US3114697A - Catalytic reforming of hydrocarbons - Google Patents
Catalytic reforming of hydrocarbons Download PDFInfo
- Publication number
- US3114697A US3114697A US834404A US83440459A US3114697A US 3114697 A US3114697 A US 3114697A US 834404 A US834404 A US 834404A US 83440459 A US83440459 A US 83440459A US 3114697 A US3114697 A US 3114697A
- Authority
- US
- United States
- Prior art keywords
- expressed
- catalyst
- beryllium
- alumina
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229930195733 hydrocarbon Natural products 0.000 title description 4
- 150000002430 hydrocarbons Chemical class 0.000 title description 4
- 238000001833 catalytic reforming Methods 0.000 title description 2
- 239000003054 catalyst Substances 0.000 claims description 33
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 19
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 16
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 14
- 229910052790 beryllium Inorganic materials 0.000 claims description 13
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000009835 boiling Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 150000001340 alkali metals Chemical class 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000003208 petroleum Substances 0.000 claims description 4
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000047 product Substances 0.000 description 14
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 9
- 239000011651 chromium Substances 0.000 description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- RFVVBBUVWAIIBT-UHFFFAOYSA-N beryllium nitrate Chemical compound [Be+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O RFVVBBUVWAIIBT-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 238000002407 reforming Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229940117975 chromium trioxide Drugs 0.000 description 2
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001399 aluminium compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001573 beryllium compounds Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/86—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G59/00—Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
- C10G59/02—Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural serial stages only
Definitions
- Catalysts of chromium oxide on a support, for example, alumina are known to have dehydrogenating and dehydrocyclising properties and various promoters have been proposed for improving such catalysts.
- a process for the dehydrogenation or dehydrocyclisation of feedstocks consisting of or containing non-aromatic hydrocarbons comprises contacting the feedstock at a temperature of from 450 to 580 C. with a catalyst comprising chromium oxide on a support preferably alumina, the catalyst containing also a minor proportion (with respect to the chromium oxide) of beryllium and a minor proportion (with respect to chromium oxide) of an alkali metal, preferably potassium.
- the beryllium and the alkali metal are preferably present in the form oxides.
- Preferably minor amounts, with respect to the chormium oxide, of one or more other promoting elements are present also, for example nickel, or cobalt.
- a catalyst containing minor amounts of beryllium, potassium and nickel is particularly preferred.
- the preferred proportions of catalyst components, by weight of total catalyst stable at 550 C. are:
- the process is preferably carried out at a pressure of not more than 50 p.s.i.g. without the addition of extraneous hydrogen and without recycle of the hydrogencontaining gas produced in the process. An appreciable quantity of such gas is produced, which is available as a valuable by-product.
- the term not more than 5 O p.s.i.g. includes atmospheric pressure or below, atmospheric pressure being in fact preferred.
- the preferred space velocity is 0.1 to 1.0 v./v./hr.
- the catalyst may be used in the form of a fixed bed, a moving bed or a fluidised bed. Since it is readily regenerated by burning oif carbonaceous deposits in a stream of oxygen-containing gas it is particularly suitable for fluidised or moving bed processes.
- the feedstock used should boil within the gasoline or naphtha range (i.e. up to 200 C.) and may be pure hydrocarbons, for example straight chain paratfins or cycloparafi'ins, or mixtures of hydrocarbons. Preferably a major proportion of the feedstock boils below 100 C.
- the feedstock may be a straight-run gasoline fraction.
- gasolines or gasoline blending components having a research octane number (clear) of at least 90 may be obtained from such fractions.
- the products With feedstocks at the lower boiling end of the gasoline range the products will also have a high volatility and may be for example at least 50% volume evaporated at 100 C.
- a particularly preferred feedstock is a light gasoline having an end boiling point of about 80 to 120 C.
- the feedstock may be the product of a previous catalytic reforming process so that the present invention includes a two-stage reforming process designed to produce aromatics and high octane gasoline fractions with preferably a research octane number (clear) of the order of 100.
- Any convenient reforming process may be used as the first stage, but those employing a catalyst of platinum on a support containing aluminium oxide with or Without halogen are preferred, such processes being hereinafter referred to as platinum reforming processes and the products as platinum reformates.
- the whole of the reformate from the first stage may be reformed in the second stage.
- the reformate may be fractionated and a portion only subjected to the further treatment.
- the portion may be a lower boiling relatively aromatic free fraction, preferably one with an end boiling point below C. or a higher boiling fraction still containing some non-aromatic hydrocarbons.
- the reformate may be solvent extracted and the raflinate or a fraction thereof subjected to the further treatment.
- the product may be recombined with the untreated fraction or the solvent extract as the case may be, but it may also be combined with other high octane components, for example heavy cat. cracked gasoline or alkylate.
- the catalyst may be prepared by any convenient method.
- the base may be impregnated with all the constituents together, or two or more solutions containing different constituents may be used in succession.
- the impregnated base is dried and calcined.
- the alumina base may be co-precipitated from a solution, containing aluminium and either chromium or beryllium or both, with alkali, and the precipitate Washed, dired, and calcined.
- the alkali metal may be subsequently added by impregnation, together with any constituent not co-precipitated.
- the catalyst is then again dried and calcined.
- An insoluble chromium or beryllium compound or both may be milled into the alumina base, further constituents added by impregnation and the catalyst dried and calcined.
- the present invention includes a catalyst comprising chromium oxide on a support, preferably alumina, the catalyst containing also a minor proportion (with respect to the chromium oxide) of beryllium and a minor proportion (with respect to the chromium oxide) of an alkali metal, preferably potassium.
- the beryllium and .the alkali metal are preferably present in the form of oxides.
- the catalyst may contain minor amounts of one or more other promoters as detailed above and the preferred proportions of catalyst components are also as set out above.
- EXAMPLE 1 A solution containing 24 g. Analar chromium trioxide, 4 g. Analar potassium nitrate (KNO 5.5 g. beryllium nitrate [Be(NO .3H O] and 3 g. Analar" nickel nitrate [Ni(NO .6H O] was used to impregnate 160 g. of alumina which had previously been calcined at 550 C. for two hours. The impregnated alumina was then dried for one hour at C. and calcined for two hours at 550 C.
- EXAMPLE 2 A solution containing 24 g. Analar chromium trioxide, 4 g. Analar potassium nitrate (KNO 14 g. beryllium nitrate [Be(NO .3H O], 3.5 g. Analar cobalt nitrate [Co(NO .6H O] and 3.5 g. Analar nickel nitrate [Ni(NO .6H O] was used to impregnate 160 g. of alumina which had previously been calcined at 550 C. for two hours. The impregnated alumina was then dried for one hour at 130 C. and calcined for two hours 10 at 550 C.
- Runs were carried out at two temperatures-475 C. and 530 C.
- a process for the treatment of a petroleum feedstock consisting essentially of non-aromatic hydrocarbons boiling within the range encompassed by the gasoline and naphtha range to produce a product having an increased aromatic content comprising contacting the feedstock in a reaction zone with a catalyst consisting essentially of 5 to of chromium oxide, expressed as Cr O 0.1 to 5% of beryllium, expressed as BeO; 0.11 to 5% of an alkali metal, expressed as alkali metal oxide, about 0.1 to 5% of nickel, expressed as NiO; about 0.1 to 5% of cobalt, expressed as C00, and balance alumina, all percentages being by weight of total catalyst material stable at 550 C., at a temperature of 450 to 580 C., at a pressure not in excess of about p.s.i. ga., at a space velocity of 0.1 to 1.0 v./v./hr., and in the absence of Table 3 Reaction temperature 475 0. 530 C.
- a process for the treatment of a petroleum feedstock consisting essentially of non-aromatic hydrocarbons boiling within the range encompassed by the gasoline and naphtha range to produce a product having an increased aromatic content comprising contacting the feedstock in a reaction zone with a catalyst consisting essentially of 5 to 25% of chromium oxide, expressed as Cr O 0.1 to 5% of beryllium, expressed as BeO; 0.1 to 5% of an 0 alkali metal, expressed as alkali metal oxide, about 0.1 to 5% of nickel, expressed as NiO, and balance alumina,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB27463/58A GB857504A (en) | 1958-08-27 | 1958-08-27 | Improvements relating to the catalytic reforming of hydrocarbons |
Publications (1)
Publication Number | Publication Date |
---|---|
US3114697A true US3114697A (en) | 1963-12-17 |
Family
ID=10260002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US834404A Expired - Lifetime US3114697A (en) | 1958-08-27 | 1959-08-18 | Catalytic reforming of hydrocarbons |
Country Status (5)
Country | Link |
---|---|
US (1) | US3114697A (is") |
BE (1) | BE581979A (is") |
DE (1) | DE1107862B (is") |
FR (1) | FR1233404A (is") |
GB (1) | GB857504A (is") |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285985A (en) * | 1963-05-01 | 1966-11-15 | Gulf Research Development Co | Process for dehydrocyclization of hydrocarbons |
US3893908A (en) * | 1972-08-31 | 1975-07-08 | Standard Oil Co | Reforming with catalysts containing a group VIA metal component and technetium as a promoter |
US4347123A (en) * | 1980-05-05 | 1982-08-31 | Exxon Research & Engineering Co. | Reforming with multimetallic catalysts |
US5378350A (en) * | 1988-12-12 | 1995-01-03 | Linde Aktiengesellschaft | Process and catalyst for dehydrogenation or dehydrocyclization of hydrocarbons |
US20130302241A1 (en) * | 2010-11-16 | 2013-11-14 | Stichting Energieonderzoek Centrum Nederland | Catalyst for hydrogen production |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2441297A (en) * | 1944-05-03 | 1948-05-11 | Union Oil Co | Process for dehydrogenation of hydrocarbons by contact with catalysts supported on alumina stabilized by aluminum phosphate |
US2705733A (en) * | 1950-05-20 | 1955-04-05 | Basf Ag | Purification of crude benzene |
US2754345A (en) * | 1952-04-01 | 1956-07-10 | Exxon Research Engineering Co | Catalytic dehydrogenation of hydrocarbons |
US2787583A (en) * | 1954-08-24 | 1957-04-02 | Kellogg M W Co | Naphtha hydroforming process |
US2897135A (en) * | 1957-01-31 | 1959-07-28 | Union Oil Co | Hydrocarbon conversion process and catalyst |
US2898290A (en) * | 1954-01-04 | 1959-08-04 | Exxon Research Engineering Co | Hydrocarbon conversion process and apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2536085A (en) * | 1946-10-28 | 1951-01-02 | Phillips Petroleum Co | Preparation of gel-type dehydrogenation catalyst |
US2586377A (en) * | 1947-12-31 | 1952-02-19 | Phillips Petroleum Co | Dehydrogenation of hydrocarbons with synthetic gel-type metal oxide catalysts |
-
0
- BE BE581979D patent/BE581979A/xx unknown
-
1958
- 1958-08-27 GB GB27463/58A patent/GB857504A/en not_active Expired
-
1959
- 1959-08-18 US US834404A patent/US3114697A/en not_active Expired - Lifetime
- 1959-08-24 FR FR803410A patent/FR1233404A/fr not_active Expired
- 1959-08-26 DE DEB54558A patent/DE1107862B/de active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2441297A (en) * | 1944-05-03 | 1948-05-11 | Union Oil Co | Process for dehydrogenation of hydrocarbons by contact with catalysts supported on alumina stabilized by aluminum phosphate |
US2705733A (en) * | 1950-05-20 | 1955-04-05 | Basf Ag | Purification of crude benzene |
US2754345A (en) * | 1952-04-01 | 1956-07-10 | Exxon Research Engineering Co | Catalytic dehydrogenation of hydrocarbons |
US2898290A (en) * | 1954-01-04 | 1959-08-04 | Exxon Research Engineering Co | Hydrocarbon conversion process and apparatus |
US2787583A (en) * | 1954-08-24 | 1957-04-02 | Kellogg M W Co | Naphtha hydroforming process |
US2897135A (en) * | 1957-01-31 | 1959-07-28 | Union Oil Co | Hydrocarbon conversion process and catalyst |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285985A (en) * | 1963-05-01 | 1966-11-15 | Gulf Research Development Co | Process for dehydrocyclization of hydrocarbons |
US3893908A (en) * | 1972-08-31 | 1975-07-08 | Standard Oil Co | Reforming with catalysts containing a group VIA metal component and technetium as a promoter |
US4347123A (en) * | 1980-05-05 | 1982-08-31 | Exxon Research & Engineering Co. | Reforming with multimetallic catalysts |
US5378350A (en) * | 1988-12-12 | 1995-01-03 | Linde Aktiengesellschaft | Process and catalyst for dehydrogenation or dehydrocyclization of hydrocarbons |
US20130302241A1 (en) * | 2010-11-16 | 2013-11-14 | Stichting Energieonderzoek Centrum Nederland | Catalyst for hydrogen production |
US9168511B2 (en) * | 2010-11-16 | 2015-10-27 | Stichting Energieonderzoek Centrum Nederland | Catalyst for hydrogen production |
Also Published As
Publication number | Publication date |
---|---|
DE1107862B (de) | 1961-05-31 |
BE581979A (is") | |
FR1233404A (fr) | 1960-10-12 |
GB857504A (en) | 1960-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3389965A (en) | Process for producing hydrogen by reaction of a hydrocarbon and steam employing a rhenium-containing catalyst | |
US2890167A (en) | Conversion process using a phosphoruscontaining platinum group metal catalyst | |
US3296118A (en) | Hydroforming with a platinum catalyst | |
US3825487A (en) | Method for simultaneously producing synthetic natural gas and high octane reformate | |
EP0382960B1 (en) | An improved reforming process for the catalytic conversion of petroleum fractions to a mixture of hydrocarbons rich in aromatics | |
US2668142A (en) | Reforming process and catalysts | |
US3001929A (en) | Catalytic reforming of non-aromatic hydrocarbons | |
US2944006A (en) | Hydrocracking of a hydrocarbon distillate employing a sulfide of nickel or cobalt, disposed on an active siliceous cracking catalyst support | |
US3865750A (en) | Titanium carbide catalysts, and the catalyst compositions | |
US2779715A (en) | Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst | |
US4222854A (en) | Catalytic reforming of naphtha fractions | |
US3092567A (en) | Low temperature hydrocracking process | |
US2967822A (en) | Catalytic reforming of petroleum hydrocarbons with an alumina-chromium oxide catalyst comprising boron oxide | |
US2630404A (en) | Hydrocarbon conversion process | |
US3114697A (en) | Catalytic reforming of hydrocarbons | |
US3027413A (en) | Production of benzene from a c5 to c7 hydrocarbon fraction | |
US3365392A (en) | Lpg-reforming process in the presence of sulfur and catalyst comprising platinum, alumina and a molecular sieve | |
US3567625A (en) | Hydroforming with promoted iridium catalyst | |
US3116232A (en) | Process for upgrading cracked gasoline fractions | |
US3016346A (en) | Hydrodesulfurization process and catalyst therefor | |
US3442796A (en) | Continuous low pressure reforming process with a prereduced and presulfided catalyst | |
US3761395A (en) | Jet fuel and motor fuel production by hydrofining and two stage hydrocracking | |
US2889263A (en) | Hydroforming with hydrocracking of recycle paraffins | |
US3016348A (en) | Manufacture and use of sulfided hydrocarbon purification catalyst | |
US3424669A (en) | Reforming-aromatization process with sulfided catalyst |