Corporation | Photoreceptor with overcoat layer |
US20070196752A1 (en) * | 2006-02-22 | 2007-08-23 | Xerox Corporation | Imaging member |
US20070196751A1 (en) * | 2006-02-17 | 2007-08-23 | Xerox Corporation | Charge generating composition |
US7271290B2 (en) | 2005-09-14 | 2007-09-18 | Xerox Corporation | Monoformylated arylamine processes and compounds |
US20070254226A1 (en) * | 2006-04-26 | 2007-11-01 | Xerox Corporation | Imaging member |
US20070281228A1 (en) * | 2006-06-01 | 2007-12-06 | Xerox Corporation | Photoreceptor with overcoat layer |
US20070281226A1 (en) * | 2006-06-05 | 2007-12-06 | Xerox Corporation | Photoreceptor with electron acceptor |
US7309551B2 (en) | 2005-03-08 | 2007-12-18 | Xerox Corporation | Electron conductive overcoat layer for photoreceptors |
US20070292791A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl thioether containing photoconductors |
US20070292784A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Thiophosphate containing photoconductors |
US20070292790A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl thioether phosphate containing photoconductors |
US20070292787A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Ether containing photoconductors |
US20070292797A1 (en) * | 2006-06-20 | 2007-12-20 | Xerox Corporation | Imaging member having adjustable friction anticurl back coating |
US20070292783A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Ether phosphate containing photoconductors |
US20070292789A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl ether containing photoconductors |
US20070292786A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Thiophosphate containing photoconductors |
US20070292792A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl ether phosphate containing photoconductors |
US20070292793A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Thiophosphate containing photoconductors |
US20070298340A1 (en) * | 2006-06-22 | 2007-12-27 | Xerox Corporation | Imaging member having nano-sized phase separation in various layers |
US20080003513A1 (en) * | 2004-11-18 | 2008-01-03 | Xerox Corporation | Process for preparing photosensitive outer layer |
US20080008947A1 (en) * | 2006-07-06 | 2008-01-10 | Xerox Corporation | Electrophotographic imaging member undercoat layers |
US20080008950A1 (en) * | 2006-07-06 | 2008-01-10 | Xerox Corporation | Electrophotographic imaging member undercoat layers |
US20080014518A1 (en) * | 2004-11-18 | 2008-01-17 | Xerox Corporation | Process for preparing photosensitive outer layer |
US20080020307A1 (en) * | 2006-07-19 | 2008-01-24 | Xerox Corporation | Electrophotographic photoreceptor |
US20080020309A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080019734A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020308A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020306A1 (en) * | 2006-07-19 | 2008-01-24 | Xerox Corporation | Electrophotographic photoreceptor |
US20080020313A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020311A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020314A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020312A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020310A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080038648A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US20080038650A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US20080038652A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US20080038651A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US20080050665A1 (en) * | 2006-08-23 | 2008-02-28 | Xerox Corporation | Imaging member having high molecular weight binder |
US20080051576A1 (en) * | 2006-08-23 | 2008-02-28 | Xerox Corporation | Pigment for charge generating layer in photoreceptive device |
US20080057424A1 (en) * | 2006-08-31 | 2008-03-06 | Xerox Corporation | Overcoat for electrophotographic imaging member and methods of making and using same |
US20080063961A1 (en) * | 2006-08-10 | 2008-03-13 | Xerox Corporation | Imaging member having high charge mobility |
US20080076916A1 (en) * | 2006-09-21 | 2008-03-27 | Xerox Corporation | Organic photosensitive pigment |
US20080107984A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Overcoated photoconductors with thiophosphate containing charge transport layers |
US20080107982A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Photoconductors containing halogenated binders |
US20080107979A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Silanol containing charge transport overcoated photoconductors |
US20080107985A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Silanol containing overcoated photoconductors |
US20080107981A1 (en) * | 2006-11-06 | 2008-05-08 | Xerox Corporation | Positive-Charge Injection Preventing Layer for Electrophotographic Photoreceptors |
US20080107983A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Overcoated photoconductors with thiophosphate containing photogenerating layer |
US20080107978A1 (en) * | 2006-11-08 | 2008-05-08 | Xerox Corporation | Imaging member |
EP1927894A2 (en) | 2006-11-28 | 2008-06-04 | Xerox Corporation | Thiophosphate Containing Photoconductors |
US20080138724A1 (en) * | 2006-12-11 | 2008-06-12 | Xerox Corporation | Imaging member |
US20080145781A1 (en) * | 2006-10-27 | 2008-06-19 | Xerox Corporation | Imaging member |
US20080166646A1 (en) * | 2006-10-31 | 2008-07-10 | Xerox Corporation | Toner for reduced photoreceptor wear rate |
US20080166643A1 (en) * | 2006-11-01 | 2008-07-10 | Xerox Corporation | Electrophotographic photoreceptors having reduced torque and improved mechanical robustness |
US20080166644A1 (en) * | 2006-11-01 | 2008-07-10 | Xerox Corporation | Electrophotographic photoreceptors having reduced torque and improved mechanical robustness |
US20080194813A1 (en) * | 2007-02-14 | 2008-08-14 | Xerox Corporation | Process for making organic photosensitive pigment |
US20080206662A1 (en) * | 2007-02-28 | 2008-08-28 | Xerox Corporation | Asymmetric arylamine compounds and processes for making the same |
US20080202369A1 (en) * | 2007-02-23 | 2008-08-28 | Xerox Corporation | Apparatus for conditioning a substrate |
EP1967905A2 (en) | 2007-03-06 | 2008-09-10 | Xerox Corporation | Photoconductors containing halogenated binders and aminosilanes |
EP1975726A1 (en) | 2007-03-29 | 2008-10-01 | Xerox Corporation | Anticurl backside coating (ACBC) photoconductors |
US7445876B2 (en) | 2006-06-15 | 2008-11-04 | Xerox Corporation | Ether and thiophosphate containing photoconductors |
US20080280222A1 (en) * | 2007-05-07 | 2008-11-13 | Xerox Corporation | Imaging member |
US7455802B2 (en) | 2003-12-23 | 2008-11-25 | Xerox Corporation | Stress release method and apparatus |
US20080299474A1 (en) * | 2007-05-31 | 2008-12-04 | Xerox Corporation | High quality substituted aryl diamine and a photoreceptor |
US7462432B2 (en) | 2006-06-15 | 2008-12-09 | Xerox Corporation | Polyphenyl thioether and thiophosphate containing photoconductors |
US20080318146A1 (en) * | 2007-06-21 | 2008-12-25 | Xerox Corporation | Imaging member having high charge mobility |
EP2009503A1 (en) | 2007-06-26 | 2008-12-31 | Xerox Corporation | Imaging member |
US20090005555A1 (en) * | 2007-06-27 | 2009-01-01 | Xerox Corporation | Titanyl phthalocyanine processes and photoconductors thereof |
US20090004584A1 (en) * | 2007-06-27 | 2009-01-01 | Xerox Corporation | Hydroxygallium phthalocyanine processes and photoconductors thereof |
US20090017389A1 (en) * | 2007-07-09 | 2009-01-15 | Xerox Corporation | Imaging member |
US7482492B2 (en) | 2007-04-12 | 2009-01-27 | Xerox Corporation | Cost effective method for synthesis of triarylamine compounds |
EP2028549A2 (en) | 2007-08-21 | 2009-02-25 | Xerox Corporation | Imaging member |
US20090052942A1 (en) * | 2007-08-21 | 2009-02-26 | Xerox Corporation | Imaging member |
US20090053635A1 (en) * | 2007-08-21 | 2009-02-26 | Xerox Corporation | Imaging member |
US20090053637A1 (en) * | 2007-08-21 | 2009-02-26 | Xerox Corporation | Imaging member |
EP2031449A2 (en) | 2007-08-28 | 2009-03-04 | Xerox Corporation | Improved imaging member |
US20090072838A1 (en) * | 2007-09-14 | 2009-03-19 | Ewan William Shepherd | Multi-port switching apparatus, device testing system and method of testing therefor |
US7507510B2 (en) | 2006-06-15 | 2009-03-24 | Xerox Corporation | Polyphenyl ether phosphate containing photoconductors |
US7514191B2 (en) | 2006-04-26 | 2009-04-07 | Xerox Corporation | Imaging member |
US20090111044A1 (en) * | 2007-10-31 | 2009-04-30 | Xerox Corporation | Process for preparing an electrophotographic imaging member |
US7527903B2 (en) | 2005-10-28 | 2009-05-05 | Xerox Corporation | Imaging member |
US20090117476A1 (en) * | 2007-11-07 | 2009-05-07 | Xerox Corporation | Protective overcoat layer and photoreceptor including same |
US20090130575A1 (en) * | 2007-11-20 | 2009-05-21 | Xerox Corporation | Photoreceptor |
US7550239B2 (en) | 2007-01-23 | 2009-06-23 | Xerox Corporation | Alkyltriol titanyl phthalocyanine photoconductors |
US20090186287A1 (en) * | 2008-01-23 | 2009-07-23 | Xerox Corporation | Photoreceptor and method of making same |
US20090197196A1 (en) * | 2008-01-31 | 2009-08-06 | Xerox Corporation | Imaging member and methods of forming the same |
US7582399B1 (en) | 2006-06-22 | 2009-09-01 | Xerox Corporation | Imaging member having nano polymeric gel particles in various layers |
US20090220876A1 (en) * | 2008-03-03 | 2009-09-03 | Xerox Corporation | Self lubricating photoreceptor |
EP2098912A1 (en) | 2008-03-04 | 2009-09-09 | Xerox Corporation | Self-healing photoconductive member |
US20090233197A1 (en) * | 2008-03-14 | 2009-09-17 | Xerox Corporation | Crosslinking outer layer and process for preparing the same |
EP2107423A1 (en) | 2008-03-31 | 2009-10-07 | Xerox Corporation | Titanocene containing photoconductors |
US20090253058A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253060A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253056A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253063A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253059A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253062A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090263737A1 (en) * | 2008-04-22 | 2009-10-22 | Xerox Corporation | imaging member and methods of forming the same |
US20090297960A1 (en) * | 2008-06-02 | 2009-12-03 | Xerox Corporation | Triarylmethanes and Processes for Making the Same |
US20090326087A1 (en) * | 2008-06-27 | 2009-12-31 | Xerox Corporation | Method for treating microcapsules for use in imaging member |
US20100015539A1 (en) * | 2008-07-16 | 2010-01-21 | Xerox Corporation | Overcoat layer in photoreceptive device |
US20100015540A1 (en) * | 2005-12-13 | 2010-01-21 | Xerox Corporation | Binderless overcoat layer |
US20100055588A1 (en) * | 2008-08-27 | 2010-03-04 | Xerox Corporation | Charge transport layer having high mobility transport molecule mixture |
US20100068636A1 (en) * | 2007-11-27 | 2010-03-18 | Xerox Corporation | Photoreceptor protective overcoat layer including silicone polyether and method of making same |
US20100092883A1 (en) * | 2008-10-15 | 2010-04-15 | Xerox Corporation | Imaging member exhibiting lateral charge migration resistance |
EP2224288A2 (en) | 2009-02-27 | 2010-09-01 | Xerox Corporation | Epoxy carboxyl resin mixture hole blocking layer photoconductors |
US7799140B1 (en) | 2009-06-17 | 2010-09-21 | Xerox Corporation | Process for the removal of photoreceptor coatings using a stripping solution |
US20100239967A1 (en) * | 2009-03-20 | 2010-09-23 | Xerox Corporation | Overcoat layer comprising metal oxides |
US20100266940A1 (en) * | 2009-04-15 | 2010-10-21 | Xerox Corporation | Charge transport layer comprising anti-oxidants |
EP2244128A2 (en) | 2009-04-24 | 2010-10-27 | Xerox Corporation | Flexible imaging member comprising conductive anti-curl back coating layer |
US20100279218A1 (en) * | 2009-05-01 | 2010-11-04 | Xerox Corporation | Flexible imaging members without anticurl layer |
US20100279219A1 (en) * | 2009-05-01 | 2010-11-04 | Xerox Corporation | Flexible imaging members without anticurl layer |
EP2253681A1 (en) | 2009-05-22 | 2010-11-24 | Xerox Corporation | Interfacial layer and coating solution for forming the same |
EP2253998A1 (en) | 2009-05-22 | 2010-11-24 | Xerox Corporation | Flexible imaging members having a plasticized imaging layer |
US20100304285A1 (en) * | 2009-06-01 | 2010-12-02 | Xerox Corporation | Crack resistant imaging member preparation and processing method |
US20100302169A1 (en) * | 2009-06-01 | 2010-12-02 | Apple Inc. | Keyboard with increased control of backlit keys |
EP2259142A1 (en) | 2009-06-04 | 2010-12-08 | Xerox Corporation | Improved charge blocking layer and coating solution for forming the same |
US20100316410A1 (en) * | 2009-06-16 | 2010-12-16 | Xerox Corporation | Photoreceptor interfacial layer |
US20110014563A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Methods of making an improved photoreceptor outer layer |
US20110014556A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Charge acceptance stabilizer containing charge transport layer |
US20110014557A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Photoreceptor outer layer |
US20110033798A1 (en) * | 2009-08-10 | 2011-02-10 | Xerox Corporation | Photoreceptor outer layer and methods of making the same |
US20110039196A1 (en) * | 2009-08-11 | 2011-02-17 | Xerox Corporation | Digital electrostatic latent image generating member |
EP2290449A1 (en) | 2009-08-31 | 2011-03-02 | Xerox Corporation | Flexible imaging member belts |
EP2290452A1 (en) | 2009-08-31 | 2011-03-02 | Xerox Corporation | Poss melamine overcoated photoconductors |
EP2290450A1 (en) | 2009-08-31 | 2011-03-02 | Xerox Corporation | Flexible imaging member belts |
US20110052820A1 (en) * | 2009-09-03 | 2011-03-03 | Xerox Corporation | Process for making core-shell fluorinated particles and an overcoat layer comprising the same |
US20110049943A1 (en) * | 2009-08-26 | 2011-03-03 | Edward Liu | Vehicle seat head rest with built-in electronic appliance |
EP2293145A1 (en) | 2009-09-03 | 2011-03-09 | Xerox Corporation | Overcoat layer comprising core-shell fluorinated particles |
US20110076604A1 (en) * | 2009-09-28 | 2011-03-31 | Xerox Corporation | Polyester-based photoreceptor overcoat layer |
US20110104602A1 (en) * | 2009-11-05 | 2011-05-05 | Xerox Corporation | Gelatin release layer and methods for using the same |
US20110104603A1 (en) * | 2009-11-05 | 2011-05-05 | Xerox Corporation | Silane release layer and methods for using the same |
US20110111334A1 (en) * | 2009-11-06 | 2011-05-12 | Xerox Corporation | Light shock resistant overcoat layer |
US20110129769A1 (en) * | 2009-11-30 | 2011-06-02 | Xerox Corporation | Corona and wear resistant imaging member |
US20110136049A1 (en) * | 2009-12-08 | 2011-06-09 | Xerox Corporation | Imaging members comprising fluoroketone |
US20110177439A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Curl-free flexible imaging member and methods of making the same |
US20110180099A1 (en) * | 2010-01-22 | 2011-07-28 | Xerox Corporation | Releasable undercoat layer and methods for using the same |
US20110183241A1 (en) * | 2010-01-25 | 2011-07-28 | Xerox Corporation | Protective photoreceptor outer layer |
US20110183244A1 (en) * | 2010-01-22 | 2011-07-28 | Xerox Corporation | Releasable undercoat layer and methods for using the same |
US20110207038A1 (en) * | 2010-02-24 | 2011-08-25 | Xerox Corporation | Slippery surface imaging members |
US20110236811A1 (en) * | 2010-03-24 | 2011-09-29 | Xerox Corporation | Charge transport layer and coating solution for forming the same |
US8142967B2 (en) | 2009-03-18 | 2012-03-27 | Xerox Corporation | Coating dispersion for optically suitable and conductive anti-curl back coating layer |
US8168356B2 (en) | 2009-05-01 | 2012-05-01 | Xerox Corporation | Structurally simplified flexible imaging members |
US8232030B2 (en) | 2010-03-17 | 2012-07-31 | Xerox Corporation | Curl-free imaging members with a slippery surface |
US8258503B2 (en) | 2009-03-12 | 2012-09-04 | Xerox Corporation | Charge generation layer doped with dihalogen ether |
US8263298B1 (en) | 2011-02-24 | 2012-09-11 | Xerox Corporation | Electrically tunable and stable imaging members |
DE102012208162A1 (en) | 2011-05-18 | 2012-11-22 | Xerox Corp. | An imaging member and method of making an imaging member |
US8343700B2 (en) | 2010-04-16 | 2013-01-01 | Xerox Corporation | Imaging members having stress/strain free layers |
US8394560B2 (en) | 2010-06-25 | 2013-03-12 | Xerox Corporation | Imaging members having an enhanced charge blocking layer |
US8404413B2 (en) | 2010-05-18 | 2013-03-26 | Xerox Corporation | Flexible imaging members having stress-free imaging layer(s) |
US8404423B2 (en) | 2010-07-28 | 2013-03-26 | Xerox Corporation | Photoreceptor outer layer and methods of making the same |
US8433222B2 (en) | 2010-06-30 | 2013-04-30 | Xerox Corporation | Single layer photoreceptor and methods of using the same |
US8465893B2 (en) | 2010-08-18 | 2013-06-18 | Xerox Corporation | Slippery and conductivity enhanced anticurl back coating |
US8465892B2 (en) | 2011-03-18 | 2013-06-18 | Xerox Corporation | Chemically resistive and lubricated overcoat |
DE102012221756A1 (en) | 2011-12-15 | 2013-06-20 | Xerox Corporation | ORDER DEVICE |
US8470505B2 (en) | 2010-06-10 | 2013-06-25 | Xerox Corporation | Imaging members having improved imaging layers |
US8475983B2 (en) | 2010-06-30 | 2013-07-02 | Xerox Corporation | Imaging members having a chemical resistive overcoat layer |
DE102013200953A1 (en) | 2012-02-06 | 2013-08-08 | Xerox Corp. | Plasticized anti-crimp back coating for flexible imaging element |
DE102012212100A1 (en) | 2011-07-27 | 2013-08-08 | Xerox Corporation | A composition for use in a device for applying a functional material to an image-forming element |
US8514257B2 (en) | 2011-01-18 | 2013-08-20 | Xerox Corporation | Generation of digital electrostatic latent images utilizing wireless communications |
US8541151B2 (en) | 2010-04-19 | 2013-09-24 | Xerox Corporation | Imaging members having a novel slippery overcoat layer |
DE102012209949A1 (en) | 2011-06-16 | 2013-10-10 | Xerox Corp. | Methods and systems for producing a patterned photoreceptor skin |
US8568952B2 (en) | 2012-01-25 | 2013-10-29 | Xerox Corporation | Method for manufacturing photoreceptor layers |
US8587622B2 (en) | 2011-02-25 | 2013-11-19 | Xerox Corporation | Generation of digital electrostatic latent images and data communications system using rotary contacts |
US8600281B2 (en) | 2011-02-03 | 2013-12-03 | Xerox Corporation | Apparatus and methods for delivery of a functional material to an image forming member |
US8603710B2 (en) | 2011-12-06 | 2013-12-10 | Xerox Corporation | Alternate anticurl back coating formulation |
US8617779B2 (en) | 2009-10-08 | 2013-12-31 | Xerox Corporation | Photoreceptor surface layer comprising secondary electron emitting material |
US8658337B2 (en) | 2012-07-18 | 2014-02-25 | Xerox Corporation | Imaging member layers |
US8660465B2 (en) | 2010-10-25 | 2014-02-25 | Xerox Corporation | Surface-patterned photoreceptor |
US8681194B2 (en) | 2011-04-25 | 2014-03-25 | Xerox Corporation | Optical data transmission system for direct digital marking systems |
US8688009B2 (en) | 2012-06-26 | 2014-04-01 | Xerox Corporation | Delivery apparatus |
US8737904B2 (en) | 2012-01-19 | 2014-05-27 | Xerox Corporation | Delivery apparatus |
US8765339B2 (en) | 2012-08-31 | 2014-07-01 | Xerox Corporation | Imaging member layers |
US8768234B2 (en) | 2011-10-24 | 2014-07-01 | Xerox Corporation | Delivery apparatus and method |
US8775121B2 (en) | 2011-05-18 | 2014-07-08 | Xerox Corporation | Methods for measuring charge transport molecule gradient |
US8774696B2 (en) | 2012-04-02 | 2014-07-08 | Xerox Corporation | Delivery apparatus |
US8805241B2 (en) | 2011-07-27 | 2014-08-12 | Xerox Corporation | Apparatus and methods for delivery of a functional material to an image forming member |
US8831501B2 (en) | 2012-03-22 | 2014-09-09 | Xerox Corporation | Delivery member for use in an image forming apparatus |
US8835085B2 (en) | 2012-09-26 | 2014-09-16 | Xerox Corporation | Low strain anti-curl back coating for flexible imaging members |
US8852833B2 (en) | 2012-04-27 | 2014-10-07 | Xerox Corporation | Imaging member and method of making an imaging member |
US8877018B2 (en) | 2012-04-04 | 2014-11-04 | Xerox Corporation | Process for the preparation of hydroxy gallium phthalocyanine |
US8877413B2 (en) | 2011-08-23 | 2014-11-04 | Xerox Corporation | Flexible imaging members comprising improved ground strip |
DE102014209704A1 (en) | 2013-05-29 | 2014-12-04 | Xerox Corporation | PRESSURE DEVICE USING ELECTROHYDRODYNAMICS |
US8971764B2 (en) | 2013-03-29 | 2015-03-03 | Xerox Corporation | Image forming system comprising effective imaging apparatus and toner pairing |
US8983356B2 (en) | 2013-02-01 | 2015-03-17 | Xerox Corporation | Image forming apparatus |
US9017907B2 (en) | 2013-07-11 | 2015-04-28 | Xerox Corporation | Flexible imaging members having externally plasticized imaging layer(s) |
US9017908B2 (en) | 2013-08-20 | 2015-04-28 | Xerox Corporation | Photoelectrical stable imaging members |
US9017906B2 (en) | 2013-07-11 | 2015-04-28 | Xerox Corporation | Imaging members having a cross-linked anticurl back coating |
US9023561B1 (en) | 2013-11-13 | 2015-05-05 | Xerox Corporation | Charge transport layer comprising silicone ester compounds |
US9046798B2 (en) | 2013-08-16 | 2015-06-02 | Xerox Corporation | Imaging members having electrically and mechanically tuned imaging layers |
US9052619B2 (en) | 2013-10-22 | 2015-06-09 | Xerox Corporation | Cross-linked overcoat layer |
US9063447B2 (en) | 2013-07-11 | 2015-06-23 | Xerox Corporation | Imaging members having a cross-linked anticurl back coating |
US9075327B2 (en) | 2013-09-20 | 2015-07-07 | Xerox Corporation | Imaging members and methods for making the same |
US9075325B2 (en) | 2013-09-04 | 2015-07-07 | Xerox Corporation | High speed charge transport layer |
US9091949B2 (en) | 2013-08-16 | 2015-07-28 | Xerox Corporation | Imaging members having electrically and mechanically tuned imaging layers |
US9141006B2 (en) | 2013-10-17 | 2015-09-22 | Xerox Corporation | Imaging member having improved imaging layers |
US9201318B2 (en) | 2013-07-17 | 2015-12-01 | Xerox Corporation | Polymer for charge generation layer and charge transport layer formulation |
US9529286B2 (en) | 2013-10-11 | 2016-12-27 | Xerox Corporation | Antioxidants for overcoat layers and methods for making the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2169840A (en) * | 1936-11-28 | 1939-08-15 | Hazeltine Corp | Cathode-ray signal-generating tube |
US2297691A (en) * | 1939-04-04 | 1942-10-06 | Chester F Carlson | Electrophotography |
US2408475A (en) * | 1941-07-18 | 1946-10-01 | Gen Electric | Fluorescent zinc oxide |
US2599542A (en) * | 1948-03-23 | 1952-06-10 | Chester F Carlson | Electrophotographic plate |
US2663636A (en) * | 1949-05-25 | 1953-12-22 | Haloid Co | Electrophotographic plate and method of producing same |
US2692178A (en) * | 1948-04-30 | 1954-10-19 | Onera (Off Nat Aerospatiale) | Method and material for graphical registering or direct recording |
US2735785A (en) * | 1953-07-30 | 1956-02-21 | Process of electrostatic printing | |
US2811465A (en) * | 1952-04-30 | 1957-10-29 | Rca Corp | Electrostatic printing |
US2857271A (en) * | 1954-09-28 | 1958-10-21 | Rca Corp | Electrostatic printing process for producing photographic transparencies |
US2901348A (en) * | 1953-03-17 | 1959-08-25 | Haloid Xerox Inc | Radiation sensitive photoconductive member |
-
1957
- 1957-06-26 US US668165A patent/US3121006A/en not_active Expired - Lifetime
-
1964
- 1964-12-09 BE BE656892D patent/BE656892A/xx unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2169840A (en) * | 1936-11-28 | 1939-08-15 | Hazeltine Corp | Cathode-ray signal-generating tube |
US2297691A (en) * | 1939-04-04 | 1942-10-06 | Chester F Carlson | Electrophotography |
US2408475A (en) * | 1941-07-18 | 1946-10-01 | Gen Electric | Fluorescent zinc oxide |
US2599542A (en) * | 1948-03-23 | 1952-06-10 | Chester F Carlson | Electrophotographic plate |
US2692178A (en) * | 1948-04-30 | 1954-10-19 | Onera (Off Nat Aerospatiale) | Method and material for graphical registering or direct recording |
US2663636A (en) * | 1949-05-25 | 1953-12-22 | Haloid Co | Electrophotographic plate and method of producing same |
US2811465A (en) * | 1952-04-30 | 1957-10-29 | Rca Corp | Electrostatic printing |
US2901348A (en) * | 1953-03-17 | 1959-08-25 | Haloid Xerox Inc | Radiation sensitive photoconductive member |
US2735785A (en) * | 1953-07-30 | 1956-02-21 | Process of electrostatic printing | |
US2857271A (en) * | 1954-09-28 | 1958-10-21 | Rca Corp | Electrostatic printing process for producing photographic transparencies |
Cited By (626)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3251686A (en) * | 1960-07-01 | 1966-05-17 | Xerox Corp | Xerographic process |
US3425829A (en) * | 1960-11-08 | 1969-02-04 | Agfa Gevaert Nv | Electrophotographic recording process |
US3291601A (en) * | 1960-12-29 | 1966-12-13 | Gen Electric | Process of information storage on deformable photoconductive medium |
US3268332A (en) * | 1962-05-25 | 1966-08-23 | Itek Corp | Electrophotographic element |
US3293037A (en) * | 1962-11-21 | 1966-12-20 | American Cyanamid Co | Compositions of matter comprising inorganic photochromic material dispersed in an aminoplast resin |
US3399060A (en) * | 1963-04-16 | 1968-08-27 | Little Inc A | Electrophotographic product and method for achieving electrophotographic copying |
US3334229A (en) * | 1963-06-15 | 1967-08-01 | Fuji Photo Film Co Ltd | Recording method and member of x-ray images and means for displaying said images |
US3345162A (en) * | 1963-06-17 | 1967-10-03 | Sun Chemical Corp | Photoconductive composition and article |
US3347670A (en) * | 1963-06-19 | 1967-10-17 | Dennison Mfg Co | Recording elements for electrostatic printing |
US3378370A (en) * | 1964-02-06 | 1968-04-16 | Interchem Corp | Recording elements for electrostatic printing |
US3460963A (en) * | 1964-05-25 | 1969-08-12 | Lumiere Soc | Process for the manufacture of an electrophotographic material |
US3476559A (en) * | 1964-07-01 | 1969-11-04 | Olivetti & Co Spa | Electrostatic printing element comprising a dye sensitized zinc oxide coating on a high resistivity paper backing sheet and a process of using said element |
US3447957A (en) * | 1964-08-19 | 1969-06-03 | Xerox Corp | Method of making a smooth surfaced adhesive binder xerographic plate |
US3440045A (en) * | 1964-09-01 | 1969-04-22 | Azoplate Corp | Electrophotographic process for the manufacture of a highly heat-resistant image |
US3512969A (en) * | 1964-09-22 | 1970-05-19 | Jean J A Robillard | Photographic process based on the quenching of color centers |
US3960555A (en) * | 1964-10-12 | 1976-06-01 | Xerox Corporation | Photographic charging and imaging process |
US3656990A (en) * | 1964-10-12 | 1972-04-18 | Xerox Corp | Electrosolography |
US3418640A (en) * | 1964-10-22 | 1968-12-24 | Minnesota Mining & Mfg | Method for storing and retrieving information onto and from an electroplatable recording medium |
US3401037A (en) * | 1964-11-25 | 1968-09-10 | Interchem Corp | Electrostatic printing on metal substrates |
US3494766A (en) * | 1964-12-19 | 1970-02-10 | Fuji Photo Film Co Ltd | Light sensitive layer for electrophotography |
US3508961A (en) * | 1964-12-19 | 1970-04-28 | Fuji Photo Film Co Ltd | Process for the production of a light sensitive body having an insulating photoconductive layer |
US3428452A (en) * | 1965-01-18 | 1969-02-18 | Rca Corp | Photoconductive compositions and electrophotographic recording elements made therefrom |
US3437481A (en) * | 1965-02-15 | 1969-04-08 | Ashland Oil Inc | Resin compositions |
US3635706A (en) * | 1965-05-29 | 1972-01-18 | Agfa Gevaert Ag | Sensitized electrophotographic layers |
US3453106A (en) * | 1965-06-21 | 1969-07-01 | Owens Illinois Inc | Compositions exhibiting persistent internal polarization where a photoconductive material is dispersed in a polysiloxane resin derived from trifunctional monomers |
US3472676A (en) * | 1965-11-18 | 1969-10-14 | Gevaert Photo Prod Nv | Process for developing electrostatic charge patterns |
US3522040A (en) * | 1965-11-30 | 1970-07-28 | Xerox Corp | Photosensitive insulating material |
US3469978A (en) * | 1965-11-30 | 1969-09-30 | Xerox Corp | Photosensitive element |
US3471288A (en) * | 1966-04-21 | 1969-10-07 | Itek Corp | Combination electrostatic and electro-chemical data storage process |
US3501295A (en) * | 1966-06-17 | 1970-03-17 | Riegel Paper Corp | Electrophotographic reproduction system utilizing lightweight copy papers |
US3607259A (en) * | 1967-01-06 | 1971-09-21 | Australia Res Lab | Package of charged photoconductive recording elements for electrophotography |
US3486922A (en) * | 1967-05-29 | 1969-12-30 | Agfa Gevaert Nv | Development of electrostatic patterns with aqueous conductive developing liquid |
US3510299A (en) * | 1967-06-26 | 1970-05-05 | Clifford E Herrick Jr | Method and material for the production of continuous - tone electrophotographic images |
US3569803A (en) * | 1967-08-15 | 1971-03-09 | Fuji Photo Film Co Ltd | Electrophotographic process utilizing friction charging |
US3903797A (en) * | 1968-05-14 | 1975-09-09 | Itek Corp | Multiple copy photographic system |
US3819370A (en) * | 1968-06-04 | 1974-06-25 | Canon Kk | Photoconductive element and process of preparing same using thermo-shrinkable material |
US3619154A (en) * | 1968-07-30 | 1971-11-09 | Westvaco Corp | Infrared sensitization of photoconductive compositions employing cyanine dyes |
US3652270A (en) * | 1969-01-10 | 1972-03-28 | Matsushita Electric Ind Co Ltd | Recording devices |
US3888668A (en) * | 1969-02-03 | 1975-06-10 | Itek Corp | Imaging medium comprising photoconductor of tio' 2 'and sensitizing dye |
US3985560A (en) * | 1969-08-21 | 1976-10-12 | Xerox Corporation | Migration imaging member with fusible particles |
US3753706A (en) * | 1969-10-29 | 1973-08-21 | Xerox Corp | A photoelectrosolographic imaging method wherein an absorbent material is used |
US3873309A (en) * | 1970-06-18 | 1975-03-25 | Xerox Corp | Imaging method using migration material |
US3909261A (en) * | 1970-09-25 | 1975-09-30 | Xerox Corp | Xerographic imaging member having photoconductive material in interlocking continuous paths |
US3787208A (en) * | 1970-09-25 | 1974-01-22 | Xerox Corp | Xerographic imaging member having photoconductive material in inter-locking continuous paths |
US3966465A (en) * | 1970-09-30 | 1976-06-29 | Xerox Corporation | Multiple layer migration imaging system |
US3899329A (en) * | 1970-12-01 | 1975-08-12 | Xerox Corp | Mixture of photoconductors in an active matrix |
US3907557A (en) * | 1971-02-08 | 1975-09-23 | Avery Products Corp | Pressure-sensitive electrostatic imaging labels |
US3956526A (en) * | 1972-06-26 | 1976-05-11 | Matsushita Electric Industrial Co., Ltd. | Method of making a photoconductive layer for an image converting panel |
US3944682A (en) * | 1972-12-28 | 1976-03-16 | Rank Xerox, Ltd. | Method of providing an electrophotographic coating and compositions for the method |
US3998634A (en) * | 1973-04-24 | 1976-12-21 | Fuji Photo Film Co., Ltd. | Powder electrophotographic method |
US3905813A (en) * | 1973-05-21 | 1975-09-16 | Ici America Inc | Low weight photoconductive compositions |
US3896184A (en) * | 1973-06-27 | 1975-07-22 | Xerox Corp | Polymers of benzanthracene as active matrix materials |
US3950167A (en) * | 1973-09-26 | 1976-04-13 | Xerox Corporation | Imaging system |
US4053309A (en) * | 1974-06-10 | 1977-10-11 | Varian Associates, Inc. | Electrophotographic imaging method |
US4009041A (en) * | 1974-10-03 | 1977-02-22 | Polaroid Corporation | Fogged, direct-positive silver halide emulsion containing a gallium sulfide semiconductor |
US4047945A (en) * | 1975-02-18 | 1977-09-13 | Xerox Corporation | Xeroprinting master and process |
US4139380A (en) * | 1975-12-10 | 1979-02-13 | Ricoh Company, Ltd. | Electrophotographic sensitive material with rubber interlayer |
US4134762A (en) * | 1976-07-02 | 1979-01-16 | The Commonwealth Of Australia | Selective photoconductor-binder coating of absorbent surfaces |
US4150986A (en) * | 1976-09-17 | 1979-04-24 | Ishihara Sangyo Kaisha, Ltd. | Doped TiO2 electrophotographic photosensitive materials |
US4135928A (en) * | 1976-10-23 | 1979-01-23 | Ricoh Co., Ltd. | Electrophotographic light-sensitive member |
US4220697A (en) * | 1977-07-29 | 1980-09-02 | Hoechst Aktiengesellschaft | Electrophotographic recording material |
US4395474A (en) * | 1977-10-15 | 1983-07-26 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member with cured cyclized rubber binder |
US4236715A (en) * | 1978-09-19 | 1980-12-02 | Phillips Petroleum Company | Amusement device of coated paper and adherable object of oil-extended radial teleblock copolymer |
US4233384A (en) * | 1979-04-30 | 1980-11-11 | Xerox Corporation | Imaging system using novel charge transport layer |
US4356246A (en) * | 1979-06-15 | 1982-10-26 | Fuji Photo Film Co., Ltd. | Method of making α-silicon powder, and electrophotographic materials incorporating said powder |
US4263388A (en) * | 1979-12-04 | 1981-04-21 | Xerox Corporation | Electrophotographic imaging device |
US4439507A (en) * | 1982-09-21 | 1984-03-27 | Xerox Corporation | Layered photoresponsive imaging device with photogenerating pigments dispersed in a polyhydroxy ether composition |
EP0104088A2 (en) * | 1982-09-21 | 1984-03-28 | Xerox Corporation | Layered photoresponsive imaging devices |
EP0104088A3 (en) * | 1982-09-21 | 1987-12-02 | Xerox Corporation | Layered photoresponsive imaging devices |
US4543314A (en) * | 1983-12-01 | 1985-09-24 | Xerox Corporation | Process for preparing electrostatographic photosensitive device comprising sodium additives and trigonal selenium particles |
US4606986A (en) * | 1983-12-05 | 1986-08-19 | Xerox Corporation | Electrophotographic elements containing unsymmetrical squaraines |
EP0149914A1 (en) * | 1984-01-03 | 1985-07-31 | Xerox Corporation | Overcoated electrophotographic imaging member |
US4818654A (en) * | 1984-02-10 | 1989-04-04 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member with combination of polymethyl methacrylate resins |
US4668600A (en) * | 1984-05-15 | 1987-05-26 | Hoechst Aktiengesellschaft | Electrophotographic recording material containing an n-type conducting pigment |
US4559286A (en) * | 1984-09-13 | 1985-12-17 | Xerox Corporation | Mixed squaraine photoconductive compositions |
US4818653A (en) * | 1985-10-25 | 1989-04-04 | Hoechst Aktiengesellschaft | Electrophotographic recording material with mopomeril alleptor additive |
US4792511A (en) * | 1986-03-14 | 1988-12-20 | Fuji Photo Film Co., Ltd. | Electrophotographic zinc oxide-resin binder lithographic printing plate precursor |
US4828952A (en) * | 1986-05-02 | 1989-05-09 | Fuji Photo Film Co., Ltd. | Electrophotographic lithographic printing plate precursor |
US4954413A (en) * | 1987-03-17 | 1990-09-04 | Mitsubishi Denki Kabushiki Kaisha | Method of making photoconductive particles |
US5120628A (en) * | 1989-12-12 | 1992-06-09 | Xerox Corporation | Transparent photoreceptor overcoatings |
US5008167A (en) * | 1989-12-15 | 1991-04-16 | Xerox Corporation | Internal metal oxide filled materials for electrophotographic devices |
US5356744A (en) * | 1989-12-27 | 1994-10-18 | Xerox Corporation | Conductive layers using charge transfer complexes |
US5055366A (en) * | 1989-12-27 | 1991-10-08 | Xerox Corporation | Polymeric protective overcoatings contain hole transport material for electrophotographic imaging members |
US5069993A (en) * | 1989-12-29 | 1991-12-03 | Xerox Corporation | Photoreceptor layers containing polydimethylsiloxane copolymers |
US5021309A (en) * | 1990-04-30 | 1991-06-04 | Xerox Corporation | Multilayered photoreceptor with anti-curl containing particulate organic filler |
US5096795A (en) * | 1990-04-30 | 1992-03-17 | Xerox Corporation | Multilayered photoreceptor containing particulate materials |
US5063397A (en) * | 1990-05-25 | 1991-11-05 | Xerox Corporation | Variable-thickness imaging members |
US5089369A (en) * | 1990-06-29 | 1992-02-18 | Xerox Corporation | Stress/strain-free electrophotographic device and method of making same |
US5187039A (en) * | 1990-07-31 | 1993-02-16 | Xerox Corporation | Imaging member having roughened surface |
US5162183A (en) * | 1990-07-31 | 1992-11-10 | Xerox Corporation | Overcoat for imaging members |
US5223361A (en) * | 1990-08-30 | 1993-06-29 | Xerox Corporation | Multilayer electrophotographic imaging member comprising a charge generation layer with a copolyester adhesive dopant |
US5091278A (en) * | 1990-08-31 | 1992-02-25 | Xerox Corporation | Blocking layer for photoreceptors |
US5166381A (en) * | 1990-08-31 | 1992-11-24 | Xerox Corporation | Blocking layer for photoreceptors |
US5258461A (en) * | 1990-11-26 | 1993-11-02 | Xerox Corporation | Electrocodeposition of polymer blends for photoreceptor substrates |
US5190608A (en) * | 1990-12-27 | 1993-03-02 | Xerox Corporation | Laminated belt |
US5582949A (en) * | 1990-12-27 | 1996-12-10 | Xerox Corporation | Process for improving belts |
US5132627A (en) * | 1990-12-28 | 1992-07-21 | Xerox Corporation | Motionless scanner |
US5175503A (en) * | 1990-12-28 | 1992-12-29 | Xerox Corporation | Ascertaining imaging cycle life of a photoreceptor |
US5110700A (en) * | 1990-12-28 | 1992-05-05 | Xerox Corporation | Electrophotographic imaging member |
US5316880A (en) * | 1991-08-26 | 1994-05-31 | Xerox Corporation | Photoreceptor containing similar charge transporting small molecule and charge transporting polymer |
US5409792A (en) * | 1991-08-26 | 1995-04-25 | Xerox Corporation | Photoreceptor containing dissimilar charge transporting small molecule and charge transporting polymer |
US5242774A (en) * | 1992-03-27 | 1993-09-07 | Xerox Corporation | Photoconductive imaging members with fluorinated polycarbonates |
US5281503A (en) * | 1992-04-17 | 1994-01-25 | Xerox Corporation | Couplers for photogenerating azo pigments |
US6099997A (en) * | 1992-06-04 | 2000-08-08 | Agfa-Gevaert, N.V. | Photoconductive recording material comprising a crosslinked binder system |
US5306586A (en) * | 1992-08-06 | 1994-04-26 | Xerox Corporation | Dual layer switch photoreceptor structures for digital imaging |
US5350654A (en) * | 1992-08-11 | 1994-09-27 | Xerox Corporation | Photoconductors employing sensitized extrinsic photogenerating pigments |
US5422213A (en) * | 1992-08-17 | 1995-06-06 | Xerox Corporation | Multilayer electrophotographic imaging member having cross-linked adhesive layer |
US5830613A (en) * | 1992-08-31 | 1998-11-03 | Xerox Corporation | Electrophotographic imaging member having laminated layers |
US5846681A (en) * | 1992-09-30 | 1998-12-08 | Xerox Corporation | Multilayer imaging member having improved substrate |
US5462825A (en) * | 1992-11-16 | 1995-10-31 | Mita Industrial Co., Ltd. | Electrophotographic photoconductor having a photosensitive layer with charge generating particles and a charge transporting material dispersed in a binder |
US5322755A (en) * | 1993-01-25 | 1994-06-21 | Xerox Corporation | Imaging members with mixed binders |
US5418107A (en) * | 1993-08-13 | 1995-05-23 | Xerox Corporation | Process for fabricating an electrophotographic imaging members |
US5324615A (en) * | 1993-08-13 | 1994-06-28 | Xerox Corporation | Method of making electrostatographic imaging members containing vanadyl phthalocyanine |
US5453344A (en) * | 1994-01-28 | 1995-09-26 | Xerox Corporation | Layered imaging members with binder resins |
EP0684527A1 (en) | 1994-05-27 | 1995-11-29 | Xerox Corporation | Photoconductive charging processes |
DE4429564C1 (en) * | 1994-08-19 | 1996-01-18 | Licentia Gmbh | Electrophotographic material with high photosensitivity in repeated use |
EP0721151A1 (en) | 1995-01-06 | 1996-07-10 | Xerox Corporation | Flexible electrostatographic imaging member method |
US6183921B1 (en) | 1995-06-20 | 2001-02-06 | Xerox Corporation | Crack-resistant and curl free multilayer electrophotographic imaging member |
US5714248A (en) * | 1996-08-12 | 1998-02-03 | Xerox Corporation | Electrostatic imaging member for contact charging and imaging processes thereof |
US5725985A (en) * | 1997-01-21 | 1998-03-10 | Xerox Corporation | Charge generation layer containing mixture of terpolymer and copolymer |
US5681678A (en) * | 1997-01-21 | 1997-10-28 | Xerox Corporation | Charge generation layer containing hydroxyalkyl acrylate reaction product |
US5843607A (en) * | 1997-10-02 | 1998-12-01 | Xerox Corporation | Indolocarbazole photoconductors |
US5902901A (en) * | 1998-05-07 | 1999-05-11 | Xerox Corporation | Arylamine processes |
US6015645A (en) * | 1998-05-29 | 2000-01-18 | Xerox Corporation | Photoconductive imaging members |
US6165670A (en) * | 1999-05-24 | 2000-12-26 | Xerox Corporation | Method of treating electrostatographic imaging web and method of making electrostatographic imaging members using such imaging web |
US6194111B1 (en) | 1999-06-04 | 2001-02-27 | Xerox Corporation | Crosslinkable binder for charge transport layer of a photoconductor |
US6030735A (en) * | 1999-10-12 | 2000-02-29 | Xerox Corporation | Photoconductive imaging members with polymetallosiloxane layers |
US6197461B1 (en) | 1999-11-24 | 2001-03-06 | Xerox Corporation | Multiple-seam electrostatographic imaging member and method of making electrostatographic imaging member |
US6277534B1 (en) | 1999-11-24 | 2001-08-21 | Xerox Corporation | Multiple-seam electrostatographic imaging member and method of making electrostatographic imaging member |
US6180309B1 (en) | 1999-11-26 | 2001-01-30 | Xerox Corporation | Organic photoreceptor with improved adhesion between coated layers |
US6165660A (en) * | 1999-11-29 | 2000-12-26 | Xerox Corporation | Organic photoreceptor with improved adhesion between coated layers |
US6294300B1 (en) | 2000-01-19 | 2001-09-25 | Xerox Corporation | Charge generation layer for electrophotographic imaging member and a process for making thereof |
US6287738B1 (en) | 2000-05-25 | 2001-09-11 | Xerox Corporation | Photoconductive imaging members |
US6464902B1 (en) | 2000-05-25 | 2002-10-15 | Xerox Corporation | Perylene mixtures |
US20050023686A1 (en) * | 2000-06-05 | 2005-02-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multilayer diffusion barrier for copper interconnections |
US6214504B1 (en) | 2000-06-27 | 2001-04-10 | Xerox Corporation | Photoconductive imaging members |
US6322941B1 (en) | 2000-07-13 | 2001-11-27 | Xerox Corporation | Imaging members |
US6194110B1 (en) | 2000-07-13 | 2001-02-27 | Xerox Corporation | Imaging members |
US6214505B1 (en) | 2000-07-18 | 2001-04-10 | Xerox Corporation | Imaging members |
US6309785B1 (en) | 2000-10-30 | 2001-10-30 | Xerox Corporation | Imaging members |
US6326111B1 (en) | 2000-11-15 | 2001-12-04 | Xerox Corporation | Stable charge transport layer dispersion containing polytetrafluoroethylene particles and hydrophobic silica |
US6337166B1 (en) | 2000-11-15 | 2002-01-08 | Xerox Corporation | Wear resistant charge transport layer with enhanced toner transfer efficiency, containing polytetrafluoroethylene particles |
EP1207427A1 (en) | 2000-11-15 | 2002-05-22 | Xerox Corporation | Charge transport layer dispersion |
US6300027B1 (en) | 2000-11-15 | 2001-10-09 | Xerox Corporation | Low surface energy photoreceptors |
US6528226B1 (en) | 2000-11-28 | 2003-03-04 | Xerox Corporation | Enhancing adhesion of organic electrostatographic imaging member overcoat and anticurl backing layers |
US6379853B1 (en) | 2000-11-28 | 2002-04-30 | Xerox Corporation | Electrophotographic imaging member having two charge transport layers for limiting toner consumption |
US6444386B1 (en) | 2001-04-13 | 2002-09-03 | Xerox Corporation | Photoconductive imaging members |
US6495300B1 (en) | 2001-07-02 | 2002-12-17 | Xerox Corporation | Photoconductive imaging members |
US6596450B2 (en) | 2001-09-10 | 2003-07-22 | Xerox Corporation | Charge transport components |
US6713220B2 (en) | 2002-05-17 | 2004-03-30 | Xerox Corporation | Photoconductive members |
US6656651B1 (en) | 2002-05-22 | 2003-12-02 | Xerox Corporation | Photoconductive members |
US20040063011A1 (en) * | 2002-09-24 | 2004-04-01 | Xerox Corporation | Imaging members |
EP1403719A2 (en) | 2002-09-30 | 2004-03-31 | Xerox Corporation | Photosensitive member having deletion control additive |
US20040096761A1 (en) * | 2002-11-20 | 2004-05-20 | Xerox Corporation | Imaging members |
US6946227B2 (en) | 2002-11-20 | 2005-09-20 | Xerox Corporation | Imaging members |
US20040151996A1 (en) * | 2003-01-30 | 2004-08-05 | Xerox Corporation | Photoconductive members |
US7037630B2 (en) | 2003-01-30 | 2006-05-02 | Xerox Corporation | Photoconductive members |
US20040161682A1 (en) * | 2003-02-19 | 2004-08-19 | Xerox Corporation | Photoconductive imaging members |
US6824940B2 (en) | 2003-02-19 | 2004-11-30 | Xerox Corporation | Photoconductive imaging members |
US20040161683A1 (en) * | 2003-02-19 | 2004-08-19 | Xerox Corporation | Photoconductive imaging members |
US7037631B2 (en) | 2003-02-19 | 2006-05-02 | Xerox Corporation | Photoconductive imaging members |
US20040173943A1 (en) * | 2003-03-07 | 2004-09-09 | Xerox Corporation | Endless belt member stress relief |
US7182903B2 (en) | 2003-03-07 | 2007-02-27 | Xerox Corporation | Endless belt member stress relief |
US6858363B2 (en) | 2003-04-04 | 2005-02-22 | Xerox Corporation | Photoconductive imaging members |
EP1515191A2 (en) | 2003-09-05 | 2005-03-16 | Xerox Corporation | Dual charge transport layer and photoconductive imaging member including the same |
US20050058919A1 (en) * | 2003-09-17 | 2005-03-17 | Xerox Corporation. | Photoconductive imaging members |
US7018758B2 (en) | 2003-09-17 | 2006-03-28 | Xerox Corporation | Photoconductive imaging members |
US20050089348A1 (en) * | 2003-10-28 | 2005-04-28 | Xerox Corporation | Highlight color printing machine |
US6959161B2 (en) | 2003-10-28 | 2005-10-25 | Xerox Corporation | Photoreceptor for highlight color printing machine |
US6970673B2 (en) | 2003-10-28 | 2005-11-29 | Xerox Corporation | Highlight color printing machine |
US20050089344A1 (en) * | 2003-10-28 | 2005-04-28 | Xerox Corporation | Photoreceptor for highlight color printing machine |
US20050154178A1 (en) * | 2003-11-25 | 2005-07-14 | Xerox Corporation | Process for preparing branched polyarylene ethers |
US7396895B2 (en) | 2003-11-25 | 2008-07-08 | Xerox Corporation | Branched polyarylene ethers and processes for the preparation thereof |
US20050208416A1 (en) * | 2003-11-25 | 2005-09-22 | Xerox Corporation | Branched polyarylene ethers and processes for the preparation thereof |
US7067608B2 (en) | 2003-11-25 | 2006-06-27 | Xerox Corporation | Process for preparing branched polyarylene ethers |
US20050136348A1 (en) * | 2003-12-19 | 2005-06-23 | Xerox Corporation | Sol-gel processes for photoreceptor layers |
US7108947B2 (en) | 2003-12-19 | 2006-09-19 | Xerox Corporation | Sol-gel processes for photoreceptor layers |
US6918978B2 (en) | 2003-12-23 | 2005-07-19 | Xerox Corporation | Process for producing an imaging member belt having a butt-lap seam |
US7166397B2 (en) | 2003-12-23 | 2007-01-23 | Xerox Corporation | Imaging members |
US7291428B2 (en) | 2003-12-23 | 2007-11-06 | Xerox Corporation | Imaging members |
US7455802B2 (en) | 2003-12-23 | 2008-11-25 | Xerox Corporation | Stress release method and apparatus |
US20050133147A1 (en) * | 2003-12-23 | 2005-06-23 | Xerox Corporation | Process for producing an imaging member belt having a butt-lap seam |
US20070082282A1 (en) * | 2003-12-23 | 2007-04-12 | Xerox Corporation | Imaging members |
US20050158452A1 (en) * | 2004-01-16 | 2005-07-21 | Xerox Corporation | Dip coating process using viscosity to control coating thickness |
US20050202330A1 (en) * | 2004-03-15 | 2005-09-15 | Xerox Corporation | Reversibly color changing undercoat layer for electrophotographic photoreceptors |
US7125634B2 (en) | 2004-03-15 | 2006-10-24 | Xerox Corporation | Reversibly color changing undercoat layer for electrophotographic photoreceptors |
US7166396B2 (en) | 2004-04-14 | 2007-01-23 | Xerox Corporation | Photoconductive imaging members |
US20050233231A1 (en) * | 2004-04-14 | 2005-10-20 | Xerox Corporation | Photoconductive imaging members |
US7205079B2 (en) | 2004-07-09 | 2007-04-17 | Xerox Corporation | Imaging member |
US7144971B2 (en) | 2004-08-04 | 2006-12-05 | Xerox Corporation | Polycarbonates and photoconductive imaging members |
US7229732B2 (en) | 2004-08-04 | 2007-06-12 | Xerox Corporation | Imaging members with crosslinked polycarbonate in charge transport layer |
US20060030653A1 (en) * | 2004-08-04 | 2006-02-09 | Xerox Corporation | Polycarbonates and photoconductive imaging members |
US7297456B2 (en) | 2004-08-04 | 2007-11-20 | Xerox Corporation | Photoconductors containing crosslinked polycarbonate polymers |
US20060029871A1 (en) * | 2004-08-04 | 2006-02-09 | Xerox Corporation | Polycarbonates and photoconductive imaging members |
US7194227B2 (en) | 2004-08-10 | 2007-03-20 | Xerox Corporation | Imaging member belt support module |
US20060034634A1 (en) * | 2004-08-10 | 2006-02-16 | Xerox Corporation. | Imaging member belt support module |
US20060057480A1 (en) * | 2004-09-16 | 2006-03-16 | Xerox Corporation | Photoconductive imaging members |
US7312007B2 (en) | 2004-09-16 | 2007-12-25 | Xerox Corporation | Photoconductive imaging members |
US7232634B2 (en) | 2004-09-30 | 2007-06-19 | Xerox Corporation | Imaging member |
US20060068309A1 (en) * | 2004-09-30 | 2006-03-30 | Xerox Corporation | Imaging member |
US7592111B2 (en) | 2004-11-05 | 2009-09-22 | Xerox Corporation | Imaging member |
US20060099525A1 (en) * | 2004-11-05 | 2006-05-11 | Xerox Corporation | Imaging member |
US8017294B2 (en) | 2004-11-18 | 2011-09-13 | Xerox Corporation | Process for preparing photosensitive outer layer |
US20080014518A1 (en) * | 2004-11-18 | 2008-01-17 | Xerox Corporation | Process for preparing photosensitive outer layer |
US8062823B2 (en) | 2004-11-18 | 2011-11-22 | Xerox Corporation | Process for preparing photosensitive outer layer |
US20080003513A1 (en) * | 2004-11-18 | 2008-01-03 | Xerox Corporation | Process for preparing photosensitive outer layer |
US20060151922A1 (en) * | 2005-01-10 | 2006-07-13 | Xerox Corporation | Apparatus and process for treating a flexible imaging member web stock |
US20060166116A1 (en) * | 2005-01-26 | 2006-07-27 | Xerox Corporation | Photoconductive imaging members |
US7354685B2 (en) | 2005-01-26 | 2008-04-08 | Xerox Corporation | Photoconductive imaging members |
US7468231B2 (en) | 2005-02-09 | 2008-12-23 | Xerox Corporation | Imaging members |
US20060177751A1 (en) * | 2005-02-09 | 2006-08-10 | Xerox Corporation | Imaging members |
US20060177748A1 (en) * | 2005-02-10 | 2006-08-10 | Xerox Corporation | High-performance surface layer for photoreceptors |
US7312008B2 (en) | 2005-02-10 | 2007-12-25 | Xerox Corporation | High-performance surface layer for photoreceptors |
US7476479B2 (en) | 2005-03-08 | 2009-01-13 | Xerox Corporation | Hydrolyzed semi-conductive nanoparticles for imaging member undercoating layers |
US7309551B2 (en) | 2005-03-08 | 2007-12-18 | Xerox Corporation | Electron conductive overcoat layer for photoreceptors |
US20060204872A1 (en) * | 2005-03-08 | 2006-09-14 | Xerox Corporation | Hydrolyzed semi-conductive nanoparticles for imaging member undercoating layers |
US7704656B2 (en) | 2005-03-23 | 2010-04-27 | Xerox Corporation | Photoconductive imaging member |
US20060216620A1 (en) * | 2005-03-23 | 2006-09-28 | Xerox Corporation | Photoconductive imaging member |
US7829251B2 (en) | 2005-03-24 | 2010-11-09 | Xerox Corporation | Mechanical and electrical robust imaging member and a process for producing same |
US20060216618A1 (en) * | 2005-03-24 | 2006-09-28 | Xerox Corporation | Mechanical and electrical robust imaging member and a process for producing same |
US7314694B2 (en) | 2005-03-31 | 2008-01-01 | Xerox Corporation | Photoconductive imaging members |
US20060222978A1 (en) * | 2005-03-31 | 2006-10-05 | Xerox Corporation | Photoconductive imaging members |
US20080154062A1 (en) * | 2005-04-28 | 2008-06-26 | Xerox Corporation | Process for preparing a polyformyl arylamine |
US7799493B2 (en) | 2005-04-28 | 2010-09-21 | Xerox Corporation | Process for preparing a polyformyl arylamine |
US7365232B2 (en) | 2005-04-28 | 2008-04-29 | Xerox Corporation | Process for preparing a polyformyl arylamine |
US20060246365A1 (en) * | 2005-04-28 | 2006-11-02 | Xerox Corporation | Process for preparing a polyformyl arylamine |
US7867677B2 (en) | 2005-05-11 | 2011-01-11 | Xerox Corporation | Imaging member having first and second charge transport layers |
US20060257769A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Photoconductive members |
US20060257766A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Photoconductive members |
US7348114B2 (en) | 2005-05-11 | 2008-03-25 | Xerox Corporation | Photoconductive members |
US7618757B2 (en) | 2005-05-11 | 2009-11-17 | Xerox Corporation | Imaging member having first and second charge transport layers |
US20060257767A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Imaging member |
US7318986B2 (en) | 2005-05-11 | 2008-01-15 | Xerox Corporation | Photoconductive members |
US20090325094A1 (en) * | 2005-05-11 | 2009-12-31 | Xerox Corporation | Imaging member |
US7563549B2 (en) | 2005-05-20 | 2009-07-21 | Xerox Corporation | Imaging member |
US20060263708A1 (en) * | 2005-05-20 | 2006-11-23 | Xerox Corporation | Imaging member |
US20060269856A1 (en) * | 2005-05-27 | 2006-11-30 | Xerox Corporation | Photoconductive imaging members |
US7655371B2 (en) | 2005-05-27 | 2010-02-02 | Xerox Corporation | Photoconductive imaging members |
US7541123B2 (en) | 2005-06-20 | 2009-06-02 | Xerox Corporation | Imaging member |
US20060284194A1 (en) * | 2005-06-20 | 2006-12-21 | Xerox Corporation | Imaging member |
US20060286471A1 (en) * | 2005-06-21 | 2006-12-21 | Xerox Corporation | Imaging member |
US7666560B2 (en) | 2005-06-21 | 2010-02-23 | Xerox Corporation | Imaging member |
US20060292466A1 (en) * | 2005-06-28 | 2006-12-28 | Xerox Corporation | Photoreceptor with three-layer photoconductive layer |
US7390598B2 (en) | 2005-06-28 | 2008-06-24 | Xerox Corporation | Photoreceptor with three-layer photoconductive layer |
US7439002B2 (en) | 2005-07-12 | 2008-10-21 | Xerox Corporation | Imaging members |
US20070015072A1 (en) * | 2005-07-12 | 2007-01-18 | Xerox Corporation | Imaging members |
US7632617B2 (en) | 2005-07-19 | 2009-12-15 | Xerox Corporation | Silane-phenol compound, overcoat formulation, and electrophotographic imaging member |
US20070020540A1 (en) * | 2005-07-19 | 2007-01-25 | Xerox Corporation | Silane-phenol compound, overcoat formulation, and electrophotographic imaging member |
US7491989B2 (en) | 2005-07-28 | 2009-02-17 | Xerox Corporation | Positive charging photoreceptor |
US20070023747A1 (en) * | 2005-07-28 | 2007-02-01 | Xerox Corporation | Positive charging photoreceptor |
US7685913B2 (en) | 2005-07-29 | 2010-03-30 | Xerox Corporation | Apparatus for producing an imaging member belt having an angular seam |
US8016968B2 (en) | 2005-07-29 | 2011-09-13 | Xerox Corporation | Process for producing an imaging member belt having an angular seam |
US20070022861A1 (en) * | 2005-07-29 | 2007-02-01 | Xerox Corporation. | Apparatus for producing an imaging member belt having an angular seam |
US20070023133A1 (en) * | 2005-07-29 | 2007-02-01 | Xerox Corporation | Process for producing an imaging member belt having an angular seam |
US7361440B2 (en) | 2005-08-09 | 2008-04-22 | Xerox Corporation | Anticurl backing layer for electrostatographic imaging members |
US20070037081A1 (en) * | 2005-08-09 | 2007-02-15 | Xerox Corporation | Anticurl backing layer for electrostatographic imaging members |
US20070048638A1 (en) * | 2005-08-30 | 2007-03-01 | Xerox Corporation | Charge generating composition and imaging member |
US7384718B2 (en) | 2005-08-30 | 2008-06-10 | Xerox Corporation | Charge generating composition and imaging member |
US7560205B2 (en) | 2005-08-31 | 2009-07-14 | Xerox Corporation | Photoconductive imaging members |
US20070048636A1 (en) * | 2005-08-31 | 2007-03-01 | Xerox Corporation | Photoconductive imaging members |
US20070054208A1 (en) * | 2005-09-07 | 2007-03-08 | Xerox Corporation | Imaging member |
US7829252B2 (en) | 2005-09-07 | 2010-11-09 | Xerox Corporation | Imaging member |
US20070059620A1 (en) * | 2005-09-09 | 2007-03-15 | Xerox Corporation | High sensitive imaging member with intermediate and/or undercoat layer |
US20070059616A1 (en) * | 2005-09-12 | 2007-03-15 | Xerox Corporation | Coated substrate for photoreceptor |
US7271290B2 (en) | 2005-09-14 | 2007-09-18 | Xerox Corporation | Monoformylated arylamine processes and compounds |
US20070059623A1 (en) * | 2005-09-15 | 2007-03-15 | Xerox Corporation | Anticurl back coating layer for electrophotographic imaging members |
US7422831B2 (en) | 2005-09-15 | 2008-09-09 | Xerox Corporation | Anticurl back coating layer electrophotographic imaging members |
US20070059622A1 (en) * | 2005-09-15 | 2007-03-15 | Xerox Corporation | Mechanically robust imaging member overcoat |
US7504187B2 (en) | 2005-09-15 | 2009-03-17 | Xerox Corporation | Mechanically robust imaging member overcoat |
US20070072101A1 (en) * | 2005-09-26 | 2007-03-29 | Xerox Corporation | Photoreceptor with improved overcoat layer |
US7384717B2 (en) | 2005-09-26 | 2008-06-10 | Xerox Corporation | Photoreceptor with improved overcoat layer |
US20070087276A1 (en) * | 2005-10-13 | 2007-04-19 | Xerox Corporaton. | Phenolic hole transport polymers |
US7538175B2 (en) | 2005-10-13 | 2009-05-26 | Xerox Corporation | Phenolic hole transport polymers |
US20070087277A1 (en) * | 2005-10-14 | 2007-04-19 | Xerox Corporation | Photoconductive members |
US7811731B2 (en) | 2005-10-14 | 2010-10-12 | Xerox Corporation | Photoconductive members |
US20070092814A1 (en) * | 2005-10-25 | 2007-04-26 | Xerox Corporation | Imaging member with dialkyldithiocarbamate additive |
US20070092817A1 (en) * | 2005-10-25 | 2007-04-26 | Xerox Corporation | Imaging member |
US7642029B2 (en) | 2005-10-28 | 2010-01-05 | Xerox Corporation | Imaging member |
US7527903B2 (en) | 2005-10-28 | 2009-05-05 | Xerox Corporation | Imaging member |
US20070099101A1 (en) * | 2005-10-28 | 2007-05-03 | Xerox Corporation | Imaging member |
US20070098994A1 (en) * | 2005-11-03 | 2007-05-03 | Xerox Corporation | Imaging member having sulfur-containing additive |
US7838189B2 (en) | 2005-11-03 | 2010-11-23 | Xerox Corporation | Imaging member having sulfur-containing additive |
US20070134575A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070134571A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070135646A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US20070134572A1 (en) * | 2005-12-12 | 2007-06-14 | Xerox Corporation | Photoconductive members |
US7473785B2 (en) | 2005-12-12 | 2009-01-06 | Xerox Corporation | Photoconductive members |
US7514192B2 (en) | 2005-12-12 | 2009-04-07 | Xerox Corporation | Photoconductive members |
US20070134573A1 (en) * | 2005-12-13 | 2007-06-14 | Xerox Corporation | Photoreceptor with overcoat layer |
US8883384B2 (en) | 2005-12-13 | 2014-11-11 | Xerox Corporation | Binderless overcoat layer |
US20100015540A1 (en) * | 2005-12-13 | 2010-01-21 | Xerox Corporation | Binderless overcoat layer |
US7759032B2 (en) | 2005-12-13 | 2010-07-20 | Xerox Corporation | Photoreceptor with overcoat layer |
US7527904B2 (en) | 2005-12-19 | 2009-05-05 | Xerox Corporation | Imaging member |
US20070141490A1 (en) * | 2005-12-19 | 2007-06-21 | Jin Wu | Imaging member |
US7462434B2 (en) | 2005-12-21 | 2008-12-09 | Xerox Corporation | Imaging member with low surface energy polymer in anti-curl back coating layer |
US7527905B2 (en) | 2005-12-21 | 2009-05-05 | Xerox Corporation | Imaging member |
US7569317B2 (en) | 2005-12-21 | 2009-08-04 | Xerox Corporation | Imaging member |
US7455941B2 (en) | 2005-12-21 | 2008-11-25 | Xerox Corporation | Imaging member with multilayer anti-curl back coating |
US20070141488A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation. | Imaging member |
US20070141489A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation | Imaging member |
US20070141487A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation | Imaging member |
US20070141493A1 (en) * | 2005-12-21 | 2007-06-21 | Xerox Corporation | Imaging member |
US7611811B2 (en) | 2005-12-22 | 2009-11-03 | Xerox Corporation | Imaging member |
US20070148572A1 (en) * | 2005-12-22 | 2007-06-28 | Xerox Corporation | Imaging member |
US20070148573A1 (en) * | 2005-12-27 | 2007-06-28 | Xerox Corporation | Imaging member |
US20070148575A1 (en) * | 2005-12-27 | 2007-06-28 | Xerox Corporation | Imaging member |
US7754404B2 (en) | 2005-12-27 | 2010-07-13 | Xerox Corporation | Imaging member |
US7517624B2 (en) | 2005-12-27 | 2009-04-14 | Xerox Corporation | Imaging member |
US20070166634A1 (en) * | 2006-01-13 | 2007-07-19 | Xerox Corporation | Photoreceptor with overcoat layer |
US8029956B2 (en) | 2006-01-13 | 2011-10-04 | Xerox Corporation | Photoreceptor with overcoat layer |
US20070196751A1 (en) * | 2006-02-17 | 2007-08-23 | Xerox Corporation | Charge generating composition |
US7662528B2 (en) | 2006-02-17 | 2010-02-16 | Xerox Corporation | Charge generating composition |
US7964329B2 (en) | 2006-02-22 | 2011-06-21 | Xerox Corporation | Imaging member |
US20090269689A1 (en) * | 2006-02-22 | 2009-10-29 | Xerox Corporation | Imaging member |
US20070196752A1 (en) * | 2006-02-22 | 2007-08-23 | Xerox Corporation | Imaging member |
US7419752B2 (en) | 2006-03-20 | 2008-09-02 | Xerox Corporation | Imaging member having polyvinylidene chloride barrier polymer resins |
US20070092815A1 (en) * | 2006-03-20 | 2007-04-26 | Xerox Corporation | Imaging member having barrier polymer resins |
US7514191B2 (en) | 2006-04-26 | 2009-04-07 | Xerox Corporation | Imaging member |
US20070254226A1 (en) * | 2006-04-26 | 2007-11-01 | Xerox Corporation | Imaging member |
US20070281228A1 (en) * | 2006-06-01 | 2007-12-06 | Xerox Corporation | Photoreceptor with overcoat layer |
US8029957B2 (en) | 2006-06-01 | 2011-10-04 | Xerox Corporation | Photoreceptor with overcoat layer |
US7553592B2 (en) | 2006-06-05 | 2009-06-30 | Xerox Corporation | Photoreceptor with electron acceptor |
US20070281226A1 (en) * | 2006-06-05 | 2007-12-06 | Xerox Corporation | Photoreceptor with electron acceptor |
US20070292784A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Thiophosphate containing photoconductors |
US20070292790A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl thioether phosphate containing photoconductors |
US7498108B2 (en) | 2006-06-15 | 2009-03-03 | Xerox Corporation | Thiophosphate containing photoconductors |
US7507510B2 (en) | 2006-06-15 | 2009-03-24 | Xerox Corporation | Polyphenyl ether phosphate containing photoconductors |
US20070292783A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Ether phosphate containing photoconductors |
US20070292789A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl ether containing photoconductors |
US7491480B2 (en) | 2006-06-15 | 2009-02-17 | Xerox Corporation | Thiophosphate and antioxidant containing photoconductors |
US7452643B2 (en) | 2006-06-15 | 2008-11-18 | Xerox Corporation | Polyphenyl ether and thiophosphate containing photoconductors |
US7479358B2 (en) | 2006-06-15 | 2009-01-20 | Xerox Corporation | Ether and thiophosphate containing photoconductors |
US20070292791A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl thioether containing photoconductors |
US7459250B2 (en) | 2006-06-15 | 2008-12-02 | Xerox Corporation | Polyphenyl ether containing photoconductors |
US20070292787A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Ether containing photoconductors |
US7462432B2 (en) | 2006-06-15 | 2008-12-09 | Xerox Corporation | Polyphenyl thioether and thiophosphate containing photoconductors |
US20070292792A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Polyphenyl ether phosphate containing photoconductors |
US7476477B2 (en) | 2006-06-15 | 2009-01-13 | Xerox Corporation | Thiophosphate containing photoconductors |
US7468229B2 (en) | 2006-06-15 | 2008-12-23 | Xerox Corporation | Polyphenyl thioether and thiophosphate containing photoconductors |
US20070292793A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Thiophosphate containing photoconductors |
US7476478B2 (en) | 2006-06-15 | 2009-01-13 | Xerox Corporation | Polyphenyl thioether and antioxidant containing photoconductors |
US7445876B2 (en) | 2006-06-15 | 2008-11-04 | Xerox Corporation | Ether and thiophosphate containing photoconductors |
US20070292786A1 (en) * | 2006-06-15 | 2007-12-20 | Xerox Corporation | Thiophosphate containing photoconductors |
US7473505B2 (en) | 2006-06-15 | 2009-01-06 | Xerox Corporation | Ether and antioxidant containing photoconductors |
US7527906B2 (en) | 2006-06-20 | 2009-05-05 | Xerox Corporation | Imaging member having adjustable friction anticurl back coating |
US20070292797A1 (en) * | 2006-06-20 | 2007-12-20 | Xerox Corporation | Imaging member having adjustable friction anticurl back coating |
US20090239166A1 (en) * | 2006-06-22 | 2009-09-24 | Xerox Corporation | Imaging member having nano polymeric gel particles in various layers |
US20070298340A1 (en) * | 2006-06-22 | 2007-12-27 | Xerox Corporation | Imaging member having nano-sized phase separation in various layers |
US7524597B2 (en) | 2006-06-22 | 2009-04-28 | Xerox Corporation | Imaging member having nano-sized phase separation in various layers |
US7704658B2 (en) | 2006-06-22 | 2010-04-27 | Xerox Corporation | Imaging member having nano polymeric gel particles in various layers |
US7582399B1 (en) | 2006-06-22 | 2009-09-01 | Xerox Corporation | Imaging member having nano polymeric gel particles in various layers |
US20080008950A1 (en) * | 2006-07-06 | 2008-01-10 | Xerox Corporation | Electrophotographic imaging member undercoat layers |
US7498109B2 (en) | 2006-07-06 | 2009-03-03 | Xerox Corporation | Electrophotographic imaging member undercoat layers |
US20080008947A1 (en) * | 2006-07-06 | 2008-01-10 | Xerox Corporation | Electrophotographic imaging member undercoat layers |
US7732112B2 (en) | 2006-07-06 | 2010-06-08 | Xerox Corporation | Electrophotographic imaging member undercoat layers |
US7629095B2 (en) | 2006-07-19 | 2009-12-08 | Xerox Corporation | Electrophotographic photoreceptor |
US20080020306A1 (en) * | 2006-07-19 | 2008-01-24 | Xerox Corporation | Electrophotographic photoreceptor |
US20080020307A1 (en) * | 2006-07-19 | 2008-01-24 | Xerox Corporation | Electrophotographic photoreceptor |
US7419750B2 (en) | 2006-07-24 | 2008-09-02 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080019734A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020311A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020313A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020308A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020310A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US7560210B2 (en) | 2006-07-24 | 2009-07-14 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US7572562B2 (en) | 2006-07-24 | 2009-08-11 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US7482103B2 (en) | 2006-07-24 | 2009-01-27 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US7585602B2 (en) | 2006-07-24 | 2009-09-08 | Xerox Corporation | Imaging member having antistatic anticurl back coating containing polyhedral oligomeric silsequioxane silanol |
US7517623B2 (en) | 2006-07-24 | 2009-04-14 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020309A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US7553591B2 (en) | 2006-07-24 | 2009-06-30 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020314A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US7682763B2 (en) | 2006-07-24 | 2010-03-23 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080020312A1 (en) * | 2006-07-24 | 2008-01-24 | Xerox Corporation | Imaging member having antistatic anticurl back coating |
US20080038651A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US7740997B2 (en) | 2006-08-08 | 2010-06-22 | Xerox Corporation | Photoreceptor including multi-block polymeric charge transport material at least partially embedded within a carbon nanotube material |
US20080038648A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US20080038650A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US20080038652A1 (en) * | 2006-08-08 | 2008-02-14 | Xerox Corporation | Photoreceptor |
US7588872B2 (en) | 2006-08-08 | 2009-09-15 | Xerox Corporation | Photoreceptor |
US8211603B2 (en) | 2006-08-08 | 2012-07-03 | Xerox Corporation | Photoreceptor |
US7635548B2 (en) | 2006-08-08 | 2009-12-22 | Xerox Corporation | Photoreceptor |
US7767371B2 (en) | 2006-08-10 | 2010-08-03 | Xerox Corporation | Imaging member having high charge mobility |
US20080063961A1 (en) * | 2006-08-10 | 2008-03-13 | Xerox Corporation | Imaging member having high charge mobility |
US20080050665A1 (en) * | 2006-08-23 | 2008-02-28 | Xerox Corporation | Imaging member having high molecular weight binder |
US7767373B2 (en) | 2006-08-23 | 2010-08-03 | Xerox Corporation | Imaging member having high molecular weight binder |
US20080051576A1 (en) * | 2006-08-23 | 2008-02-28 | Xerox Corporation | Pigment for charge generating layer in photoreceptive device |
US20080057424A1 (en) * | 2006-08-31 | 2008-03-06 | Xerox Corporation | Overcoat for electrophotographic imaging member and methods of making and using same |
US8101327B2 (en) | 2006-08-31 | 2012-01-24 | Xerox Corporation | Overcoat for electrophotographic imaging member and methods of making and using same |
US7811441B2 (en) | 2006-09-21 | 2010-10-12 | Xerox Corporation | Organic photosensitive pigment |
US20080076916A1 (en) * | 2006-09-21 | 2008-03-27 | Xerox Corporation | Organic photosensitive pigment |
US20080145781A1 (en) * | 2006-10-27 | 2008-06-19 | Xerox Corporation | Imaging member |
US7579125B2 (en) | 2006-10-27 | 2009-08-25 | Xerox Corporation | Imaging member |
US20080166646A1 (en) * | 2006-10-31 | 2008-07-10 | Xerox Corporation | Toner for reduced photoreceptor wear rate |
US20080166644A1 (en) * | 2006-11-01 | 2008-07-10 | Xerox Corporation | Electrophotographic photoreceptors having reduced torque and improved mechanical robustness |
US20080166643A1 (en) * | 2006-11-01 | 2008-07-10 | Xerox Corporation | Electrophotographic photoreceptors having reduced torque and improved mechanical robustness |
US7851113B2 (en) | 2006-11-01 | 2010-12-14 | Xerox Corporation | Electrophotographic photoreceptors having reduced torque and improved mechanical robustness |
US7524596B2 (en) | 2006-11-01 | 2009-04-28 | Xerox Corporation | Electrophotographic photoreceptors having reduced torque and improved mechanical robustness |
US7537873B2 (en) | 2006-11-06 | 2009-05-26 | Xerox Corporation | Positive-charge injection preventing layer for electrophotographic photoreceptors |
US20080107981A1 (en) * | 2006-11-06 | 2008-05-08 | Xerox Corporation | Positive-Charge Injection Preventing Layer for Electrophotographic Photoreceptors |
US7799497B2 (en) | 2006-11-07 | 2010-09-21 | Xerox Corporation | Silanol containing overcoated photoconductors |
US20080107985A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Silanol containing overcoated photoconductors |
US20080107984A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Overcoated photoconductors with thiophosphate containing charge transport layers |
US7785756B2 (en) | 2006-11-07 | 2010-08-31 | Xerox Corporation | Overcoated photoconductors with thiophosphate containing charge transport layers |
US7785757B2 (en) | 2006-11-07 | 2010-08-31 | Xerox Corporation | Overcoated photoconductors with thiophosphate containing photogenerating layer |
US7781132B2 (en) | 2006-11-07 | 2010-08-24 | Xerox Corporation | Silanol containing charge transport overcoated photoconductors |
US7776498B2 (en) | 2006-11-07 | 2010-08-17 | Xerox Corporation | Photoconductors containing halogenated binders |
US20080107983A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Overcoated photoconductors with thiophosphate containing photogenerating layer |
US20080107982A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Photoconductors containing halogenated binders |
US20080107979A1 (en) * | 2006-11-07 | 2008-05-08 | Xerox Corporation | Silanol containing charge transport overcoated photoconductors |
US20080107978A1 (en) * | 2006-11-08 | 2008-05-08 | Xerox Corporation | Imaging member |
US7846629B2 (en) | 2006-11-08 | 2010-12-07 | Xerox Corporation | Imaging member |
EP1927894A2 (en) | 2006-11-28 | 2008-06-04 | Xerox Corporation | Thiophosphate Containing Photoconductors |
US20080138724A1 (en) * | 2006-12-11 | 2008-06-12 | Xerox Corporation | Imaging member |
US7745082B2 (en) | 2006-12-11 | 2010-06-29 | Xerox Corporation | Imaging member |
US7550239B2 (en) | 2007-01-23 | 2009-06-23 | Xerox Corporation | Alkyltriol titanyl phthalocyanine photoconductors |
US7888501B2 (en) | 2007-02-14 | 2011-02-15 | Xerox Corporation | Process for making organic photosensitive pigment |
EP1958989A1 (en) | 2007-02-14 | 2008-08-20 | Xerox Corporation | Process for making organic photosensitive phthalocyanine pigment |
US8193344B2 (en) | 2007-02-14 | 2012-06-05 | Xerox Corporation | Process for making organic photosensitive pigment |
US20080194813A1 (en) * | 2007-02-14 | 2008-08-14 | Xerox Corporation | Process for making organic photosensitive pigment |
US20110087020A1 (en) * | 2007-02-14 | 2011-04-14 | Xerox Corporation | Process for making organic photosensitive pigment |
US20080202369A1 (en) * | 2007-02-23 | 2008-08-28 | Xerox Corporation | Apparatus for conditioning a substrate |
US7734244B2 (en) | 2007-02-23 | 2010-06-08 | Xerox Corporation | Apparatus for conditioning a substrate |
US20080206662A1 (en) * | 2007-02-28 | 2008-08-28 | Xerox Corporation | Asymmetric arylamine compounds and processes for making the same |
EP1965260A1 (en) | 2007-02-28 | 2008-09-03 | Xerox Corporation | Asymmetric arylamine compounds and processes for making the same |
EP1967905A2 (en) | 2007-03-06 | 2008-09-10 | Xerox Corporation | Photoconductors containing halogenated binders and aminosilanes |
EP1975726A1 (en) | 2007-03-29 | 2008-10-01 | Xerox Corporation | Anticurl backside coating (ACBC) photoconductors |
US7482492B2 (en) | 2007-04-12 | 2009-01-27 | Xerox Corporation | Cost effective method for synthesis of triarylamine compounds |
US20080280222A1 (en) * | 2007-05-07 | 2008-11-13 | Xerox Corporation | Imaging member |
US20080299474A1 (en) * | 2007-05-31 | 2008-12-04 | Xerox Corporation | High quality substituted aryl diamine and a photoreceptor |
US20080318146A1 (en) * | 2007-06-21 | 2008-12-25 | Xerox Corporation | Imaging member having high charge mobility |
EP2009503A1 (en) | 2007-06-26 | 2008-12-31 | Xerox Corporation | Imaging member |
US7691551B2 (en) | 2007-06-26 | 2010-04-06 | Xerox Corporation | Imaging member |
US20090004587A1 (en) * | 2007-06-26 | 2009-01-01 | Xerox Corporation | Imaging member |
US7888502B2 (en) | 2007-06-27 | 2011-02-15 | Xerox Corporation | Titanyl phthalocyanine processes and photoconductors thereof |
US20090005555A1 (en) * | 2007-06-27 | 2009-01-01 | Xerox Corporation | Titanyl phthalocyanine processes and photoconductors thereof |
US20090004584A1 (en) * | 2007-06-27 | 2009-01-01 | Xerox Corporation | Hydroxygallium phthalocyanine processes and photoconductors thereof |
US20090017389A1 (en) * | 2007-07-09 | 2009-01-15 | Xerox Corporation | Imaging member |
US20090053635A1 (en) * | 2007-08-21 | 2009-02-26 | Xerox Corporation | Imaging member |
US7838187B2 (en) | 2007-08-21 | 2010-11-23 | Xerox Corporation | Imaging member |
US7923187B2 (en) | 2007-08-21 | 2011-04-12 | Xerox Corporation | Imaging member |
US7923188B2 (en) | 2007-08-21 | 2011-04-12 | Xerox Corporation | Imaging member |
US20090052942A1 (en) * | 2007-08-21 | 2009-02-26 | Xerox Corporation | Imaging member |
US20090053637A1 (en) * | 2007-08-21 | 2009-02-26 | Xerox Corporation | Imaging member |
EP2028549A2 (en) | 2007-08-21 | 2009-02-25 | Xerox Corporation | Imaging member |
EP2031449A2 (en) | 2007-08-28 | 2009-03-04 | Xerox Corporation | Improved imaging member |
US20090072838A1 (en) * | 2007-09-14 | 2009-03-19 | Ewan William Shepherd | Multi-port switching apparatus, device testing system and method of testing therefor |
US20090111044A1 (en) * | 2007-10-31 | 2009-04-30 | Xerox Corporation | Process for preparing an electrophotographic imaging member |
US8043783B2 (en) | 2007-10-31 | 2011-10-25 | Xerox Corporation | Process for preparing an electrophotographic imaging member |
US8309285B2 (en) | 2007-11-07 | 2012-11-13 | Xerox Corporation | Protective overcoat layer and photoreceptor including same |
US20090117476A1 (en) * | 2007-11-07 | 2009-05-07 | Xerox Corporation | Protective overcoat layer and photoreceptor including same |
US7879518B2 (en) | 2007-11-20 | 2011-02-01 | Xerox Corporation | Photoreceptor |
US20090130575A1 (en) * | 2007-11-20 | 2009-05-21 | Xerox Corporation | Photoreceptor |
US7960082B2 (en) | 2007-11-27 | 2011-06-14 | Xerox Corporation | Photoreceptor protective overcoat layer including silicone polyether and method of making same |
US20100068636A1 (en) * | 2007-11-27 | 2010-03-18 | Xerox Corporation | Photoreceptor protective overcoat layer including silicone polyether and method of making same |
EP2083330A1 (en) | 2008-01-23 | 2009-07-29 | Xerox Corporation | Photoreceptor, method of making same and method of forming image using the same |
US8021811B2 (en) | 2008-01-23 | 2011-09-20 | Xerox Corporation | Photoreceptor and method of making same |
US20090186287A1 (en) * | 2008-01-23 | 2009-07-23 | Xerox Corporation | Photoreceptor and method of making same |
US20090197196A1 (en) * | 2008-01-31 | 2009-08-06 | Xerox Corporation | Imaging member and methods of forming the same |
US8043784B2 (en) | 2008-01-31 | 2011-10-25 | Xerox Corporation | Imaging member and methods of forming the same |
US20090220876A1 (en) * | 2008-03-03 | 2009-09-03 | Xerox Corporation | Self lubricating photoreceptor |
US7935465B2 (en) | 2008-03-03 | 2011-05-03 | Xerox Corporation | Self lubricating photoreceptor |
EP2098913A1 (en) | 2008-03-03 | 2009-09-09 | Xerox Corporation | Photoconductive member |
EP2098912A1 (en) | 2008-03-04 | 2009-09-09 | Xerox Corporation | Self-healing photoconductive member |
US8003288B2 (en) | 2008-03-04 | 2011-08-23 | Xerox Corporation | Self-healing photoreceptor |
US20090226828A1 (en) * | 2008-03-04 | 2009-09-10 | Xerox Corporation | Self-healing photoreceptor |
US8097388B2 (en) | 2008-03-14 | 2012-01-17 | Xerox Corporation | Crosslinking outer layer and process for preparing the same |
US20090233197A1 (en) * | 2008-03-14 | 2009-09-17 | Xerox Corporation | Crosslinking outer layer and process for preparing the same |
EP2107423A1 (en) | 2008-03-31 | 2009-10-07 | Xerox Corporation | Titanocene containing photoconductors |
US20090253060A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US8007970B2 (en) | 2008-04-07 | 2011-08-30 | Xerox Corporation | Low friction electrostatographic imaging member |
US20110176831A1 (en) * | 2008-04-07 | 2011-07-21 | Xerox Corporation | Low friction electrostatographic imaging member |
US8263301B2 (en) | 2008-04-07 | 2012-09-11 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253058A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US8232032B2 (en) | 2008-04-07 | 2012-07-31 | Xerox Corporation | Low friction electrostatographic imaging member |
US8026028B2 (en) | 2008-04-07 | 2011-09-27 | Xerox Corporation | Low friction electrostatographic imaging member |
US7943278B2 (en) | 2008-04-07 | 2011-05-17 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253056A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253063A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US8084173B2 (en) | 2008-04-07 | 2011-12-27 | Xerox Corporation | Low friction electrostatographic imaging member |
US8021812B2 (en) | 2008-04-07 | 2011-09-20 | Xerox Corporation | Low friction electrostatographic imaging member |
US7998646B2 (en) | 2008-04-07 | 2011-08-16 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253059A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090253062A1 (en) * | 2008-04-07 | 2009-10-08 | Xerox Corporation | Low friction electrostatographic imaging member |
US20090263737A1 (en) * | 2008-04-22 | 2009-10-22 | Xerox Corporation | imaging member and methods of forming the same |
US8012655B2 (en) | 2008-04-22 | 2011-09-06 | Xerox Corporation | Imaging member and methods of forming the same |
US20090297960A1 (en) * | 2008-06-02 | 2009-12-03 | Xerox Corporation | Triarylmethanes and Processes for Making the Same |
US8080351B2 (en) | 2008-06-02 | 2011-12-20 | Xerox Corporation | Triarylmethanes and processes for making the same |
US20090326087A1 (en) * | 2008-06-27 | 2009-12-31 | Xerox Corporation | Method for treating microcapsules for use in imaging member |
US8029958B2 (en) | 2008-07-16 | 2011-10-04 | Xerox Corporation | Overcoat layer in photoreceptive device |
US20100015539A1 (en) * | 2008-07-16 | 2010-01-21 | Xerox Corporation | Overcoat layer in photoreceptive device |
US20100055588A1 (en) * | 2008-08-27 | 2010-03-04 | Xerox Corporation | Charge transport layer having high mobility transport molecule mixture |
US20100092883A1 (en) * | 2008-10-15 | 2010-04-15 | Xerox Corporation | Imaging member exhibiting lateral charge migration resistance |
US7923186B2 (en) | 2008-10-15 | 2011-04-12 | Xerox Corporation | Imaging member exhibiting lateral charge migration resistance |
EP2224288A2 (en) | 2009-02-27 | 2010-09-01 | Xerox Corporation | Epoxy carboxyl resin mixture hole blocking layer photoconductors |
US8258503B2 (en) | 2009-03-12 | 2012-09-04 | Xerox Corporation | Charge generation layer doped with dihalogen ether |
US8142967B2 (en) | 2009-03-18 | 2012-03-27 | Xerox Corporation | Coating dispersion for optically suitable and conductive anti-curl back coating layer |
US20100239967A1 (en) * | 2009-03-20 | 2010-09-23 | Xerox Corporation | Overcoat layer comprising metal oxides |
US8278015B2 (en) | 2009-04-15 | 2012-10-02 | Xerox Corporation | Charge transport layer comprising anti-oxidants |
US20100266940A1 (en) * | 2009-04-15 | 2010-10-21 | Xerox Corporation | Charge transport layer comprising anti-oxidants |
EP2244128A2 (en) | 2009-04-24 | 2010-10-27 | Xerox Corporation | Flexible imaging member comprising conductive anti-curl back coating layer |
US8211601B2 (en) | 2009-04-24 | 2012-07-03 | Xerox Corporation | Coating for optically suitable and conductive anti-curl back coating layer |
US20100273100A1 (en) * | 2009-04-24 | 2010-10-28 | Xerox Corporation | Coating for optically suitable and conductive anti-curl back coating layer |
US8168356B2 (en) | 2009-05-01 | 2012-05-01 | Xerox Corporation | Structurally simplified flexible imaging members |
US20100279219A1 (en) * | 2009-05-01 | 2010-11-04 | Xerox Corporation | Flexible imaging members without anticurl layer |
US8173341B2 (en) | 2009-05-01 | 2012-05-08 | Xerox Corporation | Flexible imaging members without anticurl layer |
US8124305B2 (en) | 2009-05-01 | 2012-02-28 | Xerox Corporation | Flexible imaging members without anticurl layer |
US20100279218A1 (en) * | 2009-05-01 | 2010-11-04 | Xerox Corporation | Flexible imaging members without anticurl layer |
US20100297543A1 (en) * | 2009-05-22 | 2010-11-25 | Xerox Corporation | interfacial layer and coating solution for forming the same |
EP2253681A1 (en) | 2009-05-22 | 2010-11-24 | Xerox Corporation | Interfacial layer and coating solution for forming the same |
EP2253998A1 (en) | 2009-05-22 | 2010-11-24 | Xerox Corporation | Flexible imaging members having a plasticized imaging layer |
US8273514B2 (en) | 2009-05-22 | 2012-09-25 | Xerox Corporation | Interfacial layer and coating solution for forming the same |
US20100297544A1 (en) * | 2009-05-22 | 2010-11-25 | Xerox Corporation | Flexible imaging members having a plasticized imaging layer |
US8278017B2 (en) | 2009-06-01 | 2012-10-02 | Xerox Corporation | Crack resistant imaging member preparation and processing method |
US20100304285A1 (en) * | 2009-06-01 | 2010-12-02 | Xerox Corporation | Crack resistant imaging member preparation and processing method |
US20100302169A1 (en) * | 2009-06-01 | 2010-12-02 | Apple Inc. | Keyboard with increased control of backlit keys |
US8431292B2 (en) | 2009-06-04 | 2013-04-30 | Xerox Corporation | Charge blocking layer and coating solution for forming the same |
EP2259142A1 (en) | 2009-06-04 | 2010-12-08 | Xerox Corporation | Improved charge blocking layer and coating solution for forming the same |
US20100310977A1 (en) * | 2009-06-04 | 2010-12-09 | Xerox Corporation | Charge blocking layer and coating solution for forming the same |
US8273512B2 (en) | 2009-06-16 | 2012-09-25 | Xerox Corporation | Photoreceptor interfacial layer |
US20100316410A1 (en) * | 2009-06-16 | 2010-12-16 | Xerox Corporation | Photoreceptor interfacial layer |
EP2264538A1 (en) | 2009-06-16 | 2010-12-22 | Xerox Corporation | Photoreceptor interfacial layer |
EP2264537A2 (en) | 2009-06-17 | 2010-12-22 | Xerox Corporation | Process for the removal of photoreceptor coatings using a stripping solution |
US7799140B1 (en) | 2009-06-17 | 2010-09-21 | Xerox Corporation | Process for the removal of photoreceptor coatings using a stripping solution |
US20110014563A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Methods of making an improved photoreceptor outer layer |
US8227166B2 (en) | 2009-07-20 | 2012-07-24 | Xerox Corporation | Methods of making an improved photoreceptor outer layer |
US20110014556A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Charge acceptance stabilizer containing charge transport layer |
US20110014557A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Photoreceptor outer layer |
EP2278406A1 (en) | 2009-07-20 | 2011-01-26 | Xerox Corporation | Photoreceptor outer layer |
EP2278405A1 (en) | 2009-07-20 | 2011-01-26 | Xerox Corporation | Methods of making an improved photoreceptor outer layer |
US8404422B2 (en) | 2009-08-10 | 2013-03-26 | Xerox Corporation | Photoreceptor outer layer and methods of making the same |
US20110033798A1 (en) * | 2009-08-10 | 2011-02-10 | Xerox Corporation | Photoreceptor outer layer and methods of making the same |
EP2284616A2 (en) | 2009-08-10 | 2011-02-16 | Xerox Corporation | Photoreceptor outer layer and methods of making the same |
US20110039196A1 (en) * | 2009-08-11 | 2011-02-17 | Xerox Corporation | Digital electrostatic latent image generating member |
US8173340B2 (en) | 2009-08-11 | 2012-05-08 | Xerox Corporation | Digital electrostatic latent image generating member |
US20110049943A1 (en) * | 2009-08-26 | 2011-03-03 | Edward Liu | Vehicle seat head rest with built-in electronic appliance |
US8241825B2 (en) | 2009-08-31 | 2012-08-14 | Xerox Corporation | Flexible imaging member belts |
US8003285B2 (en) | 2009-08-31 | 2011-08-23 | Xerox Corporation | Flexible imaging member belts |
EP2290452A1 (en) | 2009-08-31 | 2011-03-02 | Xerox Corporation | Poss melamine overcoated photoconductors |
EP2290450A1 (en) | 2009-08-31 | 2011-03-02 | Xerox Corporation | Flexible imaging member belts |
US20110053069A1 (en) * | 2009-08-31 | 2011-03-03 | Xerox Corporation | Flexible imaging member belts |
EP2290449A1 (en) | 2009-08-31 | 2011-03-02 | Xerox Corporation | Flexible imaging member belts |
US20110053068A1 (en) * | 2009-08-31 | 2011-03-03 | Xerox Corporation | Flexible imaging member belts |
US8765218B2 (en) | 2009-09-03 | 2014-07-01 | Xerox Corporation | Process for making core-shell fluorinated particles and an overcoat layer comprising the same |
EP2293145A1 (en) | 2009-09-03 | 2011-03-09 | Xerox Corporation | Overcoat layer comprising core-shell fluorinated particles |
US7939230B2 (en) | 2009-09-03 | 2011-05-10 | Xerox Corporation | Overcoat layer comprising core-shell fluorinated particles |
US20110052820A1 (en) * | 2009-09-03 | 2011-03-03 | Xerox Corporation | Process for making core-shell fluorinated particles and an overcoat layer comprising the same |
US20110076604A1 (en) * | 2009-09-28 | 2011-03-31 | Xerox Corporation | Polyester-based photoreceptor overcoat layer |
US8257893B2 (en) | 2009-09-28 | 2012-09-04 | Xerox Corporation | Polyester-based photoreceptor overcoat layer |
US8617779B2 (en) | 2009-10-08 | 2013-12-31 | Xerox Corporation | Photoreceptor surface layer comprising secondary electron emitting material |
US20110104603A1 (en) * | 2009-11-05 | 2011-05-05 | Xerox Corporation | Silane release layer and methods for using the same |
US8372568B2 (en) | 2009-11-05 | 2013-02-12 | Xerox Corporation | Gelatin release layer and methods for using the same |
US20110104602A1 (en) * | 2009-11-05 | 2011-05-05 | Xerox Corporation | Gelatin release layer and methods for using the same |
US8361685B2 (en) | 2009-11-05 | 2013-01-29 | Xerox Corporation | Silane release layer and methods for using the same |
US8367285B2 (en) | 2009-11-06 | 2013-02-05 | Xerox Corporation | Light shock resistant overcoat layer |
US20110111334A1 (en) * | 2009-11-06 | 2011-05-12 | Xerox Corporation | Light shock resistant overcoat layer |
US8304151B2 (en) | 2009-11-30 | 2012-11-06 | Xerox Corporation | Corona and wear resistant imaging member |
US20110129769A1 (en) * | 2009-11-30 | 2011-06-02 | Xerox Corporation | Corona and wear resistant imaging member |
US20110136049A1 (en) * | 2009-12-08 | 2011-06-09 | Xerox Corporation | Imaging members comprising fluoroketone |
US20110177439A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Curl-free flexible imaging member and methods of making the same |
US8216751B2 (en) | 2010-01-19 | 2012-07-10 | Xerox Corporation | Curl-free flexible imaging member and methods of making the same |
US20110180099A1 (en) * | 2010-01-22 | 2011-07-28 | Xerox Corporation | Releasable undercoat layer and methods for using the same |
US20110183244A1 (en) * | 2010-01-22 | 2011-07-28 | Xerox Corporation | Releasable undercoat layer and methods for using the same |
US8257892B2 (en) | 2010-01-22 | 2012-09-04 | Xerox Corporation | Releasable undercoat layer and methods for using the same |
US8765334B2 (en) | 2010-01-25 | 2014-07-01 | Xerox Corporation | Protective photoreceptor outer layer |
US20110183241A1 (en) * | 2010-01-25 | 2011-07-28 | Xerox Corporation | Protective photoreceptor outer layer |
US20110207038A1 (en) * | 2010-02-24 | 2011-08-25 | Xerox Corporation | Slippery surface imaging members |
US8232030B2 (en) | 2010-03-17 | 2012-07-31 | Xerox Corporation | Curl-free imaging members with a slippery surface |
US20110236811A1 (en) * | 2010-03-24 | 2011-09-29 | Xerox Corporation | Charge transport layer and coating solution for forming the same |
US8343700B2 (en) | 2010-04-16 | 2013-01-01 | Xerox Corporation | Imaging members having stress/strain free layers |
US8541151B2 (en) | 2010-04-19 | 2013-09-24 | Xerox Corporation | Imaging members having a novel slippery overcoat layer |
US8404413B2 (en) | 2010-05-18 | 2013-03-26 | Xerox Corporation | Flexible imaging members having stress-free imaging layer(s) |
US8470505B2 (en) | 2010-06-10 | 2013-06-25 | Xerox Corporation | Imaging members having improved imaging layers |
US8394560B2 (en) | 2010-06-25 | 2013-03-12 | Xerox Corporation | Imaging members having an enhanced charge blocking layer |
US8433222B2 (en) | 2010-06-30 | 2013-04-30 | Xerox Corporation | Single layer photoreceptor and methods of using the same |
US8475983B2 (en) | 2010-06-30 | 2013-07-02 | Xerox Corporation | Imaging members having a chemical resistive overcoat layer |
US8404423B2 (en) | 2010-07-28 | 2013-03-26 | Xerox Corporation | Photoreceptor outer layer and methods of making the same |
US8465893B2 (en) | 2010-08-18 | 2013-06-18 | Xerox Corporation | Slippery and conductivity enhanced anticurl back coating |
US8660465B2 (en) | 2010-10-25 | 2014-02-25 | Xerox Corporation | Surface-patterned photoreceptor |
US8514257B2 (en) | 2011-01-18 | 2013-08-20 | Xerox Corporation | Generation of digital electrostatic latent images utilizing wireless communications |
US8600281B2 (en) | 2011-02-03 | 2013-12-03 | Xerox Corporation | Apparatus and methods for delivery of a functional material to an image forming member |
US8263298B1 (en) | 2011-02-24 | 2012-09-11 | Xerox Corporation | Electrically tunable and stable imaging members |
US8587622B2 (en) | 2011-02-25 | 2013-11-19 | Xerox Corporation | Generation of digital electrostatic latent images and data communications system using rotary contacts |
US8465892B2 (en) | 2011-03-18 | 2013-06-18 | Xerox Corporation | Chemically resistive and lubricated overcoat |
US8681194B2 (en) | 2011-04-25 | 2014-03-25 | Xerox Corporation | Optical data transmission system for direct digital marking systems |
US8775121B2 (en) | 2011-05-18 | 2014-07-08 | Xerox Corporation | Methods for measuring charge transport molecule gradient |
DE102012208162A1 (en) | 2011-05-18 | 2012-11-22 | Xerox Corp. | An imaging member and method of making an imaging member |
DE102012209949A1 (en) | 2011-06-16 | 2013-10-10 | Xerox Corp. | Methods and systems for producing a patterned photoreceptor skin |
US8676089B2 (en) | 2011-07-27 | 2014-03-18 | Xerox Corporation | Composition for use in an apparatus for delivery of a functional material to an image forming member |
US8805241B2 (en) | 2011-07-27 | 2014-08-12 | Xerox Corporation | Apparatus and methods for delivery of a functional material to an image forming member |
DE102012212100A1 (en) | 2011-07-27 | 2013-08-08 | Xerox Corporation | A composition for use in a device for applying a functional material to an image-forming element |
US8877413B2 (en) | 2011-08-23 | 2014-11-04 | Xerox Corporation | Flexible imaging members comprising improved ground strip |
US8768234B2 (en) | 2011-10-24 | 2014-07-01 | Xerox Corporation | Delivery apparatus and method |
US8603710B2 (en) | 2011-12-06 | 2013-12-10 | Xerox Corporation | Alternate anticurl back coating formulation |
DE102012221756A1 (en) | 2011-12-15 | 2013-06-20 | Xerox Corporation | ORDER DEVICE |
US8903297B2 (en) | 2011-12-15 | 2014-12-02 | Xerox Corporation | Delivery apparatus |
US8737904B2 (en) | 2012-01-19 | 2014-05-27 | Xerox Corporation | Delivery apparatus |
US8568952B2 (en) | 2012-01-25 | 2013-10-29 | Xerox Corporation | Method for manufacturing photoreceptor layers |
US8614038B2 (en) | 2012-02-06 | 2013-12-24 | Xerox Corporation | Plasticized anti-curl back coating for flexible imaging member |
DE102013200953B4 (en) | 2012-02-06 | 2020-08-06 | Xerox Corp. | Flexible imaging element |
DE102013200953A1 (en) | 2012-02-06 | 2013-08-08 | Xerox Corp. | Plasticized anti-crimp back coating for flexible imaging element |
US8831501B2 (en) | 2012-03-22 | 2014-09-09 | Xerox Corporation | Delivery member for use in an image forming apparatus |
US8774696B2 (en) | 2012-04-02 | 2014-07-08 | Xerox Corporation | Delivery apparatus |
US8877018B2 (en) | 2012-04-04 | 2014-11-04 | Xerox Corporation | Process for the preparation of hydroxy gallium phthalocyanine |
US8852833B2 (en) | 2012-04-27 | 2014-10-07 | Xerox Corporation | Imaging member and method of making an imaging member |
US8688009B2 (en) | 2012-06-26 | 2014-04-01 | Xerox Corporation | Delivery apparatus |
US8658337B2 (en) | 2012-07-18 | 2014-02-25 | Xerox Corporation | Imaging member layers |
US8765339B2 (en) | 2012-08-31 | 2014-07-01 | Xerox Corporation | Imaging member layers |
US8835085B2 (en) | 2012-09-26 | 2014-09-16 | Xerox Corporation | Low strain anti-curl back coating for flexible imaging members |
US8983356B2 (en) | 2013-02-01 | 2015-03-17 | Xerox Corporation | Image forming apparatus |
US8971764B2 (en) | 2013-03-29 | 2015-03-03 | Xerox Corporation | Image forming system comprising effective imaging apparatus and toner pairing |
DE102014209704A1 (en) | 2013-05-29 | 2014-12-04 | Xerox Corporation | PRESSURE DEVICE USING ELECTROHYDRODYNAMICS |
US9017907B2 (en) | 2013-07-11 | 2015-04-28 | Xerox Corporation | Flexible imaging members having externally plasticized imaging layer(s) |
US9063447B2 (en) | 2013-07-11 | 2015-06-23 | Xerox Corporation | Imaging members having a cross-linked anticurl back coating |
US9017906B2 (en) | 2013-07-11 | 2015-04-28 | Xerox Corporation | Imaging members having a cross-linked anticurl back coating |
US9201318B2 (en) | 2013-07-17 | 2015-12-01 | Xerox Corporation | Polymer for charge generation layer and charge transport layer formulation |
US9091949B2 (en) | 2013-08-16 | 2015-07-28 | Xerox Corporation | Imaging members having electrically and mechanically tuned imaging layers |
US9046798B2 (en) | 2013-08-16 | 2015-06-02 | Xerox Corporation | Imaging members having electrically and mechanically tuned imaging layers |
US9482969B2 (en) | 2013-08-16 | 2016-11-01 | Xerox Corporation | Imaging members having electrically and mechanically tuned imaging layers |
US9017908B2 (en) | 2013-08-20 | 2015-04-28 | Xerox Corporation | Photoelectrical stable imaging members |
US9075325B2 (en) | 2013-09-04 | 2015-07-07 | Xerox Corporation | High speed charge transport layer |
US9075327B2 (en) | 2013-09-20 | 2015-07-07 | Xerox Corporation | Imaging members and methods for making the same |
US9529286B2 (en) | 2013-10-11 | 2016-12-27 | Xerox Corporation | Antioxidants for overcoat layers and methods for making the same |
US9141006B2 (en) | 2013-10-17 | 2015-09-22 | Xerox Corporation | Imaging member having improved imaging layers |
US9052619B2 (en) | 2013-10-22 | 2015-06-09 | Xerox Corporation | Cross-linked overcoat layer |
US9023561B1 (en) | 2013-11-13 | 2015-05-05 | Xerox Corporation | Charge transport layer comprising silicone ester compounds |
Also Published As
Publication number | Publication date |
---|---|
BE656892A (en) | 1965-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3121006A (en) | Photo-active member for xerography | |
US2986521A (en) | Reversal type electroscopic developer powder | |
US3704121A (en) | Electrophotographic reproduction process using a dual layered photoreceptor | |
US3288603A (en) | Method of restoring xerographic properties to a glass binder plate | |
US2937944A (en) | Xerographic light-sensitive member and process therefor | |
US3197307A (en) | Surface modification of zinc oxide and electrophotographic member therefrom | |
US3121007A (en) | Photo-active member for xerography | |
US3976485A (en) | Photoimmobilized electrophoretic recording process | |
US3317315A (en) | Electrostatic printing method and element | |
US3679405A (en) | Electrophotographic element having a series of alternate photoconductive and insulating layers | |
US2990279A (en) | Electrostatic printing | |
US3041169A (en) | Reversal type electrostatic developer powder | |
US3008825A (en) | Xerographic light-sensitive member and process therefor | |
US3288604A (en) | Imaging method using an element having a glass overcoating | |
US3379527A (en) | Photoconductive insulators comprising activated sulfides, selenides, and sulfoselenides of cadmium | |
US3775103A (en) | Electrophotographic material and process for producing same | |
US3243293A (en) | Plate for electrostatic electro-photography | |
US3928036A (en) | Flexible xerographic photoreceptor element | |
CA1057557A (en) | Xerographic photoreceptor device containing interlocking continuous chains of photoconductor | |
US3124456A (en) | figure | |
US4106935A (en) | Xerographic plate having an phthalocyanine pigment interface barrier layer | |
US2940848A (en) | Photoconductive layer for recording element and method of producing same | |
US2745327A (en) | Electrophotographic process | |
US3003869A (en) | Xerographic plate of high quantum efficiency | |
US3667943A (en) | Quinacridone pigments in electrophotographic imaging |