US3114948A - Investment casting apparatus and method - Google Patents

Investment casting apparatus and method Download PDF

Info

Publication number
US3114948A
US3114948A US50756A US5075660A US3114948A US 3114948 A US3114948 A US 3114948A US 50756 A US50756 A US 50756A US 5075660 A US5075660 A US 5075660A US 3114948 A US3114948 A US 3114948A
Authority
US
United States
Prior art keywords
mold
support
expendable
patterns
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US50756A
Inventor
Alfred P Poe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Casting and Engineering Corp
Original Assignee
Atlantic Casting and Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Casting and Engineering Corp filed Critical Atlantic Casting and Engineering Corp
Priority to US50756A priority Critical patent/US3114948A/en
Priority to US320333A priority patent/US3254379A/en
Application granted granted Critical
Publication of US3114948A publication Critical patent/US3114948A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/026Casting jewelry articles

Definitions

  • expendable patterns of the desired configuration are produced from waxes or plastics that will melt, vaporize or burn completely without leaving a residue.
  • the patterns are made by the injection of the pattern material into metal dies.
  • the patterns are then removed and assembled as clusters with gates and risers of expendable material in the form of a tree, with the branches forming branch gates on which the patterns are mounted and the trunk serving as the runner leading from the riser at the base.
  • the tree is dipped or sprayed with a slurry of fine refractory powder and dried.
  • the patterns need not be coated.
  • 'l ⁇ he tree with the coated patterns is then attached to a :dat plate by molten wax or similar expendable material and a heat-resistant metal flask open at both ends brought down over the tree and also sealed to the plate.
  • the space remaining in the flask is filled with a slurry of refractory material7 such as plaster of Paris, as in the case of nonferrous metals, such as aluminum, copper and their respective alloys.
  • silica generally forms the base oi the mold and the binding agent is frequently Lorganic silica formed by the hydrolysis of ethyl silicate. Thereafter, the lled molds are subjected to deaeration, either by vibration or by subjecting the slurry to a vacuum.
  • the expendable material e.g. wax
  • the mold After the mold has adequately set, the expendable material, e.g. wax, is sometimes first melted out in a lowtemperature oven and the mold later fired at a temperature as high as 2000 F. or the mold with the patterns intact thereafter heated to temperatures as high as 2000 F., dependincy on the investment material employed, and the expendable material burned or vaporized leaving clean cavities in the mold.
  • the mold has been thoroughly soaked at a desired temperature, it is ready to receive the molten metal charge.
  • An object ot my invention is to provide a novel method of preparing precision casting molds.
  • Another object is to provide a disposable support of substantially planar configuration having associated therewith a runner and gate system adapted to receive in cooperation therewith precision molded expendable patterns of a particular shape preliminary to the preparation of precision casting molds.
  • the invention also provides as an object a method of preparing a disposable support of substantially planar configuration from a web or ilm of expendable material having molded thereon raised areas and sections conforming to a runner and gate system.
  • a further object also provides a method of producing the drag portion of a precision casting mold.
  • Still another object is to provide a composite mold structure for use in precision casting of metal comprising a cope portion and a drag portion as opposed to the monolithic molds of the prior art.
  • FIG. l is illustrative of a disposable pattern support of substantially planar configuration formed from a lm of plastic material, such as styrene plastic, showing raised areas conforming to a runner and gate system;
  • plastic material such as styrene plastic
  • FIG. 2 is a ⁇ fragmentary section of a pattern support of the type illustrated in FIG. l showin-g in more detail the coniiguration of the elements making up the runner and gate system;
  • FIG. 3 depicts another embodiment of a disposable pattern support formed of a film of plastic material having printed thereon the outline of a tree conforming to a runner and gate system;
  • FlG. 4 shows in partial section the pattern support of FIG. l and also indicates partially in dotted lines a rectangular molding frame held on top of the peripheral margin of the support for receiving and confining a molding material in the production of a mold;
  • FIG. 5 depicts a preferred embodiment of a rectangular pattern support similar to PEG. 1 but in the yform of a disposable ask or tray with a corner thereof broken away to show more clearly the peripheral configuration of the support;
  • FIG. 5A is a fragmentary representation of a corner of a fiask-like support similar to FIG. 5 but showing in combination therewith a reinforcing rim for strengthening the mold produced therefrom;
  • FIGS. 6A and 6B show in cross section two means of connecting the sprue portion of an expendable pattern to the planar support
  • FIG. 7 is a partial representation of the drag portion of the precision casting mold produced from the disposable support of either FIGS. 4 or 5;
  • FIGS. ⁇ 8 and 8A are illustrative of a completed precision casting mold comprising a heat resistant ceramic or glass plate as the cope in Contact with the surface of the drag portion of the mold in which the drag portion may be reinforced with a metal rim;
  • FIG. 9 rdepicts the final casting, including the runner and gate system, produced lfrom the mold of the type shown in FIG. 8;
  • FIG. 10 shows another embodiment of a disposable support of substantially planar configuration in the form of a disc having molded therein radially extending runners attached to a central sprue adapted for the production of precision centrifugal casting molds of the type shown in FIG. 1l;
  • FIGS. 11 and 12 depict a composite centrifugal casting mold ⁇ comprising a cope portion and a drag portion provided by the invention.
  • FIG. 13 shows the cope portion of a rectangular mold in which the runner and gate system is permanently formed and adapted to conform with a disposable flat support of the type shown in FIG. 3.
  • I fabricate a precision casting mold by first forming a thin disposable support of substantially planar configuration simulating a tree adapted to receive precision molded expendable patterns.
  • the tree outline is made to simulate a central gate runner extending from a sprue with branch 'gates projecting transversely therefrom in substantially the same plane.
  • a plurality of expendable precision molded patterns are provided, each having a gate stem by means of which the patterns are mounted in spaeial relationship along the branch gates, the points of Contact between the gate stem and the branch gates lying substantially in the same plane.
  • the somewhat planar arrangement of the patterns greatly facilitates the production of the mold.
  • the slurry of molding material can be poured easily on to the support, deaerated by vibration or by vacuum and then allowed to set or cure about the patterns and the expendable material thereafter destructively removed by combustion.
  • the resulting precision casting mold has a fiat configuration compared to the more conventional precision casting mold and it is this mold configuration which lends itself readily to large scale and efficient production techniques. Because of this configuration, a rapid expulsion of the expendable material is possible in a very short time without adversely affecting the mold structure.
  • the preform may take the rectangular configuration shown in FIG. 1.
  • the support may be vacuum formed into a female mold or over a male die which incorporates a runner and gate system of the type shown in FIG. l, which shows a styrene support 1 so produced comprising central runner 2 with branch gates 3 projecting transversely therefrom in substantially the same plane as the styrene film or sheet, runner 2 beginning at the molded-in convex portion d and terminating at 5.
  • Convex portion 4 provides the feeder well or sprue to runner 2 in the mold produced from the preform.
  • indexing means may 'be provided near the four corners of the pattern support so as to produce indexing means in the drag portion of the precision casting mold to cooperate with indexing means in the cope portion of the mold.
  • the pattern support may be employed in producing the cope portion of the mold.
  • the invention may be appllcd in the production of either the cope or thc drag portions of the mold.
  • the shell-like preform must be strong enough to support expendable patterns and he smooth and fiat enough on the parting face of the investment so that the mold thus produced, whether cope or drag, will make a tight enough seal with the corresponding drag or cope portion of the mold or with the surface of another similar mold in instances where molds are stacked together for gang pouring of metal.
  • a feature of this preform is that a runner and gating system can be easily simulated by having molded or formed in it raised areas and sections such as 2 and 3 in FIGS. l and 2, which will produce in the reverse similar depressions in the face of the investment east against it, thereby providing channels and risers for the metal to flow to the casting cavity.
  • the gates formed in the plastic sheet may be punched with holes to receive the gate stems provided on each wax or plastic expendable pattern.
  • FIG. 4 depicts in partial section the preform pattern support 1 with pattern (shown in more detail in FIG. 2) plugged into holes S via gate stem 6 arranged along branch gates 3.
  • the preform support of FIG. 4 is shown relative to a molding frame 9, phantomly indicated in dotted line, positioned on the peripheral margin of the preform and adapted for receiving the molding material.
  • FIGS. 6A and 6B The mounting of the pattern on the support is illustrated in cross section in FIGS. 6A and 6B.
  • FIG. 6A shows stem portion 10 of the pattern fitted into hole 8 in branch gate 3 via reduced end portion 11 of the sprue.
  • the pattern may be welded or bonded to the gate as in FIG. 6B which shows stern portion 12 of a Wax pattern which is caused to melt superficially by heating its end on a hot plate or by other suitable moans and then bonded to gate 3 at its end and by excess wax at 13 as shown.
  • FIG. 2 This latter means of bond ing would have particular use Where a fiat pattern support of expendable material is used such as shown in FIG. 3. Instead of indicating the runner and gate system as raised areas as shown in FIG.
  • the outline may be printed as shown in dotted line wherein 14 simulates the runner and 15 the branch gates.
  • indexing means may be provided to insure matching of the cope and the drag elements of the precision casting mold. Where the thin support of FIG. 3 is utilized, then the cope element of the mold should make allowances for the feed-in runner provided for the pattern.
  • the cope configuration of the type shown in FIG. 13 would be used in which runner 14 and branch gates 15 indented therein would be designed to coincide with those of FIG. 3.
  • the tray of FIG. 5 becomes an expendable tray for confining the molding material therein.
  • the tray for production purposes, is peripherally indented at the bottom at 23 as shown in FIG. 5 so as to provide internally thereof a peripheral shelf ⁇ 23a.
  • the peripheraliindent enables the trays to be nested one on top of the other with mounted patterns therein ready for use.
  • the peripheral shelf 23o is adapted to receive a metal retaining ring 23:5, if desired, to become part of and reinforce the mold produced from the tray.
  • the disposable flask or pattern support starts its useful life as a tray to receive the freshly made expendable patterns immediately alter removal from the injection mold.
  • the patterns are mounted within the tray (as in FIG. 4) which later becomes the mold flask.
  • the pattern-filled trays are then transported to the molding line.
  • each tray is placed on a smooth llat supporting surface.
  • the weight of the plaster mixture causes the bottom of the thin plastic flask to conform to the smooth fiat supporting surface.
  • the flask is then covered and agitated mechanically to deaerate the mixture.
  • the flask then passes to a setting station.
  • the mold is set aside for the burnout treatment.
  • the set mold is extracted therefrom by a vacuum extractor head or removed by gently rapping, the molding frame being provided with a slight draft to eect release.
  • the set mold is placed on a grid at the receiving end of a tiring oven. As soon as the conveyor carries the mold to an area of sufficiently high temperature in the oven, the plastic pattern support ignites and is completely consumed. Because the pattern support is thin, the mold is not subjected to any amount of expansion stresses of the support which normally cause stress cracking of the mold. The mold continues to dry and purge itself of the expendable patterns it contains.
  • the drag element or cope of the plaster mold will have the configuration shown partially in FG. 7 comprising feeder well or sprue 24, runner 2:3' and branch gates Z6.
  • the precision molded cavities 27 project inward lfrom the branch gates as indicated.
  • FIGS. 8 and 8A a composite is formed as shown in FIGS. 8 and 8A comprising drag element 23 with cope element 29 ⁇ formed of a plate of heat and shock resistant insulating material, such as ceramic, fused silica foam, fused silica glass -lmovvn by the trademark Pyroceram and other similar heat and shock resistant insulating material.
  • Cope - is provided with an opening which registers with the well in the drag, eg. well 24 in FlG. 7.
  • lt is adapted to receive eramic sleeve Eli or other sprue material through which the metal is poured.
  • runner 3l is shown of the metal cast with branch gates 32 extending therefrom and the precision metal castings 33 connected therealong.
  • the mold is also shown provided with a metal rim 231i for use where the mold is employed in the casting of high melting alloys, c.g. alloy steels or heat resistant alloys in which heat shocir at above 200 l?. might t sent a problem.
  • the precision casting cluster produced ⁇ from the rnold of ⁇ the type Vshown in FlG. 8 is shown in Pi. 9 as coinprising stru-e 35, runner 36, branch gates 37 and the desired precision cast articles 33 projecting from the gates. .Tt will be noted that except for the spr e, the runner, branch gates and the individual castings form a simple geometry Vin that they all lie substantially in the same plane.
  • the well may take the form of a sprue opening running completely through the mold.
  • the individual mold elements are stacked between dry, flat asbestos sheets,
  • each sheet being pre-punched with a hole corresponding to the sprue hole of the rnold, the molds being stacked so that the sprue hole of one registers with the one above and below it in the stack.
  • the bottom most mold element would have a -blind sprue hole similar to well 24 of FlG. 7.
  • a number of thin mold elements each containing a single plane of cavities, would be stacked, weighted or clamped, and poured economically. A'fter pouring and cooling the stack imo-ld would be moved to the break-out station.
  • the mold sprue or riser would be cut through at each asbestos separator.
  • the stack would then be reduced to its single plane elements (as in FIG. 9) for quick and easy breakout and casting cut-olf. From here the castings would be processed the same as conventional plaster imold or investment castings.
  • the disposable preform pattern support eg. of styrene sheet
  • the disposable preform pattern support would be produced as a circular disc 39 depicted at HG. 4l()y with a convex portion 4d located centrally thereon for molding in reverse a well lila (FIG. 12) with feeding branch gates il extending radially there-from to which the expandable patterns would be connected in the manner previously described herein.
  • the circular preform would be supported within a molding tray such as 9 shown in FG. 4 except the tray would have a circular rim adapted to lie on top of the peripheral margin of preform 39.
  • the drag or cope mold element produced therefrom would then be combined with a circular cope or drag, whatever the case may be, having a sprue hole located centrally therein in register with wall of the drag element.
  • a mold combination is shown in FIG. ll as comprising in this instance cope d2 of a plate of heat and shock resistant insulating material, e.g. fused silica foam, on top of and in register with drag element 43, the cope having associated with its sprue hole sleeve element 44E. into which molten metal would be poured.
  • FIG. l1 Other details of the mold of FIG. l1 are indicated in the partial cross section of FIG. 12 which shows cope l2 with sleeve @d extending into it in register with well #ida in drag mold element 43. Olne of [the gates il is shown communicating with mold cavities 45 located in the drag clement. Because of the centrifugal stresses to which the mold would be subjected, a metal reinforcing rim or ring te Iis provided lto contain the investment and prevent it from cracking or flying apart. In investing the drag portion of the mold, the molding investment would be cast against the rim in situ.
  • the invention is particularly adapted to automatic or semi-automatic molding techniques based on the use of calcium sulphate plasters or other similar molding materials used for nonferrous castings.
  • ferrous castings present problems because of the high Ifusion temperatures of the ferrous alloys and require the use of mold materials that retain chemical stability at elevated temperatures.
  • Molds for ferrous investment castings ar-e usually based on silica in some form. Silica is a stable, cheap and plentiful refractory material. However, to use silica ⁇ in its common form, natural or crushed sand, requires the use of bonding agents which are not cheap.
  • excellent refractory molds may be made from silica without binder additions provided: (l) that the silica be crushed to a particle size range and to a particle configuration that will allow intimate particle interlock, and (2) that the silica is dispersed lin a liquid which will allow the particle interlock to develop slowly by the process of sedimentation.
  • the tirst condition is met by crushing high quality white silica to a particle size encompassing approximately 15() to 3G0- mesh sizes.
  • the requirement is met w-ith Water modified by the addition of a small quantity of vitreous sodium phosphate to reduce the rate of particle fallout to that which allows such sedimentation to occur.
  • Example l In producing a precision cast chuck for use as an element in canning machinery indicated by the numeral 7 in FIG. 2 from a beryiliumcopper alley, a disposable support of the type shown in FIG. 1 was vacuum formed from a thin polystyrene sheet onto a metal male mold to produce a runner and gate system of the type illustrated. A plurality of expandable patterns of the shape 7 shown in FlG. 2 were injection molded in accordance with conventional practice, each of the patterns having a cylindrical gate stem 6. The patterns were then cemented by means of a cement consisting of a solvent and a polystyrene material and the patterns mounted thereon similarly 'to the illustration shown in FIG. 2.
  • the support and the mounted patterns were surrounded by a molding frame like frame 9 in FIG. 4.
  • a plaster mix comprising calcium sulfate, asbestos fiber, an accelerator and silica and water was then prepared and poured into the molding frame and allowed to stand until the plaster had set, for example eight to fteen minutes.
  • the set mold was removed from the molding frame by slightly tapping the frame to dislodge it and the mold then placed cavity side down in ⁇ the burn-out oven and the temperature raised to approximately 1490" F. in about the first onethird of the heating cycle.
  • the heating cycle was completed in the short time of three hours and the mold removed and sent to the casting station.
  • the mold may be cooled down or used hot, depending on the casting shape and the alloy.
  • a cope comprising a plate of cellular glass (known in the trade as Foamglas) is applied to the mold by clamping it hydraulically and an asbestos sleeve inserted into the sprue hole of the cope (as in FIG. 8) for receiving the molten beryllium-copper alloy. Sufficient of the alloy which was melted down in a crucible furnace was poured into the sleeve until the metal lled the sprue. After the metal solidified, the cope was removed and the drag portion of the ⁇ mold broken laway from the casting which appeared like that shown in FIG. 9 except that the castings had the shape shown by the clement 7 of FIG. 2. The castings which were distributed in the same plane were easily removed by a cutoff machine. Inspection showed the castings to be of high quality, ⁇ the internal bores being particularly smooth and precise.
  • disposable pattern supports from thin plastic sheets (e.g. polystyrene), it will be appreciated that other disposable material may be employed, such as low ash paper of sufficient stiffness to support the patterns.
  • the paper pattern support may be waxed to render it hydrophobic or otherwise treated so it does not soften and collapse when in Contact ywith a wet molding mixture.
  • the disposable pattern support might constitute a very low melting eutectic alloy such as Woods metal or similar alloy.
  • An example of such an alloy is one containing 52% Bi, 32% Pb and 16% Sn which melts at C., i.e. below the boiling point of water.
  • a pattern support made of such ⁇ an alloy would be disposed of or removed by low temperature heating, for example, heating on a hot plate and the mold with the patterns thereafter subjected to burn-out in a furnace in the usual manner.
  • styrene or wax support and patterns besides removing the expendable materials by heat, they may be removed chemically by solution in methyl ethyl ketone, trichloroethylene or other suitable organic solvent. Whichever method is used, the expendable material is deemed to be destructively removed ⁇ whether it be removed by combustion at elevated temperatures, by melting, by means of a solvent, or by any other means that does not adversely affect the mold structure.
  • the disposable pattern support is preformed to include raised areas which simulate a runner and gate system in the form of a tree.
  • the pattern support and the tree are substantially planar in configuration, although in the reverse the support provides ⁇ a feeder gate system for feeding metal to the precision-formed cavities.
  • the tree by itself may constitute the support or be associated with the pattern support in other ways. IFor example, as shown in FIG. 3, it may be printed in outline form on the flat support sheet, the tree outline conforming substantially to an actual runner and gate system in the cope portion of the mold so that when expendable patterns are mounted on the support, the cavities formed therefrom Will be opposite and in cooperative relationship with the runner and gate system in the cope.
  • a template may be used in arranging the patterns on the first support in tree-like distribution, the template conforming to the runner and gate system on the cope.
  • a pattern support having associated therewith a tree for locating expendable patterns thereon, it is meant to include the foregoing methods and other methods which will effect the desired result.
  • the expendable patterns attached to the support may be made from plastics such as styrene or nylon, rigid polyethylene and the like, or from waxes. ⁇ Examples of waxes which have been found paritcularly useful are those of the proprietary synthetic types of high surface tension.
  • the cope portion of the mold is preferably made from heat and shock resistant silica glass, other types of insulating materials may be used, such as glass foam plate, alumina plate and asbestos.
  • the investment employed in making the mold may comprise any of the compositions used heretofore in investment mold casting, such as calcium sulfate bonded materials for non-ferrous alloys, certain phosphate bonded materials for ferrous and non-ferrous alloys, and silicate bonded materials also for ferrous and non-ferrous alloys.
  • My invention is ⁇ applicable generally to castable ferrous and nonferrous alloys.
  • the low cost makes possible the use of investments requiring longer curing times. Since no flasks would be tied up in the process, once the process of mold preparation gets underway, high cost saving will result. Because the disposable flask-like pattern support will be thin and very light, mold weight is maintained at a minimum. Thus, the flask type support shown in PFIG. provides low cost because of its i-nexpensiveness, because of the type y,and amount of materials required for the support and because of its method of manufacture.
  • the advantages #in include the marked reduction in time of mold preparation including burn-out time (reduced more than one third), the applicability of automatic techniques for mold preparation, the applicability lof the thin molds to gang pouring, etc. Since there is no flask to salvage and return to the system, mold break-out can be rapid since the mold is in effect a laminated composite, i.e. cope ⁇ and rag, wherein the drag is separated from the cope ⁇ and broken away from the casting. Moreover, since the castings in the drag mold lie in approximately the same plane, degat-ing is greatly simplied by using a simple series of straight cut-off wheel strokes. As stated hereinbefore, this simple geometry lends itself to the safe chop-stroke type yof abrasive cutting with much greater safety to the operator.
  • the method of forming an expendable molding shape which comprises, providing ⁇ a pattern support or" substantially planar conguration of expendable material having associated therewith an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, providing a plurality of expendable precision molded patterns of the desired shape each having a gate stem, and mounting each of the patterns in spatial relationship in conformance with t-he runner and gate system at the terminus of each stem, the points of contact between the stems and the pattern support being substantially in the same plane.
  • the method of forming an expendable molding shape which comprises, providing a pattern support of substantially planar configuration of a web of expendable plastic material having indicated thereon in raised areas an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, providing a plurality of expendable precision molded patte-rns of the ⁇ desired shape each having a gate stem, and mounting each of the patterns in spatial relationship within the runner and gate system of the tree at the terminus of each stern, the points of contact between the stems and the gates being substantially -in the same plane.
  • pattern support is of rectangular shape in which the runner extends centrally along the support ⁇ and the gates extend transversely across the runner.
  • the method of forming an expendable molding shape which comprises, providing a pattern support of substantially planar configuration of a web of polystyrene material having formed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, providing ⁇ a plurality of expendable precision molded patterns of the desired shape each having a gate stem, and mounting each of the patterns in spatial relationship within the runner l@ and gate system of the tree ⁇ at the terrrfinus df each stem, the points Iof contact between the stems and the gates being substantially in the same plane.
  • the method of forming an expendable molding ilask which comprises, providing a pattern support of substantially planar coniiguration of expendable plastic material having formed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, the periphery of the support having a continuous retaining rim extending upwardly therefrom, providing a plurality of expendable precision molded patterns of the desired shape cach lhaving a gate stem, and mounting each of the patterns -in spatial relationship within the runner and gate system of the tree at the terminus of each stem, the points of contact between the stems and the gates being substantially in the same plane.
  • a method of producing a drag element of ⁇ a precision casting mold which comprises, providing an expendable molding shape comprising an expendable pattern support of substantially planar configuration having associated therewith an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, each of the gates having mounted therealong 'a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stern with the points of contact between the stems of the patterns and the support therefor lying in the same plane, the expendable molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture against the expendable support and the mounted patterns of said molding shape, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
  • a method of producing a drag element of a precision casting mold which comprises, providing an expendable molding shape comprising an expendable pattern support of a web of plastic materials of substantially planar configuration having vformed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, each of the gates having mounted there-along a plurality of expenda le precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of contact between the stems of the patterns and the support therefor lying in the same plane, the expend-able molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture against the expendable support and the mounted patterns of said mold-ing shape, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
  • a method of producing a drag element of a precision casting mold which comprises, providing an expendable molding shape comprising an expendable pattern support ⁇ of a web of polystyrene material of substantially planar ⁇ configuration having formed as raised areas thereon an outline of a tree simulating a runner and .gate system conforming substantially to the plane of the support, each of the gates having mounted therealong a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of Contact between the stems of the patterns and the support therefor lying in the same plane, the expendable molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture Iagainst the expendable support and the mounted patterns of said molding shape, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
  • a method of producing a drag element of a precision casting mold which comprises, providing an expendable molding flask comprising an expendable pattern support of plastic material of substantially planar configuration having formed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, the periphery of the support having a continuous retaining rim extending upwardly therefrom for conining molding material therein, each of the gates having mounted therealong a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of contact between the stems of the patterns and the support therefor lying in the same plane, supporting said expendable flask and pouring a molding mixture against its molding surface, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
  • a method of producing a laminated precision casting mold comprising a cope element cooperable relation with a drag element which comprises, providing an expendable molding shape ycomprising an expendable pattern support of substantially planar conguration having associated therewith an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, each of the gates having mounted therealong a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of contact between the stems of the patterns ⁇ and the support therefor lying in the same plane, the expendable molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture against the expendable support and the patterns of said molding shape, causing said mold-ing material to set, removing the expendable material from the mold, subjecting said mold to a burn-out heating cycle, providing a cope comprising 12 a plate of heat and shock resistant insulating material having sprue-feeding means adapted to register with the
  • the method of forming a molding shape which comprises, providing a pattern support of substantially planar configuration having associated therewith an outline of a tree simulating a runner and gate sy'stem conforming substantially to the plane of the support, providing a plurality of expendable precision molded patterns of the desired shape each having a sprue stem, and mounting each of the patterns in spacial relationship in conformance with the runner and gate system at the terminus of each sprue stem, the points of contact ybetween the sprue stems and the pattern support being substantially in the same plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

Dec. 24, 1963 A. P. PoE
INVESTMENT CASTING APPARATUS AND METHOD 5 Sheets-Sheet 1 Filed Aug. 19. 1960 BY f @ATR EY Dec. 24, 1963 A. P. PoE 3,114,948
INVESTMENT CASTING APPARATUS AND METHOD Filed Aug. 19. 1960 3 Sheets-Sheet 2 INVENTOR 4451?@ f? Pof ATTORNEY Dec. 24, 1963 A. P. PoE 3,114,948'
INVESTMENT CASTING APPARATUS AND METHOD Filed Aug. 19, 1960 3 Sheets-Sheet 3 INVENTOR 4LP/asp R P05 ATTORNEY United States Patent C) M 3,114,948 WIESTB/iENT CASTING APPARATUS AND METHD Alfred i. Poe, Haziet, NJ., assigner to Atiantic Casting and Engineering torporatien, Clifton, NJ., a corporation of New Jersey Filed Ang. i9, 19%, Ser. No. 50,756 il Claims. (Cl. 22-193) This invention relates to the art of precision casting and in particular to precision casting molds and a method of making them.
Following World War ll, the application of precision casting to industrial purposes received a great deal of attention because of its success in the wartime production of parts difiicult to fabricate by other methods. While this process of casting, which is also known as the lost wax or investment casting process, has been used for many years in the dental and jewelry eld, new techniques and materials were devised to make it applicable to a wide range of metals for the production of precise complicated shapes heretofore not possible by conventional casting procedures.
in the foregoing process, expendable patterns of the desired configuration are produced from waxes or plastics that will melt, vaporize or burn completely without leaving a residue. The patterns are made by the injection of the pattern material into metal dies. The patterns are then removed and assembled as clusters with gates and risers of expendable material in the form of a tree, with the branches forming branch gates on which the patterns are mounted and the trunk serving as the runner leading from the riser at the base.
After the patterns have been mounted, in one method the tree is dipped or sprayed with a slurry of fine refractory powder and dried. However, depneding upon the 'type of investment used, the patterns need not be coated. 'l` he tree with the coated patterns is then attached to a :dat plate by molten wax or similar expendable material and a heat-resistant metal flask open at both ends brought down over the tree and also sealed to the plate. The space remaining in the flask is filled with a slurry of refractory material7 such as plaster of Paris, as in the case of nonferrous metals, such as aluminum, copper and their respective alloys. For alloys of higher melting points, silica generally forms the base oi the mold and the binding agent is frequently Lorganic silica formed by the hydrolysis of ethyl silicate. Thereafter, the lled molds are subjected to deaeration, either by vibration or by subjecting the slurry to a vacuum.
After the mold has adequately set, the expendable material, e.g. wax, is sometimes first melted out in a lowtemperature oven and the mold later fired at a temperature as high as 2000 F. or the mold with the patterns intact thereafter heated to temperatures as high as 2000 F., dependincy on the investment material employed, and the expendable material burned or vaporized leaving clean cavities in the mold. After the mold has been thoroughly soaked at a desired temperature, it is ready to receive the molten metal charge.
While the foregoing technique opened up a whole new iield in the industrial art of metal casting of complicated shapes, it had certain economic limitations. The freeing of the patterns by hand was time consuming in that as the patterns were attached to one group of branches of the tree7 it became more diiiicult and more time consuming to mount the remaining patterns on the other branches due to the decrease of free space of manipulation. The nature of the process previously and hereafter described required the use of expensive quantities and types of material as well as flask rims in order to provide the necesiiddd Patented Eec. 24, 1963 ICC sary mechanical strength, heat sink and resistance tol thermal shock.
In addition, time was required in setting up the metal flask around the tree for receiving the investment. Also, because of the mold shape, penetration of the heat was slow and generally 8 to 16 hour heating cycles were required from the time the mold was placed in the furnace to remove the expendable patterns to the time the metal was cast into it. Because the entire runner and gate system of expendable material was bulky and had to be melted out before the patterns and their gates were removed, the mold was likely to crack due to the expansion stresses set up by the runner and sprue, thus adversely affecting the casting. Moreover, after casting and solidiiication, care had to be exercised to remove the casting While minimizing damage to the re-usable alloy flask. Furthermore, because of the tree-like nature of the runner and gating system, the cast shapes clustered and attached thereto were oriented in so many different directions that degating was rendered difficult with conventional cut-olf machines, whereby free hand ixed-wheel cutting had to be resorted to which was frequently dangerous.
Until i made my invention, no method was available which effectively utilized the investment casting process to its fullest economic advantage.
An object ot my invention is to provide a novel method of preparing precision casting molds.
Another object is to provide a disposable support of substantially planar configuration having associated therewith a runner and gate system adapted to receive in cooperation therewith precision molded expendable patterns of a particular shape preliminary to the preparation of precision casting molds.
The invention also provides as an object a method of preparing a disposable support of substantially planar configuration from a web or ilm of expendable material having molded thereon raised areas and sections conforming to a runner and gate system.
A further object also provides a method of producing the drag portion of a precision casting mold.
Still another object is to provide a composite mold structure for use in precision casting of metal comprising a cope portion and a drag portion as opposed to the monolithic molds of the prior art.
it is the further object to provide a mold of at configuration characterized by quick drying and burn out.
It is also the object t0 provide a novel method for the precision casting of metals.
These and other objects will be apparent from the disclosure and the appended claims taken in conjunction with the drawings, wherein:
FIG. l is illustrative of a disposable pattern support of substantially planar configuration formed from a lm of plastic material, such as styrene plastic, showing raised areas conforming to a runner and gate system;
FIG. 2 is a `fragmentary section of a pattern support of the type illustrated in FIG. l showin-g in more detail the coniiguration of the elements making up the runner and gate system;
FIG. 3 depicts another embodiment of a disposable pattern support formed of a film of plastic material having printed thereon the outline of a tree conforming to a runner and gate system;
FlG. 4 shows in partial section the pattern support of FIG. l and also indicates partially in dotted lines a rectangular molding frame held on top of the peripheral margin of the support for receiving and confining a molding material in the production of a mold;
FIG. 5 depicts a preferred embodiment of a rectangular pattern support similar to PEG. 1 but in the yform of a disposable ask or tray with a corner thereof broken away to show more clearly the peripheral configuration of the support;
FIG. 5A is a fragmentary representation of a corner of a fiask-like support similar to FIG. 5 but showing in combination therewith a reinforcing rim for strengthening the mold produced therefrom;
FIGS. 6A and 6B show in cross section two means of connecting the sprue portion of an expendable pattern to the planar support;
FIG. 7 is a partial representation of the drag portion of the precision casting mold produced from the disposable support of either FIGS. 4 or 5;
FIGS. `8 and 8A are illustrative of a completed precision casting mold comprising a heat resistant ceramic or glass plate as the cope in Contact with the surface of the drag portion of the mold in which the drag portion may be reinforced with a metal rim;
FIG. 9 rdepicts the final casting, including the runner and gate system, produced lfrom the mold of the type shown in FIG. 8;
FIG. 10 shows another embodiment of a disposable support of substantially planar configuration in the form of a disc having molded therein radially extending runners attached to a central sprue adapted for the production of precision centrifugal casting molds of the type shown in FIG. 1l;
FIGS. 11 and 12 depict a composite centrifugal casting mold `comprising a cope portion and a drag portion provided by the invention; and
FIG. 13 shows the cope portion of a rectangular mold in which the runner and gate system is permanently formed and adapted to conform with a disposable flat support of the type shown in FIG. 3.
As a preferred embodiment of my invention, I fabricate a precision casting mold by first forming a thin disposable support of substantially planar configuration simulating a tree adapted to receive precision molded expendable patterns. The tree outline is made to simulate a central gate runner extending from a sprue with branch 'gates projecting transversely therefrom in substantially the same plane. A plurality of expendable precision molded patterns are provided, each having a gate stem by means of which the patterns are mounted in spaeial relationship along the branch gates, the points of Contact between the gate stem and the branch gates lying substantially in the same plane.
The somewhat planar arrangement of the patterns greatly facilitates the production of the mold. By confining the pattern support peripherally, the slurry of molding material can be poured easily on to the support, deaerated by vibration or by vacuum and then allowed to set or cure about the patterns and the expendable material thereafter destructively removed by combustion. The resulting precision casting mold has a fiat configuration compared to the more conventional precision casting mold and it is this mold configuration which lends itself readily to large scale and efficient production techniques. Because of this configuration, a rapid expulsion of the expendable material is possible in a very short time without adversely affecting the mold structure.
`In carrying my invention into practice, I prefer to use a preformed styrene film or sheet as the pattern support material. In one embodiment, the preform may take the rectangular configuration shown in FIG. 1. The support may be vacuum formed into a female mold or over a male die which incorporates a runner and gate system of the type shown in FIG. l, which shows a styrene support 1 so produced comprising central runner 2 with branch gates 3 projecting transversely therefrom in substantially the same plane as the styrene film or sheet, runner 2 beginning at the molded-in convex portion d and terminating at 5. Convex portion 4 provides the feeder well or sprue to runner 2 in the mold produced from the preform. If desired, indexing means may 'be provided near the four corners of the pattern support so as to produce indexing means in the drag portion of the precision casting mold to cooperate with indexing means in the cope portion of the mold. It will be appreciated that the pattern support may be employed in producing the cope portion of the mold. In other words, the invention may be appllcd in the production of either the cope or thc drag portions of the mold.
The shell-like preform must be strong enough to support expendable patterns and he smooth and fiat enough on the parting face of the investment so that the mold thus produced, whether cope or drag, will make a tight enough seal with the corresponding drag or cope portion of the mold or with the surface of another similar mold in instances where molds are stacked together for gang pouring of metal.
A feature of this preform is that a runner and gating system can be easily simulated by having molded or formed in it raised areas and sections such as 2 and 3 in FIGS. l and 2, which will produce in the reverse similar depressions in the face of the investment east against it, thereby providing channels and risers for the metal to flow to the casting cavity.
The gates formed in the plastic sheet may be punched with holes to receive the gate stems provided on each wax or plastic expendable pattern. This is shown in FIG. 4 which depicts in partial section the preform pattern support 1 with pattern (shown in more detail in FIG. 2) plugged into holes S via gate stem 6 arranged along branch gates 3. The preform support of FIG. 4 is shown relative to a molding frame 9, phantomly indicated in dotted line, positioned on the peripheral margin of the preform and adapted for receiving the molding material.
The mounting of the pattern on the support is illustrated in cross section in FIGS. 6A and 6B. FIG. 6A shows stem portion 10 of the pattern fitted into hole 8 in branch gate 3 via reduced end portion 11 of the sprue. Or the pattern may be welded or bonded to the gate as in FIG. 6B which shows stern portion 12 of a Wax pattern which is caused to melt superficially by heating its end on a hot plate or by other suitable moans and then bonded to gate 3 at its end and by excess wax at 13 as shown. This is also shown in FIG. 2. This latter means of bond ing would have particular use Where a fiat pattern support of expendable material is used such as shown in FIG. 3. Instead of indicating the runner and gate system as raised areas as shown in FIG. l, the outline may be printed as shown in dotted line wherein 14 simulates the runner and 15 the branch gates. As stated hereinbefore, indexing means may be provided to insure matching of the cope and the drag elements of the precision casting mold. Where the thin support of FIG. 3 is utilized, then the cope element of the mold should make allowances for the feed-in runner provided for the pattern. The cope configuration of the type shown in FIG. 13 would be used in which runner 14 and branch gates 15 indented therein would be designed to coincide with those of FIG. 3. By placing the cope on top of the drag mold with the runner and gate side of the cope in contact with the mold surface in register with the spaced cavities of the drag mold, metal poured through sprue hole 17 will fiow along the runner and the gates into the cavities of the mold.
In preparing the preform from expendable sheet material, I prefer for production convenience to produce it in the shape of a tray or fiaslt 1S with side walls 19, Z0, 2l and 22 shown in FIG. 5, the bottom of the tray having the same configuration as that shown in FIG. 1, that is having molded therein raised areas and sections simulating a runner and gate system of a tree. In effect the tray of FIG. 5 becomes an expendable tray for confining the molding material therein. The tray, for production purposes, is peripherally indented at the bottom at 23 as shown in FIG. 5 so as to provide internally thereof a peripheral shelf` 23a. The peripheraliindent enables the trays to be nested one on top of the other with mounted patterns therein ready for use. As shown in FIG. 5A, the peripheral shelf 23o is adapted to receive a metal retaining ring 23:5, if desired, to become part of and reinforce the mold produced from the tray.
An important feature of the foregoing embodiment is that the disposable flask or pattern support starts its useful life as a tray to receive the freshly made expendable patterns immediately alter removal from the injection mold. In the pattern room the patterns are mounted within the tray (as in FIG. 4) which later becomes the mold flask. As they are required, the pattern-filled trays are then transported to the molding line. Here each tray is placed on a smooth llat supporting surface. As the liask passes along the molding line it is filled with automatically measured and mixed molding plaster. The weight of the plaster mixture causes the bottom of the thin plastic flask to conform to the smooth fiat supporting surface. The flask is then covered and agitated mechanically to deaerate the mixture. The flask then passes to a setting station. After initial setting (chemical) is complete, the mold is set aside for the burnout treatment. Where a molding frame such as shown in FIG. 4 is used, the set mold is extracted therefrom by a vacuum extractor head or removed by gently rapping, the molding frame being provided with a slight draft to eect release. The set mold is placed on a grid at the receiving end of a tiring oven. As soon as the conveyor carries the mold to an area of sufficiently high temperature in the oven, the plastic pattern support ignites and is completely consumed. Because the pattern support is thin, the mold is not subjected to any amount of expansion stresses of the support which normally cause stress cracking of the mold. The mold continues to dry and purge itself of the expendable patterns it contains.
After the burn-out is complete, the drag element or cope of the plaster mold will have the configuration shown partially in FG. 7 comprising feeder well or sprue 24, runner 2:3' and branch gates Z6. The precision molded cavities 27 project inward lfrom the branch gates as indicated.
in preparing the Kmold vfor casting, a composite is formed as shown in FIGS. 8 and 8A comprising drag element 23 with cope element 29 `formed of a plate of heat and shock resistant insulating material, such as ceramic, fused silica foam, fused silica glass -lmovvn by the trademark Pyroceram and other similar heat and shock resistant insulating material. Cope -is provided with an opening which registers with the well in the drag, eg. well 24 in FlG. 7. lt is adapted to receive eramic sleeve Eli or other sprue material through which the metal is poured. yln the cross-section taken along the line after casting ymetal in the mold, runner 3l is shown of the metal cast with branch gates 32 extending therefrom and the precision metal castings 33 connected therealong. The mold is also shown provided with a metal rim 231i for use where the mold is employed in the casting of high melting alloys, c.g. alloy steels or heat resistant alloys in which heat shocir at above 200 l?. might t sent a problem.
The precision casting cluster produced `from the rnold of `the type Vshown in FlG. 8 is shown in Pi. 9 as coinprising stru-e 35, runner 36, branch gates 37 and the desired precision cast articles 33 projecting from the gates. .Tt will be noted that except for the spr e, the runner, branch gates and the individual castings form a simple geometry Vin that they all lie substantially in the same plane.
@ne of the advantages of using a precision casting mold substantially of flat or thin configuration is its adaptability to pouring. instead of having a well 24 as shown in PEG. 7, the well may take the form of a sprue opening running completely through the mold. As the molds come out of the drying or firing oven, the individual mold elements are stacked between dry, flat asbestos sheets,
each sheet being pre-punched with a hole corresponding to the sprue hole of the rnold, the molds being stacked so that the sprue hole of one registers with the one above and below it in the stack. The bottom most mold element would have a -blind sprue hole similar to well 24 of FlG. 7. By this means a number of thin mold elements, each containing a single plane of cavities, would be stacked, weighted or clamped, and poured economically. A'fter pouring and cooling the stack imo-ld would be moved to the break-out station. Here the mold sprue or riser would be cut through at each asbestos separator. The stack would then be reduced to its single plane elements (as in FIG. 9) for quick and easy breakout and casting cut-olf. From here the castings would be processed the same as conventional plaster imold or investment castings.
The invention is also applicable to the production of centiifugal precision casting molds. In this case the disposable preform pattern support (eg. of styrene sheet) would be produced as a circular disc 39 depicted at HG. 4l()y with a convex portion 4d located centrally thereon for molding in reverse a well lila (FIG. 12) with feeding branch gates il extending radially there-from to which the expandable patterns would be connected in the manner previously described herein. Als in the case of the preform shown in FIG. l, the circular preform would be supported within a molding tray such as 9 shown in FG. 4 except the tray would have a circular rim adapted to lie on top of the peripheral margin of preform 39. The drag or cope mold element produced therefrom would then be combined with a circular cope or drag, whatever the case may be, having a sprue hole located centrally therein in register with wall of the drag element. Sucfh a mold combination is shown in FIG. ll as comprising in this instance cope d2 of a plate of heat and shock resistant insulating material, e.g. fused silica foam, on top of and in register with drag element 43, the cope having associated with its sprue hole sleeve element 44E. into which molten metal would be poured.
Other details of the mold of FIG. l1 are indicated in the partial cross section of FIG. 12 which shows cope l2 with sleeve @d extending into it in register with well #ida in drag mold element 43. Olne of [the gates il is shown communicating with mold cavities 45 located in the drag clement. Because of the centrifugal stresses to which the mold would be subjected, a metal reinforcing rim or ring te Iis provided lto contain the investment and prevent it from cracking or flying apart. In investing the drag portion of the mold, the molding investment would be cast against the rim in situ.
As has been stated hereinbefore, the invention is particularly adapted to automatic or semi-automatic molding techniques based on the use of calcium sulphate plasters or other similar molding materials used for nonferrous castings. On the other hand, ferrous castings present problems because of the high Ifusion temperatures of the ferrous alloys and require the use of mold materials that retain chemical stability at elevated temperatures. Molds for ferrous investment castings ar-e usually based on silica in some form. Silica is a stable, cheap and plentiful refractory material. However, to use silica `in its common form, natural or crushed sand, requires the use of bonding agents which are not cheap. However, excellent refractory molds may be made from silica without binder additions provided: (l) that the silica be crushed to a particle size range and to a particle configuration that will allow intimate particle interlock, and (2) that the silica is dispersed lin a liquid which will allow the particle interlock to develop slowly by the process of sedimentation. The tirst condition is met by crushing high quality white silica to a particle size encompassing approximately 15() to 3G0- mesh sizes. The requirement is met w-ith Water modified by the addition of a small quantity of vitreous sodium phosphate to reduce the rate of particle fallout to that which allows such sedimentation to occur. Un`
fortunately, the proper rate of solids sedimentation is slow. A conventional investment casting box flask requires 24 to 36 hours of settling time before it is ready to have its liquid decantcd. After decantation, another 24 hours of an drying is required before the mold can be placed in the burnout furnace. it is evident that to` utilize `this material a considerable number of expensive flasks would be required if a reasonable daily casting Volume is desired. The disadvantages which attach to the use of this molding system in investment casting are these: (a) the lack of chemical setting creates a storage problem, (b) the necessity for decantation makes necessary extensive flask preparation in the form of waterproof flask extension liners, and (c) the relatively high thermal conductivity of pure silica causes r'tnid heat penetration which in turn causes wax e to occur before the gating sy Vern can cope with wax drainage. This condition gives rise to serious cavity cracking with heavy casting losses. Thus, even though this mold material is initially cheap and is capable of 1nroc'uicing exc ent cast surfaces, the material is not a particularly desirable one for conventional investment casting processes.. The preformed disposable flask support of the type shown in FIG. 5 obviates for the most part the disadvantages enumerated in that (a) while the storage problem during settling is still present, it does not tic up expensive alloy flasks; (b) no preparation of flasks is required; and (c) the mold morphology and open gate and runner system tend to minimize the cracking tendency, the use of the sedimentation system is then highly compatible with the features of the invention and makes possible lower production cost and higher quality castings in the ferrous alloys as simple as those in the nonferrous groups.
In order to better appreciate the invention, the following example is given:
Example l In producing a precision cast chuck for use as an element in canning machinery indicated by the numeral 7 in FIG. 2 from a beryiliumcopper alley, a disposable support of the type shown in FIG. 1 was vacuum formed from a thin polystyrene sheet onto a metal male mold to produce a runner and gate system of the type illustrated. A plurality of expandable patterns of the shape 7 shown in FlG. 2 were injection molded in accordance with conventional practice, each of the patterns having a cylindrical gate stem 6. The patterns were then cemented by means of a cement consisting of a solvent and a polystyrene material and the patterns mounted thereon similarly 'to the illustration shown in FIG. 2. The support and the mounted patterns were surrounded by a molding frame like frame 9 in FIG. 4. A plaster mix comprising calcium sulfate, asbestos fiber, an accelerator and silica and water was then prepared and poured into the molding frame and allowed to stand until the plaster had set, for example eight to fteen minutes.
The set mold was removed from the molding frame by slightly tapping the frame to dislodge it and the mold then placed cavity side down in `the burn-out oven and the temperature raised to approximately 1490" F. in about the first onethird of the heating cycle. The heating cycle was completed in the short time of three hours and the mold removed and sent to the casting station. The mold may be cooled down or used hot, depending on the casting shape and the alloy.
A cope comprising a plate of cellular glass (known in the trade as Foamglas) is applied to the mold by clamping it hydraulically and an asbestos sleeve inserted into the sprue hole of the cope (as in FIG. 8) for receiving the molten beryllium-copper alloy. Sufficient of the alloy which was melted down in a crucible furnace was poured into the sleeve until the metal lled the sprue. After the metal solidified, the cope was removed and the drag portion of the `mold broken laway from the casting which appeared like that shown in FIG. 9 except that the castings had the shape shown by the clement 7 of FIG. 2. The castings which were distributed in the same plane were easily removed by a cutoff machine. Inspection showed the castings to be of high quality, `the internal bores being particularly smooth and precise.
While it is preferred to make disposable pattern supports from thin plastic sheets (e.g. polystyrene), it will be appreciated that other disposable material may be employed, such as low ash paper of sufficient stiffness to support the patterns. The paper pattern support may be waxed to render it hydrophobic or otherwise treated so it does not soften and collapse when in Contact ywith a wet molding mixture. Or the disposable pattern support might constitute a very low melting eutectic alloy such as Woods metal or similar alloy. An example of such an alloy is one containing 52% Bi, 32% Pb and 16% Sn which melts at C., i.e. below the boiling point of water. A pattern support made of such `an alloy would be disposed of or removed by low temperature heating, for example, heating on a hot plate and the mold with the patterns thereafter subjected to burn-out in a furnace in the usual manner.
Iln the case of a styrene or wax support and patterns, besides removing the expendable materials by heat, they may be removed chemically by solution in methyl ethyl ketone, trichloroethylene or other suitable organic solvent. Whichever method is used, the expendable material is deemed to be destructively removed `whether it be removed by combustion at elevated temperatures, by melting, by means of a solvent, or by any other means that does not adversely affect the mold structure.
Preferably, the disposable pattern support is preformed to include raised areas which simulate a runner and gate system in the form of a tree. However, in the preforme state, the pattern support and the tree `are substantially planar in configuration, although in the reverse the support provides `a feeder gate system for feeding metal to the precision-formed cavities. Broadly, the tree by itself may constitute the support or be associated with the pattern support in other ways. IFor example, as shown in FIG. 3, it may be printed in outline form on the flat support sheet, the tree outline conforming substantially to an actual runner and gate system in the cope portion of the mold so that when expendable patterns are mounted on the support, the cavities formed therefrom Will be opposite and in cooperative relationship with the runner and gate system in the cope. Alternatively, a template may be used in arranging the patterns on the first support in tree-like distribution, the template conforming to the runner and gate system on the cope. Thus, in speaking of a pattern support having associated therewith a tree for locating expendable patterns thereon, it is meant to include the foregoing methods and other methods which will effect the desired result.
The expendable patterns attached to the support may be made from plastics such as styrene or nylon, rigid polyethylene and the like, or from waxes. `Examples of waxes which have been found paritcularly useful are those of the proprietary synthetic types of high surface tension.
While the cope portion of the mold is preferably made from heat and shock resistant silica glass, other types of insulating materials may be used, such as glass foam plate, alumina plate and asbestos.
The investment employed in making the mold may comprise any of the compositions used heretofore in investment mold casting, such as calcium sulfate bonded materials for non-ferrous alloys, certain phosphate bonded materials for ferrous and non-ferrous alloys, and silicate bonded materials also for ferrous and non-ferrous alloys.
My invention is `applicable generally to castable ferrous and nonferrous alloys.
It is apparent from the description that the invention provides many advantages over the investment casting techniques heretofore employed. By using disposable pattern supports of the flask type shown in FIG. 5, -ile.
9 with peripheral side rwalls for containing and 'conlining the mold material, the low cost makes possible the use of investments requiring longer curing times. Since no flasks would be tied up in the process, once the process of mold preparation gets underway, high cost saving will result. Because the disposable flask-like pattern support will be thin and very light, mold weight is maintained at a minimum. Thus, the flask type support shown in PFIG. provides low cost because of its i-nexpensiveness, because of the type y,and amount of materials required for the support and because of its method of manufacture.
Generally speaking, the advantages #include the marked reduction in time of mold preparation including burn-out time (reduced more than one third), the applicability of automatic techniques for mold preparation, the applicability lof the thin molds to gang pouring, etc. Since there is no flask to salvage and return to the system, mold break-out can be rapid since the mold is in effect a laminated composite, i.e. cope `and rag, wherein the drag is separated from the cope `and broken away from the casting. Moreover, since the castings in the drag mold lie in approximately the same plane, degat-ing is greatly simplied by using a simple series of straight cut-off wheel strokes. As stated hereinbefore, this simple geometry lends itself to the safe chop-stroke type yof abrasive cutting with much greater safety to the operator.
Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art will readily understand. Such modifications land variations are considered to be within the purview and scope of the invention and appended claims.
What is claimed is:
l. ln the preparation of a precision casting mold, the method of forming an expendable molding shape which comprises, providing `a pattern support or" substantially planar conguration of expendable material having associated therewith an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, providing a plurality of expendable precision molded patterns of the desired shape each having a gate stem, and mounting each of the patterns in spatial relationship in conformance with t-he runner and gate system at the terminus of each stem, the points of contact between the stems and the pattern support being substantially in the same plane.
2. ln the preparation of a precision casting mold, the method of forming an expendable molding shape which comprises, providing a pattern support of substantially planar configuration of a web of expendable plastic material having indicated thereon in raised areas an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, providing a plurality of expendable precision molded patte-rns of the `desired shape each having a gate stem, and mounting each of the patterns in spatial relationship within the runner and gate system of the tree at the terminus of each stern, the points of contact between the stems and the gates being substantially -in the same plane.
3. The method or" claim 2 wherein the pattern support is of rectangular shape in which the runner extends centrally along the support `and the gates extend transversely across the runner.
4. In the preparation of a precision casting mold, the method of forming an expendable molding shape which comprises, providing a pattern support of substantially planar configuration of a web of polystyrene material having formed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, providing `a plurality of expendable precision molded patterns of the desired shape each having a gate stem, and mounting each of the patterns in spatial relationship within the runner l@ and gate system of the tree `at the terrrfinus df each stem, the points Iof contact between the stems and the gates being substantially in the same plane.
5. In the preparation of ya precision casting mold, the method of forming an expendable molding ilask which comprises, providing a pattern support of substantially planar coniiguration of expendable plastic material having formed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, the periphery of the support having a continuous retaining rim extending upwardly therefrom, providing a plurality of expendable precision molded patterns of the desired shape cach lhaving a gate stem, and mounting each of the patterns -in spatial relationship within the runner and gate system of the tree at the terminus of each stem, the points of contact between the stems and the gates being substantially in the same plane.
6. A method of producing a drag element of `a precision casting mold which comprises, providing an expendable molding shape comprising an expendable pattern support of substantially planar configuration having associated therewith an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, each of the gates having mounted therealong 'a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stern with the points of contact between the stems of the patterns and the support therefor lying in the same plane, the expendable molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture against the expendable support and the mounted patterns of said molding shape, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
7. A method of producing a drag element of a precision casting mold which comprises, providing an expendable molding shape comprising an expendable pattern support of a web of plastic materials of substantially planar configuration having vformed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, each of the gates having mounted there-along a plurality of expenda le precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of contact between the stems of the patterns and the support therefor lying in the same plane, the expend-able molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture against the expendable support and the mounted patterns of said mold-ing shape, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
8. A method of producing a drag element of a precision casting mold which comprises, providing an expendable molding shape comprising an expendable pattern support `of a web of polystyrene material of substantially planar `configuration having formed as raised areas thereon an outline of a tree simulating a runner and .gate system conforming substantially to the plane of the support, each of the gates having mounted therealong a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of Contact between the stems of the patterns and the support therefor lying in the same plane, the expendable molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture Iagainst the expendable support and the mounted patterns of said molding shape, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
9. A method of producing a drag element of a precision casting mold which comprises, providing an expendable molding flask comprising an expendable pattern support of plastic material of substantially planar configuration having formed as raised areas thereon an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, the periphery of the support having a continuous retaining rim extending upwardly therefrom for conining molding material therein, each of the gates having mounted therealong a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of contact between the stems of the patterns and the support therefor lying in the same plane, supporting said expendable flask and pouring a molding mixture against its molding surface, causing said molding material to set, removing the expendable material from the mold, and subjecting said mold to a burn-out heating cycle.
10. A method of producing a laminated precision casting mold comprising a cope element cooperable relation with a drag element which comprises, providing an expendable molding shape ycomprising an expendable pattern support of substantially planar conguration having associated therewith an outline of a tree simulating a runner and gate system conforming substantially to the plane of the support, each of the gates having mounted therealong a plurality of expendable precision molded patterns in which each of the patterns is mounted at the terminus of its gate stem with the points of contact between the stems of the patterns `and the support therefor lying in the same plane, the expendable molding shape being adapted to receive a settable pouring mixture of molding material, pouring said mixture against the expendable support and the patterns of said molding shape, causing said mold-ing material to set, removing the expendable material from the mold, subjecting said mold to a burn-out heating cycle, providing a cope comprising 12 a plate of heat and shock resistant insulating material having sprue-feeding means adapted to register with the runner and gate system of the drag, and combining the two elements in cooperable relation with each other preparatory to casting metal therein.
11. in the preparation of a precision casting mold, the method of forming a molding shape which comprises, providing a pattern support of substantially planar configuration having associated therewith an outline of a tree simulating a runner and gate sy'stem conforming substantially to the plane of the support, providing a plurality of expendable precision molded patterns of the desired shape each having a sprue stem, and mounting each of the patterns in spacial relationship in conformance with the runner and gate system at the terminus of each sprue stem, the points of contact ybetween the sprue stems and the pattern support being substantially in the same plane.
References Cited in the file of this patent UNITED STATES PATENTS 1,349,829 Gibson Aug. 17, 1920 1,626,224 Campbell Apr. 24, 1927 1,744,571 Papazian Jan. 21, 1930 1,752,040 Traut Mar. 25, 1930 2,201,131 Jungersen May. 14, 1940 2,274,186 Brace Feb. 24, 1942 2,362,507 Steinbock et al. Nov. 14, 1944 2,394,394 Miller Feb. 5, 1946 2,797,458 Passemar July 2, 1957 2,830,343 Shroyer Apr. 15, 1958 2,908,951 lvelka Oct. 20, 1959 OTHER REFERENCES American Foundryman, I une 1948, pp. 43445. Precision Investment Castings, E. L. Cady, ReinholdI Publishing Co., pp. 11-17, 1948, copy in Div. 3.

Claims (1)

1. IN THE PREPARATION OF A PRECISION CASTING MOLD, THE METHOD OF FORMING AN EXPENDABLE MOLDING SHAPE WHICH COMPRISES, PROVIDING A PATTERN SUPPORT OF SUBSTANTIALLY PLANAR CONFIGURATION OF EXPENDABLE MATERIAL HAVING ASSOCIATED THEREWITH AN OUTLINE OF A TREE SIMULATING A RUNNER AND GATE SYSTEM CONFORMING SUBSTANTIALLY TO THE PLANE OF THE SUPPORT, PROVIDING A PLURALITY OF EXPENDABLE PRECISION MOLDED PATTERNS OF THE DESIRED SHAPE EACH HAVING A GATE STEM, AND MOUNTING EACH OF THE PATTERNS IN SPATIAL RELATIONSHIP IN CONFORMANCE WITH THE RUNNER AND GATE SYSTEM AT THE TERMINUS OF EACH STEM, THE POINTS OF CONTACT BETWEEN THE STEMS AND THE PATTERN SUPPORT BEING SUBSTANTIALLY IN THE SAME PLANE.
US50756A 1960-08-19 1960-08-19 Investment casting apparatus and method Expired - Lifetime US3114948A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US50756A US3114948A (en) 1960-08-19 1960-08-19 Investment casting apparatus and method
US320333A US3254379A (en) 1960-08-19 1963-10-31 Expendable molding shape for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50756A US3114948A (en) 1960-08-19 1960-08-19 Investment casting apparatus and method

Publications (1)

Publication Number Publication Date
US3114948A true US3114948A (en) 1963-12-24

Family

ID=21967226

Family Applications (1)

Application Number Title Priority Date Filing Date
US50756A Expired - Lifetime US3114948A (en) 1960-08-19 1960-08-19 Investment casting apparatus and method

Country Status (1)

Country Link
US (1) US3114948A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257692A (en) * 1964-10-28 1966-06-28 Howe Sound Co Graphite shell molds and method of making
US3314116A (en) * 1962-04-02 1967-04-18 Full Mold Process Inc Gasifiable casting pattern
US3362463A (en) * 1964-10-02 1968-01-09 Manginelli Ralph Method of making a porous investment mold
US4154282A (en) * 1976-05-24 1979-05-15 J. E. Hammer & Sohne Method of casting metal around a gem to form articles of jewelry
FR2515096A1 (en) * 1981-10-23 1983-04-29 Howmet Turbine Components METHOD FOR MAKING JOINTS BETWEEN THERMOPLASTIC BODIES
US6746528B1 (en) 2003-04-24 2004-06-08 Precision Metalsmiths, Inc. High temperature investment material and method for making solid investment molds
US20040221768A1 (en) * 2003-04-24 2004-11-11 Horton Robert A. High temperature investment material and method for making solid investment molds
US20050034834A1 (en) * 2003-08-14 2005-02-17 Chun-Yung Huang Method for manufacturing golf club head

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1349829A (en) * 1920-03-19 1920-08-17 Gibson William Pattern for making molds in which metals are cast
US1626224A (en) * 1924-12-03 1927-04-26 Donald J Campbell Molder's pattern
US1744571A (en) * 1928-08-13 1930-01-21 Ovanes S Papazian Mold
US1752040A (en) * 1928-04-02 1930-03-25 Ezra H Traut Mold
US2201131A (en) * 1937-04-28 1940-05-14 Thoger G Jungersen Method for casting jewelry and the like
US2274186A (en) * 1940-12-09 1942-02-24 Gen Refineries Inc Method of and apparatus for investing patterns under vacuum
US2362507A (en) * 1942-10-27 1944-11-14 Steinbock Method and means for producing commercial castings
US2394394A (en) * 1943-01-18 1946-02-05 Raymond J Miller Pattern having integral ventforming members
US2797458A (en) * 1954-06-28 1957-07-02 Passemar Felix Pierre Process for forming metallic moulds
US2830343A (en) * 1956-04-26 1958-04-15 Harold F Shroyer Cavityless casting mold and method of making same
US2908951A (en) * 1957-05-03 1959-10-20 William P Melka Tool for use in sand molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1349829A (en) * 1920-03-19 1920-08-17 Gibson William Pattern for making molds in which metals are cast
US1626224A (en) * 1924-12-03 1927-04-26 Donald J Campbell Molder's pattern
US1752040A (en) * 1928-04-02 1930-03-25 Ezra H Traut Mold
US1744571A (en) * 1928-08-13 1930-01-21 Ovanes S Papazian Mold
US2201131A (en) * 1937-04-28 1940-05-14 Thoger G Jungersen Method for casting jewelry and the like
US2274186A (en) * 1940-12-09 1942-02-24 Gen Refineries Inc Method of and apparatus for investing patterns under vacuum
US2362507A (en) * 1942-10-27 1944-11-14 Steinbock Method and means for producing commercial castings
US2394394A (en) * 1943-01-18 1946-02-05 Raymond J Miller Pattern having integral ventforming members
US2797458A (en) * 1954-06-28 1957-07-02 Passemar Felix Pierre Process for forming metallic moulds
US2830343A (en) * 1956-04-26 1958-04-15 Harold F Shroyer Cavityless casting mold and method of making same
US2908951A (en) * 1957-05-03 1959-10-20 William P Melka Tool for use in sand molding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314116A (en) * 1962-04-02 1967-04-18 Full Mold Process Inc Gasifiable casting pattern
US3362463A (en) * 1964-10-02 1968-01-09 Manginelli Ralph Method of making a porous investment mold
US3257692A (en) * 1964-10-28 1966-06-28 Howe Sound Co Graphite shell molds and method of making
US4154282A (en) * 1976-05-24 1979-05-15 J. E. Hammer & Sohne Method of casting metal around a gem to form articles of jewelry
FR2515096A1 (en) * 1981-10-23 1983-04-29 Howmet Turbine Components METHOD FOR MAKING JOINTS BETWEEN THERMOPLASTIC BODIES
US6746528B1 (en) 2003-04-24 2004-06-08 Precision Metalsmiths, Inc. High temperature investment material and method for making solid investment molds
US20040221768A1 (en) * 2003-04-24 2004-11-11 Horton Robert A. High temperature investment material and method for making solid investment molds
US6949136B2 (en) 2003-04-24 2005-09-27 Precision Metalsmiths, Inc. High temperature investment material and method for making solid investment molds
US20050034834A1 (en) * 2003-08-14 2005-02-17 Chun-Yung Huang Method for manufacturing golf club head

Similar Documents

Publication Publication Date Title
US4133371A (en) Casting
US3835913A (en) Investment casting
US2752653A (en) Method of and dies for forming hollow expendable patterns for casting
US3114948A (en) Investment casting apparatus and method
US3254379A (en) Expendable molding shape for precision casting
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
US3701379A (en) Process of casting utilizing magnesium oxide cores
US4938802A (en) Reusable ceramic mold
GB1378613A (en) Method of making moulds
JP3937460B2 (en) Precast casting method
US3041688A (en) Shell mold for investment castings and method of making same
US4003424A (en) Method of making ductile iron treating agents
US5266252A (en) Ceramic slip casting technique
US2003864A (en) Method of permanent mold manufacture
US3220071A (en) Combination ingot molds and cores and methods of making ingot molds and cores
GB1199673A (en) Method of Casting a Light Metal
US3257693A (en) Method and pattern material for precision investment casting
US3208115A (en) Investment molding
JPS561244A (en) Mold
JPH0741369B2 (en) Tree mold for the lost wax method and casting method
GB2047141A (en) Mould production
JP3300743B2 (en) Manufacturing method of ceramic mold
JPS5768245A (en) Manufacture and material of forming mold
SU427784A1 (en) METHOD OF MANUFACTURING OF FACED METAL CASTING FOILS
SU1184602A1 (en) Method of preparing ceramic moulds before pouring them with metal