US3114192A - Process for producing non-pilling polyamide fibers - Google Patents

Process for producing non-pilling polyamide fibers Download PDF

Info

Publication number
US3114192A
US3114192A US177762A US17776262A US3114192A US 3114192 A US3114192 A US 3114192A US 177762 A US177762 A US 177762A US 17776262 A US17776262 A US 17776262A US 3114192 A US3114192 A US 3114192A
Authority
US
United States
Prior art keywords
fiber
tow
value
toughness
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US177762A
Inventor
Otto J Matray
Jr William H Stine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US177762A priority Critical patent/US3114192A/en
Application granted granted Critical
Publication of US3114192A publication Critical patent/US3114192A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with hydrogen peroxide or peroxides of metals; with persulfuric, permanganic, pernitric, percarbonic acids or their salts
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes
    • D02G1/127Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes including drawing or stretching on the same machine
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/21Nylon

Definitions

  • This invention relates to synthetic polyamide filaments which are oarticularl useful when out or broken into staple lengths and to a process for their production.
  • Fib ggs prepared from synthetic linear polyamides have proved superior to natural fibers in many respects and are particularly noteworthy for their increased durability.
  • the finished article becomes unsatisfactory in appearance after short usage due to excessive pilling and fuzzing. Filling refers to the formation of little balls of; fiber on the surface of the finished is due to the entanglement of loose fibers. less welled fiber entanglements are called fuzz.
  • the objects of this invention are accomplished by the production of a crimped synthetic linear polyamide fila men having weal: spots in the length thereof and characterized with respect to Weak spot frecuency and severity by a value for the ratio T /T no greater than 0.80, where T is the average break tenacity in grams per denier of a one-inch filamen sample and T is the average tenacity determined on -he minimum sample length (zero distance between the aws of the tester).
  • the filament may also be charac -ized as to weal; spot severity (the extent of degradati at a weal; spot) by a significant reduction in the loop toughness value and in molecular t at the weak spots.
  • the filament is lurther characterized as to weak spot severity, abrasion resistance and durability by the relationship of average molecular weight to loop toughness and by a number average molecular weight greater than 5803.
  • the process for producing the polyamide filaments of this invention comprises crimping the filaments in the conventional manner and then treating them with an oxidizing agent, the treatment being continued for a sufiicient period to prod ce spot degradation in the filament.
  • crimped filaments are treated with an aqueous solution of hydrogen peroxide and excess solution is emoved as by centrifuging the treated filaments which are then heated to complete the reaction.
  • the processed filaments should contain from 1-2095 H based on the dry weight of the filaments.
  • the break tenacity T of zero length and 1-inch samples is measured enerally, twenty-five samples of each length are tested and the tenachy values averaged. After the samples have been tested and averaged, the ratio T T is calculated.
  • a commercial yarn tester such as an lnstron Tester is used in making the tenacity measurements.
  • the sample length is the distance between the jaws of the tester when the sample is extended adequately to just remove the crimps.
  • the rate of elongation is per minute. In measuring the zero length tenacity, the jaws of the tester are butted together at the beginning of the test.
  • loop toughness is the amount of work, in gr. cur/cm. den, required to breal: a fiber loop multiplied by 100 and is determined by measuring the area under the stress-strain curve obtained when a loop or" the fiber is broken in a commercial tester such as the lnstron Tester. in this test both ends of a short length of fiber are fastened in one jaw of the test apparatus to form a loop. A similar length of the fiber is passed through LllS loop and has both of its ends fastened in the other jaw to form a second loop. One or" the fibers is then broken, the rate of elongation being 66% per minute.
  • each loop measured from the jaw to the loop center is 0.5 inch, the distance between the jaws being one inch.
  • the test is carried out at 72% room humidity and 70 F. and the fiber is brought to equi brium under these conditions before being tested.
  • the loop toughness value is a characterization of weak spot severity.
  • the abrasion resistance of fibers is determined by hanging 14 samples or" the fiber, under a tension of 0.2 ram per denier, over a horizontally positioned abrasive rod 12 inches in length and /2 inch in diameter, rotating the rod at 290 r.p.m. and recording the number of revolutions required to break each individual fiber. The average value is then taken as the single fiber abrasion. The required tension may be applied to the fiber by fixing one end in a clamp positioned 2 inches horizontally from the top of the rod and attaching a weight to the other end of the filament.
  • the abrasive rods employed in obtaining the values recorded in the examples are India Abrasive RodsCoarseC.F.-24. Since different abrasive rods may give some difference in abrasion resistance values, comparisons should always be made using the same rod and the test fiber should always be compared with a control such as wool.
  • Polyhexamethylene adipamide having a relative viscosity of 45 is prepared and melt extruded in the conventional manner to produce a tow consisting of 15 denier filaments.
  • the tow is cold drawn to a draw ratio of 4.05 and then crimped mechanically by passing it first through an atmosphere of live steam to moisten the filaments and then through a stuifer box crimper where it is subjected to sufficient pressure to provide an average of 15 crimps per inch in each filament.
  • the crimped tow is then placed in glass fiber bags and soaked in a 16% aqueous solution of hydrogen peroxide for 30 minutes at room temperature after which it is centrifuged to remove excess solution.
  • the centrifuged tow containing 15% of the peroxide solution based on the dry weight of the fiber, is steamed for 1 hour at 26 p.s.i. pressure. After drying, 25 samples of filaments are taken at random from the tow and the severity and the frequency of the weak spots determined by measuring the breaking tenacity of zero length and l-inch samples as described above.
  • the breaking tenacity for the 1-inch sample, T is found to be 0.86 g.p.d. and that of the zero length sample 1.45 g.p.d., giving a ratio T /T of 0.59.
  • the tenacity of a 1-inch sample of untreated fiber is 5.21 g.p.d. and the zero length tenacity is 5.42, giving a ratio of 0.96.
  • the loop toughness of filaments removed from the tow is determined as described previously using a commercial Instron Tester with an integrator attachment and found to be 6 as compared to a value of 140 for untreated fiber.
  • Additional samples of filaments are taken from the tow and broken in the Instron Tester, using a 2-inch sample length. The broken ends are then clipped off at a distance of Ms inch from the point of break and these clippings collected to determine the relative viscosity.
  • the relative viscosity of the clippings is found to be 12, which corresponds to a molecular weight of 5,900.
  • the relative viscosity of the entire filament is determined and found to be 17.1 which corresponds to a molecular weight of 7,600 and a molecular weight reduction at the weak spots of 22%.
  • the value for the molecular weight to toughness expression toughness is 433.
  • the abrasion resistance of filaments removed from the tow is determined as described previously and found to be 5500.
  • a comparative test on a high-grade wool gives a value of 200.
  • the tow is cut into 3-inch staple in the conventional manner and processed into 2/55s yarn, Philadelphia System, using the conventional wool process.
  • the yarn is given a singles twist of 4.5Z and a ply twist of 3.08.
  • the yarn is then woven into a 30-02. per square yard, 198 pitch (warp ends per 27-inch width) plain, valvet-weave, loop pile carpet having eight rows per inch in the warp direction, the wire height of the loom being 0.375 inch.
  • a section of the carpet is placed on a stairway where only down trafiic is permitted and a contact-type counting device is installed at the head of the stairway to count the number of persons, or traffic cycles, going down the stairs.
  • a contact-type counting device is installed at the head of the stairway to count the number of persons, or traffic cycles, going down the stairs.
  • adjacent sections of untreated nylon and wool carpets of similar construction are installed. After about 5000 cycles, the appearance of the untreated nylon carpet is unacceptable due to pilling and fuzzing while that of the carpet of this invention is equivalent to the wool carpet and entirely satisfactory in this respect. After 15,000 cycles (equivalent to 2 /24 years of normal household wear) the wool carpet is worn to the point that it is judged unacceptable in appearance by experts in the carpet field.
  • the carpet of this invention
  • EXAMPLE II Crimped nylon tow having 18 crimps per inch is prepared from polymer having a relative viscosity of 47 and treated in the same manner as described in Example 1, except that the concentration of peroxide in the aqueous solution is 5% and the tow after centrifuging contains based on the dry weight of the fiber, of the peroxide solution.
  • T is found to be 2.15 and T is 4.92 g.p.d., giving a T /T ratio of 0.44.
  • the loop toughness of the treated fiber is 14 as compared to a value of 147 for the untreated fiber. 72% of the breaks occur at the crimp nodes.
  • the relative viscosity of the treated fiber is 24 which corresponds to a molecular weight of 10,500.
  • the value? for the molecular weight to toughness expression is 550.
  • the relative viscosity in the immediate vicinity of a weak spot Az-inch clipping from the break point) is 15 which corresponds to a molecular weight of 6,900 and a molecular weight reduction of 34%.
  • EXAMPLE HI Crimped nylon tow having 22 crimps per inch is prepared from polymer having a relative viscosity of 45 as described in Example I and treated with hydrogen peroxide as described in Example II.
  • the T value for this fiber is found to be 2.22 g.p.d. and the T value 2.82 g.p.d. to give a T T ratio of 0.79.
  • Observation of 50 fiber breaks reveals that 64% of the breaks occur at the crimp nodes.
  • the fiber abrasion resistance is 3380 as compared to a value of 200 for wool.
  • the loop toughness is 13.3 as compared to a value of 207 for untreated fiber.
  • the relative viscosity of the fiber is 21 which corresponds to a molecular weight of 9,000.
  • the value for the molecular weight to toughness expression is 300.
  • the relative viscosity in the immediate vicinity of a Weak spot (Ms-inch clipping from the break point) is 14.7 which corresponds to a molecular weight of 6700 and a molecular weight reduction of 25%. tow is cut into 3-inch staple and processed into a carpet, as described in Example I, the pilling and fuzzing performance is found to be satisfactory and the durability of the carpet is about 5 times that of wool.
  • EXAMPLE IV Crimped nylon tow having 30 crimps per inch is prepared from polymer having a relative viscosity of 46, treated with hydrogen peroxide and heated as described in Example I, except that the concentration of hydrogen peroxide is 5% and the tow after centrifuging contains 60% of the peroxide solution, based on the dry weight of the fiber.
  • the loop toughness of the fiber after treatment with peroxide and drying is found to be 15 as compared to a value of for the untreated fiber.
  • the break tenacity for the 1-inch sample, T is 1.99 and the T value 4.96 g.p.d. to give a T T ratio of 0.40.
  • mediate vicinity -of a weak spot (Ma-inch clipping from the break point) is 12.3 which corresponds to a molecular weight of 6000 and a molecular weight reduction of 27%.
  • the abrasion resistance of the fiber is 4880 as compared to 200 for wool.
  • Crimped nylon tow having 21 crimps per inch and a filament denier of 19 is prepared from polymer having a relative viscosity of 45, treated with hydrogen peroxide and heated as in Example 1, except that the fiber is soaked in 5% aqueous hydrogen peroxide solution followed by centrifuging for 30 minutes. After centrifuging, the treated fiber contains based on the dry weight of the fiber, of the peroxide solution.
  • the T value for this fiber is found to be 1.19 g.p.d. and the T value 2.47 to give a ratio T /T of 0.48. Observation of 50 fiber breaks reveals that 96% occur at the crimp nodes.
  • the relative viscosity of the fiber is 19 which corresponds to a molecular weight of 8200.
  • the loop toughness of the fiber is 5 as compared to 155 for the untreated fiber.
  • the value for the molecular weight to toughness expression is 640.
  • the fiber has an abrasion resistance of 4800 as compared to a value of 400 obtained under identical conditions on wool.
  • the tow is cut into staple and processed into carpet as described in Example I. When the carpet is subjected to wear on a stairway, it withstands 84,000 cycles before becoming unacceptable in appearance and the pilling and fuzzing is no greater than observed on a wool carpet subjected to the same test. The wool carpet is worn to an unacceptable degree after 24,000 cycles.
  • EMMPLE VI Nylon tow having 21 crimps per inch is prepared from polymer having a relative viscosity of 45 as described in Example I.
  • the tow is soaked in a 2% aqueous hydrogen peroxide solution for 30 minutes and then centrifuged to remove excess solution.
  • the centrifuged tow contains 10%, based on the dry weight of the fiber, of the peroxide solution.
  • the tow is then steamed as described in Example I.
  • the T Value for this fiber is 1.97 g.p.d. and the T value 2.69 to give a T /T ratio of 0.73. Observation of 50 fiber breaks reveals that 100% occur at the crimp nodes.
  • the loop toughness of the fiber is 15.
  • the relative viscosity of the fiber is 22.9 which corresponds to a number average molecular weight of 9500.
  • the value for the molecular weight to toughness expression is 300.
  • the fiber abrasion resistance is 5900 as compared to 400 for W001 tested under identical conditions.
  • the treated fibers have a toughness of which value is the upper limit of the preferred range and T /T ratio value of 0.73 which value approaches the critical limit.
  • the carpet withstand over 4 times as many trafiic cycles as a wool carpet, tested simultaneously, before becoming unacceptable in appearance due to wear.
  • Nylon tow having 15 crimps per inch was prepared from polymer having a relatively viscosity of 45 as described in Example I.
  • the tow was soaked in a 15% aqueous hydrogen peroxide solution for 30 minutes and then centrifuged to remove the excess liquid.
  • the centrifuged tow contained 15% of the peroxide solution, based on the dry weight of the fiber.
  • the tow was then steamed as described in Example I.
  • the T value is 1.64 g.p.d. and the T value 3.39 g.p.d. to give a T /T ratio of 0.48.
  • Observation of 50 fiber breaks reveals that 96% occur at the crimp nodes.
  • the loop toughness of 6 the fiber is 4.4.
  • the relative viscosity of the fiber is 20.3 which corresponds to a number average molecular weight of 8700.
  • the value for the molecular weight to toughness expression is 613.
  • the abrasion resistance is 4750 as compared to 400 for wool tested under identical conditions.
  • Nylon tow having 30 crimps per inch is prepared from polymer having a relative viscosity of 46, treated with peroxide and heated exactly as described in Example Vll.
  • the T value for this fiber is found to be 0.90 g.p.d. and the T value 1.94 g.p.d. to give a ratio T /T of 0.46.
  • Observation of 50 fiber breaks reveals that occur at the crimp nodes.
  • the loop toughness of the fiber is 5.2 and the abrasion resistance is 2700 as compared to a value of 200 for wool tested under identical conditions.
  • the relative viscosity of the fiber is 12.4 which corresponds to a number average molecular weight of 6000.
  • the value for the molecular weight to toughness expression is 192.
  • EXAMPLE IX Polyhexamethylene adipamide was spun and drawn 4X to give a tow of 20 denier filaments having a trilobal cross section of the type described in Holland US. 2,939,201, the modification ratio of the cross section being 2.4 and the tip radius ratio being 0.25.
  • the tow was crirnped to 12 crimps/inch in a stuifer box crimper, soaked for 30 minutes in an 11% solution of H 0 in water and centrifuged to a solution content of 10%, based on original weight of tow.
  • the tow was placed in a pressure vessel which was evacuated for 5 minutes and then was heated for 45 minutes by steam injected internally at a pressure of 27 lbs./in. It was cut to 3-inch staple and processed to woven carpet by the procedure described in Example I.
  • the yarn from which the carpet was made had a tenacity of 1.23 g.p.d. and a loop toughness of 5.3..
  • the carpet was laid on a hallway carrying heavy foot trafiic and was found to have an acceptable level of fuzzing and pilling, high resistance to wear and a durability over three times that of wool.
  • EXAMPLE X A 6 nylon tow having a filament denier of 15 is produced by extruding poly-e-caproamide having a relative viscosity of 54. The tow is cold drawn to a ratio of 4.0 in the conventional manner, crimped as described in Example I and cut into 3-inch staple. The crimped staple is soaked in 15% aqueous hydrogen peroxide for 30 minutes and then centrifuged to remove the excess liquid. The centrifuged tow, containing 15% of the peroxide solution, based on the dry weight of the fiber, is then heated for 30 minutes in steam at 20 p.s.i. The T value for this fiber is 0.99 g.p.d. and the T value 1.85 g.p.d.
  • T /T ratio 0.54.
  • Observation of 50 fiber breaks reveals that 87% occur at the crimp nodes.
  • the relative viscosity of the fiber is 14.6 which corresponds to a molecular weight of 7500.
  • the loop toughness of the fiber is 6.
  • the value for the molecular weight to toughness expression is 417.
  • the abrasion resistance of the fiber is 6100 as compared to 400 for W001.
  • the staple is processed into a carpet as described in Example I. The pilling, fuzzing, and durability performance 'to give a T /T ratio of 0.63.
  • the crimped tow is soaked in 20% aqueous hydrogen peroxide solution for 30 minutes and centrifuged to remove the excess liquid. The centrifuged tow retains 20% of the peroxide solution, based on the dry weight of the fiber. It is then steamed as described in Example I.
  • the T value for the treated fiber is found to be 1.67 g.p.d. and the T value 2.74 g.p.d., to give a T /T ratio of 0.6 1.
  • Observation of 50 fiber breaks reveals that 95% occur at crimp nodes.
  • the inherent viscosity of the fiber is 0.54 which corresponds to a molecular weight of 7400.
  • the loop toughness of the fiber is 11 as compared to a value of 96 for the untreated fiber.
  • the value for the molecular weight to toughness expression is 218.
  • the abrasion resistance of the fiber is 2042 as compared to a value of 100 for W001 tested under identical conditions.
  • EXAMPLE XII Following the general procedure outlined in Example I of U.S. Patent 2,512,606, di-(p-arninocyolohexyl)methane was prepared, reacted with sebacic acid to form a salt and the salt polymerized to give a polymer having an inherent viscosity of 0.95.
  • the polymer was melt extruded in the conventional manner at a temperature of 300 C. to form a tow of 30,00 total denier, the denier per filament being 2.
  • the tow is hot drawn to a ratio of 3.3 and crimped as described in Example I, the tow after crimping having 30 crimps per inch on the average.
  • the crimped tow is soaked for 30 minutes in a 20% aqueous hydrogen peroxide solution and then centrifuged to remove excess liquid. 'Ilhe centrifuged tow retains 20% of the peroxide solution, based on the dry weight of the fiber.
  • the tow is then steamed as described in Example I.
  • the T value is 1.69 g.p.d. and the T value 2.70 g.p.d. Observation of 50 fiber breaks reveals that 98% occur at the crimp nodes.
  • the inherent viscosity of the fiber is 0.76 corresponding to a molecular weight of 11,300.
  • the loop toughness of the fiber is 20 as compared to a value of 164 for the untreated fiber.
  • the value for the molecular weight to toughness expression is 315.
  • the abrasion resistance of the fiber is 3300 as compared to a value of 100 for wool tested under identical conditions.
  • s yarns (Philadelphia System) having a twist of 12Z. These yarns are knitted into mens socks which are compared :for pi'lling and fuzzing by means of a wear test.
  • each wearer has one sock made from control yarn and one sock made from yarn of low toughness.
  • the control sock shows noticeable pilling and fuzzing; at 10 wearings this becomes objectionable and at 20 wearings the pilling and f-uzzing of the control sock is very severe.
  • the sock made from treated staple was in very good condition at 5 and 10 wearings and showed only slight pilling after 20 wearings.
  • Example XIV Yarns prepared as in Example XIII are Woven into standard flannel fabrics which are tested for pitling, without brushing or shearing, in an Accelerotor.
  • an Accelerotor test 4 x 4 inch samples of fabric are turn-bled in a small vessel having a hard rubber inner surface by means of a mechanical agitator for varying lengths of time I up to minutes.
  • the control and test fabrics are examined to determine the degree of pilling and fuzzing.
  • EXAMPLE XV A tow of 66 nylon was spun and drawn to give a product having a trilobal cross section of the type described in Example IX and .a filament denier of 15. This was steam-crimped as described in the copending application of Breen and Lauterbach, Serial No. 698,103, filed November 22, 1957, to give fibers having 14 c.p. i. This tow was soaked in 19.4% H 0 solution for 40 minutes. evacuated for 5 minutes and then heated for 50 minutes under steam at 27 p.s.i. After treatment the yarn had a T value of 0.84 g.p.d.
  • This carpet showed acceptable pilling and fuzzing and was not perceptibly different from carpet made from treated trilobal fibers of the same tenacity which had been crimped in a stuifer box.
  • EXAMPLE XVI Polyhexamethylene adipamide is prepared and extruded as described in Example I to produce a tow consisting of 42,000 filaments.
  • the tow is cold drawn to a draw ratio of 4.0 and a filament denier of 12, crimped mechanically by passing it through a :s-tuffer box crimper where it is subjected to sufiicient pressure to provide an average of This tow was placed in a pressure vessel which was 15 crimps per inch in the filaments and then cut to 6% inch staple in the conventional manner.
  • a 130-pound load of the staple is then placed in a basket type centrifuge.
  • An aqueous hydrogen peroxide solution of 10% concentration by weight is sprayed on the staple by means of nozzles located in the center of the centrifuge, while the centrifuge is rotating at 110 rpm. Seven-hundred gallons of the hydrogen peroxide solution are sprayed on the staple fiber over a period of 15 minutes.
  • the sprayer is turned off and rotation of the centrifuge is continued at 110 rpm. for 5 minutes.
  • the speed of the centrifuge is then increased to 550 rpm. for 10 minutes.
  • the excess hydrogen peroxide solution which is thrown off in the centrifuge is returned to a storage tank for recycling.
  • the centrifuged staple contains, by analysis, 3% H based on the dry weight of the After removal from the centrifuge, it is placed iharectangular container, the bottom of the container consistin of a coarse screen to permit passage of gases upwardly through the treated staple.
  • the loaded container is then placed in an autoclave where a vacuum equal to 25 in. mercury is applied for 5 minutes. Steam at 30 p.s.i.g. is then passed upwardly through the mass of fiber for 50 minutes.
  • the steam is supplied by perforated pipes located beneath the container, tie autoclave and container being so designed that a seal is provided around the lower periphery of the container to prevent the escape of steam around the outside of the container.
  • the staple is then removed from the autoclave and dried in the conventional manner.
  • T When break tenacity values are obtained on the dried staple fibers, T is found to be 1.27 and T is 2.28 g.p.d., giving T /T ratio of 0.56.
  • the loop toughness of the treated fiber is 6 as compared to a value of 200 for the original, untreated fiber.
  • the polyamide fibers of this invention may be processed into woven and knitted structures, such as carpets, socks and fabrics to give greatly improved performance with respect to fuzzing and pilling, the improvement being such that the finished article remains entirely satisfactory in appearance after extended usage.
  • the durability of the finished article is still far superior to that of natural fiber articles, such as wool. This is particularly surprising since the loop toughness of the fiber is reduced to a level substantially below that of wool and the severe treatment given the yarn to reduce the toughness to such low levels would normally be expected to damage the fibers to such an extent that they would be of no further value for fabrication into finished articles.
  • the desired balance of properties is achieved in a fiber having a T /T value no greater than 0.80 and a loop toughness in the range of from 2 to 27.
  • a T T 0 ratio no greater than 0.80 assures that there is at least one weak spot per inch since, in substantially all of the individual T determinations made, it is observed that the breaking tenacity is significantly reduced as compared to the reduction in breaking tenacity for the zero sample length, the average difference being at least 20%.
  • the T value is intended to represent the average strength of the yarn between the weak spots as nearly as can be determined.
  • the expression zero sample length indicates the minimum sample length which can be attained and that occasionally the break will occur at a weak spot so that T is apt to be slightly lower than the actual average tenacity between the weak spots.
  • the minimum ratio which may be tolerated without excessive weakening of the fiber will of course depend on the original strength of the fiber.
  • the ratio T /T is also indicative of the maximum number of weak spot which may be present, since with increasing numbers of weak spots the chances of a weak spot occurring at the point of break in the T determination is enhanced. Thus, if the number of weak spots becomes excessive, the T measurements will approximate the T measurements, just as in the case of untreated fibers, and the value for the ratio will be above 0.80.
  • the weak spots in the fibers of this invention are of considerably lower molecular weight than the fiber as a whole. It follows from the values given in Examples I-IV that the molecular weight at the weak spots of filaments which have been treated in accordance with the instant process is at least 20% lower than the molecular weight of an intermediate length of the treated filament. Since a /S-lIlCh clipping is used in determining the molecular weight reduction and since the weak spot obviously does not extend throughout the clipping, it is apparent the actual percentage reduction in molecular weight would be greater than the calculated minimum value of 20%.
  • the number average molecular weight of the whole fiber should be greater than 5000, fibers having lower molecular weights being deficient in durability when processed into finished articles.
  • the loop toughness of the treated fiber should be in the range of 2 to 27 and preferably in the range of 2 to 15. It is also a prerequisite to acceptable functional performance that the value of the molecular weight to loop toughness expression be at least 150. When this value is too low, the durability of the fiber in finish d articles within the preferred toughness range of 2-15 will be lower than is desirable. In general, the higher the value, the better the fiber, the upper limit being dependent on what can be achieved practically in the production of such fibers.
  • the values for loop toughness and the molecular weight to loop toughness expression are both indicative of weak spot severity, i.e., of the extent of degradation at the weak spots, in filaments treated according to the instant process.
  • peroxide-degraded uncrirnped fibers do not have the desired relationship of molecular Weight to toughness, the values for the expression exhibited by uncrimped fibers usually being less than 100. While the degree of crimp which is desirable in the fiber will vary depending on the end use, at least 4 crimps are necessary for satisfactory processing and in general no more than 50 cr-imps would ever be found necessary. Preferably, the number of crimps is kept in the range of 8 to 25 per inch.
  • the crimping of the fiber may be carried out by any of the methods which are well known in the art butp'i eferably is done mechanically.
  • Mechanical crimping may be suitably carried out using the well-known stuffer box technique wherein a tow is fed into a chamber at a faster rate than it emerges.
  • the fiber is usually moistened with water or steam prior to entry into the stuffer box and the heat generated in compressing the wet fiber serves to plasticize the polyamide sufficiently to make the crimp permanent.
  • Crimping may also be done by treating the fibers in a relaxed state with steam or other plasticizing fluid at a temperature above the second-order transition point as described by Breen and Lauterbach.
  • the preferred process of this invention comprises crimping the drawn fibers mechanically and then spraying them with a suitable oxidizing agent such as hydrogen peroxide or other peroxygen compounds, potassium permanganate, nitric acid and chromic acid.
  • a suitable oxidizing agent such as hydrogen peroxide or other peroxygen compounds, potassium permanganate, nitric acid and chromic acid.
  • the preferred oxidizing agent is hydrogen peroxide since it leaves no undesirable residue in the fiber.
  • the peroxide should be applied to the fibers in the form of an aqueous solution in a concentration of 130% H based on the dry Weight of the fiber.
  • the fiber is then centrifuged to remove excess solution and heated, by passing steam therethrough, to complete the reaction. A steaming period of 10 to 60 minutes is usually sufficient.
  • Another method of treating the fiber in staple form with aqueous peroxide is to place the staple in a heated vessel which is rotated to tumble the staple. The aqueous hydrogen peroxide solution is then sprayed on the staple and heat is applied to complete the reaction.
  • H 0 remaining in the fiber after soaking in aqueous H 0 solution and removal of excess liquid as described in the examples will exceed the calculated value since H 0 has a greater afiinity for the fibers than does water. For instance, fiber soaked in 5% aqueous peroxide and centrifuged as described in Example II would have a calculated H 0 content based on the dry weight of the fiber of 4% whereas the true value as determined by chemical analysis is 6%.
  • the timeconcentration-temperature relationship should be such as to reduce the loop toughness of the fiber into the range of 2 to 27, preferably 2 to 15.
  • the exact conditions required will, of course, vary depending upon the particular fiber selected for treatment.
  • the fibers of this invention may be prepared from any polyamide yarn such as, for example, those derivable from polymerizable mono-amino-carboxylic acids or their amide-forming derivatives and those derived from the reaction of diamines with dicarboxylic acids or amideforming derivatives of dibasic carboxylic acids.
  • suitable polyamide fibers which may be specifically mentioned are those prepared from the polymers disclosed in U.S. Patents 2,071,253, 2,130,523, and 2,130,948.
  • Interpolyamides prepared from mixtures of diarnines, dibasic acids and amino acids can also be used for the practice of this Likewise, melt blends of two or more polyinvention.
  • amides can be used as a source of suitable fibers.
  • a further limitation is that the polyamide fibers employed must be substantially free of cross links, otherwise the abrasion resistance will be lowered excessively.
  • While the preferred textile product of this invention is carpets, particularly loop pile carpets, other knitted and woven structures such as blankets, sweaters, fiannels, hosiery and suitings may be made to advantage from the filaments and fibers disclosed herein.
  • the time-concentration-temperature relationship of the treating-steaming steps is such as to produce weak spots in the filament, predominantly at crimp nodes, said weak spots being characterized as to frequency and severity by a value of less than 0.80 for the ratio T T where T is the break tenacity in grams per denier of a one-inch sample and T is the break tenacity of a zero-length sample, said filament being further characterized by a value of at least for the expression MW-SOOO toughness where MW is the molecular weight of the polyamide in the filament and by a toughness of from 2-15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)

Description

United States Patent ()fifice Patented Dec. 17, 1963 Bad 3,114,192 PRGCESS FLR lRGDUClNG NGNdiLLlNG Otto I. Matray, Coneortli' lle, Pa, and William H.
Stine, .lr., Wilmington, Den, assignors to E. I. do Pen de Nemours and Qompany, Wilmington, Del,
poration oi Delaware No Drawing. Filed Mar. 6, 3 .962, Ser. No. 177,7(2
8 Claims. (4C1. 23-76) This invention relates to synthetic polyamide filaments which are oarticularl useful when out or broken into staple lengths and to a process for their production.
Fib ggs prepared from synthetic linear polyamides have proved superior to natural fibers in many respects and are particularly noteworthy for their increased durability. However, when fibers of staple length are employed an many end uses, such as in loosely-woven fabrics, certain types of carpets, and the like, the finished article becomes unsatisfactory in appearance after short usage due to excessive pilling and fuzzing. Filling refers to the formation of little balls of; fiber on the surface of the finished is due to the entanglement of loose fibers. less welled fiber entanglements are called fuzz.
There have been many attempts to eliminate pilling by various fabric a oer treatments. However, these attempts have generally met with only limited success and, as a result, fibers made from the synthetic polymers are still imperfect for many end uses despite their desirable functional characteri .ics.
it is the most important object of the present invention to provide a polyamide fiber which has excellent resistance to pilling and fuzzing when fabricated into finished articles but retains a high functional level in many characteristics such as durability. A further important object is to provide a process for the production or" these fibers. Other objectives and advantages will become apparent from the following specification and examples.
The objects of this invention are accomplished by the production of a crimped synthetic linear polyamide fila men having weal: spots in the length thereof and characterized with respect to Weak spot frecuency and severity by a value for the ratio T /T no greater than 0.80, where T is the average break tenacity in grams per denier of a one-inch filamen sample and T is the average tenacity determined on -he minimum sample length (zero distance between the aws of the tester). The filament may also be charac -ized as to weal; spot severity (the extent of degradati at a weal; spot) by a significant reduction in the loop toughness value and in molecular t at the weak spots. The filament is lurther characterized as to weak spot severity, abrasion resistance and durability by the relationship of average molecular weight to loop toughness and by a number average molecular weight greater than 5803. These and other fiber charact-erizations will be described more fully hereinafter.
The process for producing the polyamide filaments of this invention comprises crimping the filaments in the conventional manner and then treating them with an oxidizing agent, the treatment being continued for a sufiicient period to prod ce spot degradation in the filament. in a preferred process embodiment, crimped filaments are treated with an aqueous solution of hydrogen peroxide and excess solution is emoved as by centrifuging the treated filaments which are then heated to complete the reaction. The processed filaments should contain from 1-2095 H based on the dry weight of the filaments.
For the characterization of weak spot frequency and severity according to the above ratio T T the break tenacity T of zero length and 1-inch samples is measured enerally, twenty-five samples of each length are tested and the tenachy values averaged. After the samples have been tested and averaged, the ratio T T is calculated. A commercial yarn tester such as an lnstron Tester is used in making the tenacity measurements. The sample length is the distance between the jaws of the tester when the sample is extended suficiently to just remove the crimps. The rate of elongation is per minute. In measuring the zero length tenacity, the jaws of the tester are butted together at the beginning of the test. It is essential, particularly in the zero length test that the jaws of the tester be accurately aligned and have smooth, firm surfaces so that there is the minimum possible slippage in the jaws. Coating the jaws of an lnstron Tester with an epoxy resin has been found effective in this regard.
In m lg such measurements on spot-weakened filamerits or ilbelS, it must be recognized that there will always be some non-uniformity among the various fibers and therefore it is imperative that a considerable number of samples be tested in order that representative values Values from a minimum of 25 tests should be con. "led. be averaged and averages of 50 or more determinations may be required to obtain reasonably reproducible results.
As menti ned previously, the relationship of molecular t to toughness prov s a good indication of weak severity, abrasion resistance and durability. For
purposes of comparison, numerical values indicative of Lie relations may be obtained from the expression M W5000 toughness where MW is the number average molecular weight of the polyami e in a filament.
The term loop toughness as used herein is the amount of work, in gr. cur/cm. den, required to breal: a fiber loop multiplied by 100 and is determined by measuring the area under the stress-strain curve obtained when a loop or" the fiber is broken in a commercial tester such as the lnstron Tester. in this test both ends of a short length of fiber are fastened in one jaw of the test apparatus to form a loop. A similar length of the fiber is passed through LllS loop and has both of its ends fastened in the other jaw to form a second loop. One or" the fibers is then broken, the rate of elongation being 66% per minute. The length of each loop, measured from the jaw to the loop center is 0.5 inch, the distance between the jaws being one inch. The test is carried out at 72% room humidity and 70 F. and the fiber is brought to equi brium under these conditions before being tested. As mentioned previously, the loop toughness value is a characterization of weak spot severity.
The abrasion resistance of fibers, as referred to herein, is determined by hanging 14 samples or" the fiber, under a tension of 0.2 ram per denier, over a horizontally positioned abrasive rod 12 inches in length and /2 inch in diameter, rotating the rod at 290 r.p.m. and recording the number of revolutions required to break each individual fiber. The average value is then taken as the single fiber abrasion. The required tension may be applied to the fiber by fixing one end in a clamp positioned 2 inches horizontally from the top of the rod and attaching a weight to the other end of the filament. The abrasive rods employed in obtaining the values recorded in the examples are India Abrasive RodsCoarseC.F.-24. Since different abrasive rods may give some difference in abrasion resistance values, comparisons should always be made using the same rod and the test fiber should always be compared with a control such as wool.
Where reported herein, relative viscosity is determined in a 0.5% solution of the polymer in meta-cresol at 25 C.
3 EXAMPLE I Polyhexamethylene adipamide having a relative viscosity of 45 is prepared and melt extruded in the conventional manner to produce a tow consisting of 15 denier filaments. The tow is cold drawn to a draw ratio of 4.05 and then crimped mechanically by passing it first through an atmosphere of live steam to moisten the filaments and then through a stuifer box crimper where it is subjected to sufficient pressure to provide an average of 15 crimps per inch in each filament. The crimped tow is then placed in glass fiber bags and soaked in a 16% aqueous solution of hydrogen peroxide for 30 minutes at room temperature after which it is centrifuged to remove excess solution. The centrifuged tow, containing 15% of the peroxide solution based on the dry weight of the fiber, is steamed for 1 hour at 26 p.s.i. pressure. After drying, 25 samples of filaments are taken at random from the tow and the severity and the frequency of the weak spots determined by measuring the breaking tenacity of zero length and l-inch samples as described above. The breaking tenacity for the 1-inch sample, T is found to be 0.86 g.p.d. and that of the zero length sample 1.45 g.p.d., giving a ratio T /T of 0.59. The tenacity of a 1-inch sample of untreated fiber is 5.21 g.p.d. and the zero length tenacity is 5.42, giving a ratio of 0.96.
The loop toughness of filaments removed from the tow is determined as described previously using a commercial Instron Tester with an integrator attachment and found to be 6 as compared to a value of 140 for untreated fiber.
Additional samples of filaments are taken from the tow and broken in the Instron Tester, using a 2-inch sample length. The broken ends are then clipped off at a distance of Ms inch from the point of break and these clippings collected to determine the relative viscosity. The relative viscosity of the clippings is found to be 12, which corresponds to a molecular weight of 5,900. For purposes of comparison, the relative viscosity of the entire filament is determined and found to be 17.1 which corresponds to a molecular weight of 7,600 and a molecular weight reduction at the weak spots of 22%. The value for the molecular weight to toughness expression toughness is 433.
In making the above tests, observation of the broken ends in 50 instances reveals that the break occurs at the crimp nodes 68% of the time as compared to 46% at the crimp nodes for the untreated fiber.
The abrasion resistance of filaments removed from the tow is determined as described previously and found to be 5500. A comparative test on a high-grade wool gives a value of 200.
The tow is cut into 3-inch staple in the conventional manner and processed into 2/55s yarn, Philadelphia System, using the conventional wool process. The yarn is given a singles twist of 4.5Z and a ply twist of 3.08. The yarn is then woven into a 30-02. per square yard, 198 pitch (warp ends per 27-inch width) plain, valvet-weave, loop pile carpet having eight rows per inch in the warp direction, the wire height of the loom being 0.375 inch.
A section of the carpet is placed on a stairway where only down trafiic is permitted and a contact-type counting device is installed at the head of the stairway to count the number of persons, or traffic cycles, going down the stairs. For comparison, adjacent sections of untreated nylon and wool carpets of similar construction are installed. After about 5000 cycles, the appearance of the untreated nylon carpet is unacceptable due to pilling and fuzzing while that of the carpet of this invention is equivalent to the wool carpet and entirely satisfactory in this respect. After 15,000 cycles (equivalent to 2 /24 years of normal household wear) the wool carpet is worn to the point that it is judged unacceptable in appearance by experts in the carpet field. The carpet of this invention,
. 4 however, withstands more than 60,000 cycles (equivalent to 10-16 years of normal household wear) before its appearance becomes unacceptable due to wear.
EXAMPLE II Crimped nylon tow having 18 crimps per inch is prepared from polymer having a relative viscosity of 47 and treated in the same manner as described in Example 1, except that the concentration of peroxide in the aqueous solution is 5% and the tow after centrifuging contains based on the dry weight of the fiber, of the peroxide solution. When break tenacity values are obtained, T is found to be 2.15 and T is 4.92 g.p.d., giving a T /T ratio of 0.44. The loop toughness of the treated fiber is 14 as compared to a value of 147 for the untreated fiber. 72% of the breaks occur at the crimp nodes. The relative viscosity of the treated fiber is 24 which corresponds to a molecular weight of 10,500. The value? for the molecular weight to toughness expression is 550. The relative viscosity in the immediate vicinity of a weak spot Az-inch clipping from the break point) is 15 which corresponds to a molecular weight of 6,900 and a molecular weight reduction of 34%. When the tow is cut into 3-inch staple and processed into a carpet, as described in Example I, the pilling and fuzzing performance is greatly improved as compared to a similar carpet prepared from untreated fiber, and the durability is 4 times that of a wool carpet of similar construction.
EXAMPLE HI Crimped nylon tow having 22 crimps per inch is prepared from polymer having a relative viscosity of 45 as described in Example I and treated with hydrogen peroxide as described in Example II. The T value for this fiber is found to be 2.22 g.p.d. and the T value 2.82 g.p.d. to give a T T ratio of 0.79. Observation of 50 fiber breaks reveals that 64% of the breaks occur at the crimp nodes. The fiber abrasion resistance is 3380 as compared to a value of 200 for wool. The loop toughness is 13.3 as compared to a value of 207 for untreated fiber. The relative viscosity of the fiber is 21 which corresponds to a molecular weight of 9,000. The value for the molecular weight to toughness expression is 300. The relative viscosity in the immediate vicinity of a Weak spot (Ms-inch clipping from the break point) is 14.7 which corresponds to a molecular weight of 6700 and a molecular weight reduction of 25%. tow is cut into 3-inch staple and processed into a carpet, as described in Example I, the pilling and fuzzing performance is found to be satisfactory and the durability of the carpet is about 5 times that of wool.
EXAMPLE IV Crimped nylon tow having 30 crimps per inch is prepared from polymer having a relative viscosity of 46, treated with hydrogen peroxide and heated as described in Example I, except that the concentration of hydrogen peroxide is 5% and the tow after centrifuging contains 60% of the peroxide solution, based on the dry weight of the fiber. The loop toughness of the fiber after treatment with peroxide and drying is found to be 15 as compared to a value of for the untreated fiber. The break tenacity for the 1-inch sample, T is 1.99 and the T value 4.96 g.p.d. to give a T T ratio of 0.40. Ob-
mediate vicinity -of a weak spot (Ma-inch clipping from the break point) is 12.3 which corresponds to a molecular weight of 6000 and a molecular weight reduction of 27%. The abrasion resistance of the fiber is 4880 as compared to 200 for wool. When the tow is cut into 3- inch staple and processed into carpet as described in Ex- When the V ample I, the pilling and fuzzing performance is satisfactory and the durability of the carpet is about times that of a wool carpet of similar construction.
EXAMPLE V Crimped nylon tow having 21 crimps per inch and a filament denier of 19 is prepared from polymer having a relative viscosity of 45, treated with hydrogen peroxide and heated as in Example 1, except that the fiber is soaked in 5% aqueous hydrogen peroxide solution followed by centrifuging for 30 minutes. After centrifuging, the treated fiber contains based on the dry weight of the fiber, of the peroxide solution. The T value for this fiber is found to be 1.19 g.p.d. and the T value 2.47 to give a ratio T /T of 0.48. Observation of 50 fiber breaks reveals that 96% occur at the crimp nodes. The relative viscosity of the fiber is 19 which corresponds to a molecular weight of 8200. The loop toughness of the fiber is 5 as compared to 155 for the untreated fiber. The value for the molecular weight to toughness expression is 640. The fiber has an abrasion resistance of 4800 as compared to a value of 400 obtained under identical conditions on wool. The tow is cut into staple and processed into carpet as described in Example I. When the carpet is subjected to wear on a stairway, it withstands 84,000 cycles before becoming unacceptable in appearance and the pilling and fuzzing is no greater than observed on a wool carpet subjected to the same test. The wool carpet is worn to an unacceptable degree after 24,000 cycles.
EMMPLE VI Nylon tow having 21 crimps per inch is prepared from polymer having a relative viscosity of 45 as described in Example I. The tow is soaked in a 2% aqueous hydrogen peroxide solution for 30 minutes and then centrifuged to remove excess solution. The centrifuged tow contains 10%, based on the dry weight of the fiber, of the peroxide solution. The tow is then steamed as described in Example I. The T Value for this fiber is 1.97 g.p.d. and the T value 2.69 to give a T /T ratio of 0.73. Observation of 50 fiber breaks reveals that 100% occur at the crimp nodes. The loop toughness of the fiber is 15. The relative viscosity of the fiber is 22.9 which corresponds to a number average molecular weight of 9500. The value for the molecular weight to toughness expression is 300. The fiber abrasion resistance is 5900 as compared to 400 for W001 tested under identical conditions. When the tow is cut into 3-inch staple and processed into a carpet, as described in Example I, the carpet during wear-testing exhibits greatly improved pilling and fuzzing performance as compared to a carpet prepared from untreated nylon but the level or" pilling and fuzzing, although considered acceptacle from a standpoint of appearance, is somewhat higher than that observed at lower toughness levels. In this connection, it is noted that the treated fibers have a toughness of which value is the upper limit of the preferred range and T /T ratio value of 0.73 which value approaches the critical limit. The carpet withstand over 4 times as many trafiic cycles as a wool carpet, tested simultaneously, before becoming unacceptable in appearance due to wear.
EXAMPLE VII Nylon tow having 15 crimps per inch was prepared from polymer having a relatively viscosity of 45 as described in Example I. The tow was soaked in a 15% aqueous hydrogen peroxide solution for 30 minutes and then centrifuged to remove the excess liquid. The centrifuged tow contained 15% of the peroxide solution, based on the dry weight of the fiber. The tow was then steamed as described in Example I. The T value is 1.64 g.p.d. and the T value 3.39 g.p.d. to give a T /T ratio of 0.48. Observation of 50 fiber breaks reveals that 96% occur at the crimp nodes. The loop toughness of 6 the fiber is 4.4. The relative viscosity of the fiber is 20.3 which corresponds to a number average molecular weight of 8700. The value for the molecular weight to toughness expression is 613. The abrasion resistance is 4750 as compared to 400 for wool tested under identical conditions. When the tow is cut into 3-inch staple and processed into a carpet as described in Example I, the carpet is satisfactory in appearance with respect to pilling and fuzzing during wear-testing and withstands about 4 times the amount of wear as a wool carpet tested simultaneously.
EXAMPLE VIII Nylon tow having 30 crimps per inch is prepared from polymer having a relative viscosity of 46, treated with peroxide and heated exactly as described in Example Vll. The T value for this fiber is found to be 0.90 g.p.d. and the T value 1.94 g.p.d. to give a ratio T /T of 0.46. Observation of 50 fiber breaks reveals that occur at the crimp nodes. The loop toughness of the fiber is 5.2 and the abrasion resistance is 2700 as compared to a value of 200 for wool tested under identical conditions. The relative viscosity of the fiber is 12.4 which corresponds to a number average molecular weight of 6000. The value for the molecular weight to toughness expression is 192. When the tow is cut into staple and processed into a carpet as described in Example VII, the carpet is satisfactory with respect to pilling and fuzzing performance when wear-tested and the durability is about 4 times that of a wool carpet tested simultaneously.
EXAMPLE IX Polyhexamethylene adipamide was spun and drawn 4X to give a tow of 20 denier filaments having a trilobal cross section of the type described in Holland US. 2,939,201, the modification ratio of the cross section being 2.4 and the tip radius ratio being 0.25. The tow was crirnped to 12 crimps/inch in a stuifer box crimper, soaked for 30 minutes in an 11% solution of H 0 in water and centrifuged to a solution content of 10%, based on original weight of tow. The tow was placed in a pressure vessel which was evacuated for 5 minutes and then was heated for 45 minutes by steam injected internally at a pressure of 27 lbs./in. It was cut to 3-inch staple and processed to woven carpet by the procedure described in Example I.
The yarn from which the carpet was made had a tenacity of 1.23 g.p.d. and a loop toughness of 5.3..
The carpet was laid on a hallway carrying heavy foot trafiic and was found to have an acceptable level of fuzzing and pilling, high resistance to wear and a durability over three times that of wool.
EXAMPLE X A 6 nylon tow having a filament denier of 15 is produced by extruding poly-e-caproamide having a relative viscosity of 54. The tow is cold drawn to a ratio of 4.0 in the conventional manner, crimped as described in Example I and cut into 3-inch staple. The crimped staple is soaked in 15% aqueous hydrogen peroxide for 30 minutes and then centrifuged to remove the excess liquid. The centrifuged tow, containing 15% of the peroxide solution, based on the dry weight of the fiber, is then heated for 30 minutes in steam at 20 p.s.i. The T value for this fiber is 0.99 g.p.d. and the T value 1.85 g.p.d. to give a T /T ratio of 0.54. Observation of 50 fiber breaks reveals that 87% occur at the crimp nodes. The relative viscosity of the fiber is 14.6 which corresponds to a molecular weight of 7500. The loop toughness of the fiber is 6. The value for the molecular weight to toughness expression is 417. The abrasion resistance of the fiber is 6100 as compared to 400 for W001. The staple is processed into a carpet as described in Example I. The pilling, fuzzing, and durability performance 'to give a T /T ratio of 0.63.
were substantially as described in connection with Example I.
EXAMPLE XI Poly-p-xylylene azelamide having an inherent viscosity of 0.85 in meta-cresol is prepared as described by Bower in abandoned application Serial No. 776,417, filed November 26, 1958. The polymer is discharged from an autoclave and cut into fiake as described in US. Patent 2,289,774. The flake is melt spun at a temperature of 300310 C. in the conventional manner to form a 6 denier per filament, 20,000 denier tow. Th tow is cold drawn to a ratio of 4.0 and then crimped to produce a tow having an aver-age of 10 crimps per inch. The crimped tow is soaked in 20% aqueous hydrogen peroxide solution for 30 minutes and centrifuged to remove the excess liquid. The centrifuged tow retains 20% of the peroxide solution, based on the dry weight of the fiber. It is then steamed as described in Example I. The T value for the treated fiber is found to be 1.67 g.p.d. and the T value 2.74 g.p.d., to give a T /T ratio of 0.6 1. Observation of 50 fiber breaks reveals that 95% occur at crimp nodes. The inherent viscosity of the fiber is 0.54 which corresponds to a molecular weight of 7400. The loop toughness of the fiber is 11 as compared to a value of 96 for the untreated fiber. The value for the molecular weight to toughness expression is 218. The abrasion resistance of the fiber is 2042 as compared to a value of 100 for W001 tested under identical conditions. When the tow is cut into 3-inch staple and processed into a carpet as described in Example I, the pilling, fuzzing, and durability performance were substantially as described in connection with Example I.
EXAMPLE XII Following the general procedure outlined in Example I of U.S. Patent 2,512,606, di-(p-arninocyolohexyl)methane was prepared, reacted with sebacic acid to form a salt and the salt polymerized to give a polymer having an inherent viscosity of 0.95. The polymer was melt extruded in the conventional manner at a temperature of 300 C. to form a tow of 30,00 total denier, the denier per filament being 2. The tow is hot drawn to a ratio of 3.3 and crimped as described in Example I, the tow after crimping having 30 crimps per inch on the average. The crimped tow is soaked for 30 minutes in a 20% aqueous hydrogen peroxide solution and then centrifuged to remove excess liquid. 'Ilhe centrifuged tow retains 20% of the peroxide solution, based on the dry weight of the fiber. The tow is then steamed as described in Example I. The T value is 1.69 g.p.d. and the T value 2.70 g.p.d. Observation of 50 fiber breaks reveals that 98% occur at the crimp nodes. The inherent viscosity of the fiber is 0.76 corresponding to a molecular weight of 11,300. The loop toughness of the fiber is 20 as compared to a value of 164 for the untreated fiber. The value for the molecular weight to toughness expression is 315. The abrasion resistance of the fiber is 3300 as compared to a value of 100 for wool tested under identical conditions. When the tow is cut into 3-inch staple and processed into socks, the pilling, tuning, and durability performance were substantially as described in connection with Example XIII.
EXAMPLE XIII and soaked for 1 hour at room temperature in 5% aqueous hydrogen peroxide solution containing 2 g. citric acid per liter. The staple is centrifuged until only 20% (based on the dry weight of the fiber) of the peroxide solution remains on the fiber and heated in steam for 2 hours at 26 p.s.i. =This staple after drying has a toughness of 25 as compared to 270 for the untreated fiber. The T value is 2.66 g.p.d. and the T value 3.58 to give -a ratio T T Iof 0.75. Observation of 50 fiber breaks reveals that occur at crimp nodes. The relative viscosity of the fiber is 21.1 corresponding to a molecular weight of 8900. The value for the molecular weight to toughness expression is 156.
The treated staple, as well as untreated control staple,
are spun separately on the woolen system to s yarns (Philadelphia System) having a twist of 12Z. These yarns are knitted into mens socks which are compared :for pi'lling and fuzzing by means of a wear test. in which each wearer has one sock made from control yarn and one sock made from yarn of low toughness. At the end of 5 wearings, the control sock shows noticeable pilling and fuzzing; at 10 wearings this becomes objectionable and at 20 wearings the pilling and f-uzzing of the control sock is very severe. In contrast, the sock made from treated staple was in very good condition at 5 and 10 wearings and showed only slight pilling after 20 wearings.
EXAMPLE XIV Yarns prepared as in Example XIII are Woven into standard flannel fabrics which are tested for pitling, without brushing or shearing, in an Accelerotor. In the Accelerotor test, 4 x 4 inch samples of fabric are turn-bled in a small vessel having a hard rubber inner surface by means of a mechanical agitator for varying lengths of time I up to minutes. At the end of the various time intervals, the control and test fabrics are examined to determine the degree of pilling and fuzzing. The performance of the test and control fabrics is shown in the table below, using a numerical scale in which 5 indicates no change in original appearance of the fabric, 2.8 is the lower limit of acceptability from the standpoint of pilling and .fuzzing, and 1 is indicative of extreme pilling and fuzzing.
EXAMPLE XV A tow of 66 nylon was spun and drawn to give a product having a trilobal cross section of the type described in Example IX and .a filament denier of 15. This was steam-crimped as described in the copending application of Breen and Lauterbach, Serial No. 698,103, filed November 22, 1957, to give fibers having 14 c.p. i. This tow was soaked in 19.4% H 0 solution for 40 minutes. evacuated for 5 minutes and then heated for 50 minutes under steam at 27 p.s.i. After treatment the yarn had a T value of 0.84 g.p.d. and a T of 1.26 g.p.d., a toughness of 2.8, and a relative viscosity of 12.1 corresponding to a molecular weight of 5800. The value for the molecular weight to toughness expression is 286. The tow was cut to 3-iucl1 staple and processed to carpet by the procedure of Example I.
This carpet showed acceptable pilling and fuzzing and was not perceptibly different from carpet made from treated trilobal fibers of the same tenacity which had been crimped in a stuifer box.
EXAMPLE XVI Polyhexamethylene adipamide is prepared and extruded as described in Example I to produce a tow consisting of 42,000 filaments. The tow is cold drawn to a draw ratio of 4.0 and a filament denier of 12, crimped mechanically by passing it through a :s-tuffer box crimper where it is subjected to sufiicient pressure to provide an average of This tow was placed in a pressure vessel which was 15 crimps per inch in the filaments and then cut to 6% inch staple in the conventional manner.
A 130-pound load of the staple is then placed in a basket type centrifuge. An aqueous hydrogen peroxide solution of 10% concentration by weight is sprayed on the staple by means of nozzles located in the center of the centrifuge, while the centrifuge is rotating at 110 rpm. Seven-hundred gallons of the hydrogen peroxide solution are sprayed on the staple fiber over a period of 15 minutes. The sprayer is turned off and rotation of the centrifuge is continued at 110 rpm. for 5 minutes. The speed of the centrifuge is then increased to 550 rpm. for 10 minutes. The excess hydrogen peroxide solution which is thrown off in the centrifuge is returned to a storage tank for recycling. The centrifuged staple contains, by analysis, 3% H based on the dry weight of the After removal from the centrifuge, it is placed iharectangular container, the bottom of the container consistin of a coarse screen to permit passage of gases upwardly through the treated staple. The loaded container is then placed in an autoclave where a vacuum equal to 25 in. mercury is applied for 5 minutes. Steam at 30 p.s.i.g. is then passed upwardly through the mass of fiber for 50 minutes. The steam is supplied by perforated pipes located beneath the container, tie autoclave and container being so designed that a seal is provided around the lower periphery of the container to prevent the escape of steam around the outside of the container. The staple is then removed from the autoclave and dried in the conventional manner.
When break tenacity values are obtained on the dried staple fibers, T is found to be 1.27 and T is 2.28 g.p.d., giving T /T ratio of 0.56. The loop toughness of the treated fiber is 6 as compared to a value of 200 for the original, untreated fiber.
As shown in the foregoing examples, the polyamide fibers of this invention may be processed into woven and knitted structures, such as carpets, socks and fabrics to give greatly improved performance with respect to fuzzing and pilling, the improvement being such that the finished article remains entirely satisfactory in appearance after extended usage. In addition, it is found that the durability of the finished article is still far superior to that of natural fiber articles, such as wool. This is particularly surprising since the loop toughness of the fiber is reduced to a level substantially below that of wool and the severe treatment given the yarn to reduce the toughness to such low levels would normally be expected to damage the fibers to such an extent that they would be of no further value for fabrication into finished articles.
In order for the fiber to perform satisfactorily in a finished textile product, it is necessary that the frequency and severity of the Weak spots be adequate to per hit the pills and fuzz to break off. On the other hand, excessive weakening will damage the fiber to such extent that the durability of the finished article will be inferior.
The desired balance of properties is achieved in a fiber having a T /T value no greater than 0.80 and a loop toughness in the range of from 2 to 27. A T T 0 ratio no greater than 0.80 assures that there is at least one weak spot per inch since, in substantially all of the individual T determinations made, it is observed that the breaking tenacity is significantly reduced as compared to the reduction in breaking tenacity for the zero sample length, the average difference being at least 20%. The T value is intended to represent the average strength of the yarn between the weak spots as nearly as can be determined. It will be appreciated, of course, that the expression zero sample length indicates the minimum sample length which can be attained and that occasionally the break will occur at a weak spot so that T is apt to be slightly lower than the actual average tenacity between the weak spots. The minimum ratio which may be tolerated without excessive weakening of the fiber will of course depend on the original strength of the fiber. For
it) instance, a fiber with an original tenacity of 10 grams per denier might have a ratio of 0.1 while with a fiber of 2 grams per denier this ratio would not be satisfactory. For this reason, the range of satisfactory operability is best defined in terms of loop toughness as discussed below.
The ratio T /T is also indicative of the maximum number of weak spot which may be present, since with increasing numbers of weak spots the chances of a weak spot occurring at the point of break in the T determination is enhanced. Thus, if the number of weak spots becomes excessive, the T measurements will approximate the T measurements, just as in the case of untreated fibers, and the value for the ratio will be above 0.80.
The weak spots in the fibers of this invention are of considerably lower molecular weight than the fiber as a whole. it follows from the values given in Examples I-IV that the molecular weight at the weak spots of filaments which have been treated in accordance with the instant process is at least 20% lower than the molecular weight of an intermediate length of the treated filament. Since a /S-lIlCh clipping is used in determining the molecular weight reduction and since the weak spot obviously does not extend throughout the clipping, it is apparent the actual percentage reduction in molecular weight would be greater than the calculated minimum value of 20%. The number average molecular weight of the whole fiber should be greater than 5000, fibers having lower molecular weights being deficient in durability when processed into finished articles.
As indicated previously, the loop toughness of the treated fiber should be in the range of 2 to 27 and preferably in the range of 2 to 15. It is also a prerequisite to acceptable functional performance that the value of the molecular weight to loop toughness expression be at least 150. When this value is too low, the durability of the fiber in finish d articles within the preferred toughness range of 2-15 will be lower than is desirable. In general, the higher the value, the better the fiber, the upper limit being dependent on what can be achieved practically in the production of such fibers. The values for loop toughness and the molecular weight to loop toughness expression are both indicative of weak spot severity, i.e., of the extent of degradation at the weak spots, in filaments treated according to the instant process.
in order for the fiber to perform satisfactorily in woven or knitted structures, it must be crimped. When the crimping is done mechanically and the fiber is treated with an oxidizing agent, the introduction of weak point is facilitated since the attack is primarily at the points of deformation produced in crimping. This is supported by the observation that when fiber samples are broken, the breaks occur predominantly at the crimp node. Furthermore, uncrimped fibers cannot be satisfactorily processed on the equipment used for making most spun yarns and crimp contributes not only to reduction in pilling and fuzzing but also by way of bulkiness and softness in the spun yarn and articles fabricated therefrom. In addition, peroxide-degraded uncrirnped fibers do not have the desired relationship of molecular Weight to toughness, the values for the expression exhibited by uncrimped fibers usually being less than 100. While the degree of crimp which is desirable in the fiber will vary depending on the end use, at least 4 crimps are necessary for satisfactory processing and in general no more than 50 cr-imps would ever be found necessary. Preferably, the number of crimps is kept in the range of 8 to 25 per inch.
The crimping of the fiber may be carried out by any of the methods which are well known in the art butp'i eferably is done mechanically. Mechanical crimping may be suitably carried out using the well-known stuffer box technique wherein a tow is fed into a chamber at a faster rate than it emerges. The fiber is usually moistened with water or steam prior to entry into the stuffer box and the heat generated in compressing the wet fiber serves to plasticize the polyamide sufficiently to make the crimp permanent. Crimping may also be done by treating the fibers in a relaxed state with steam or other plasticizing fluid at a temperature above the second-order transition point as described by Breen and Lauterbach.
The preferred process of this invention comprises crimping the drawn fibers mechanically and then spraying them with a suitable oxidizing agent such as hydrogen peroxide or other peroxygen compounds, potassium permanganate, nitric acid and chromic acid. The preferred oxidizing agent is hydrogen peroxide since it leaves no undesirable residue in the fiber. The peroxide should be applied to the fibers in the form of an aqueous solution in a concentration of 130% H based on the dry Weight of the fiber. The fiber is then centrifuged to remove excess solution and heated, by passing steam therethrough, to complete the reaction. A steaming period of 10 to 60 minutes is usually sufficient. In steaming the fiber, passage of the steam through the mass of fiber is hindered by theevolution of gaseous products, CO and CO due to the reaction of the H 0 with the fiber and oxygen arising from the decomposition of H 0 This difficulty may be largely overcome by introducing steam into the fiber mass, as described in Example XVI.
Another method of treating the fiber in staple form with aqueous peroxide, is to place the staple in a heated vessel which is rotated to tumble the staple. The aqueous hydrogen peroxide solution is then sprayed on the staple and heat is applied to complete the reaction.
The percentage H 0 remaining in the fiber after soaking in aqueous H 0 solution and removal of excess liquid as described in the examples will exceed the calculated value since H 0 has a greater afiinity for the fibers than does water. For instance, fiber soaked in 5% aqueous peroxide and centrifuged as described in Example II would have a calculated H 0 content based on the dry weight of the fiber of 4% whereas the true value as determined by chemical analysis is 6%.
In treating the fiber with an oxidizing agent, the timeconcentration-temperature relationship should be such as to reduce the loop toughness of the fiber into the range of 2 to 27, preferably 2 to 15. The exact conditions required will, of course, vary depending upon the particular fiber selected for treatment.
In order to prevent premature decomposition of the peroxide in the treating solution, very pure material must be used in preparing the aqueous peroxide solution and the materials of construction for the equipment employed in handling the solution must be carefully selected. Contamination of the solution with metal ions such as copper, iron, manganese, chromium, lead and cobalt should be avoided as these ions are known to catalyze a decomposition of hydrogen peroxide. The hydrogen peroxide used to make up the more dilute solution should be of good purity and should preferably contain small amounts of stabilizing agents which inactivate small amounts of catalytically active substances. The most suitable material for use in tanks and other containers is aluminum of high purity. Stainless steel (300 series) may be used for limited contact at room temperature if properly passivated.
The fibers of this invention may be prepared from any polyamide yarn such as, for example, those derivable from polymerizable mono-amino-carboxylic acids or their amide-forming derivatives and those derived from the reaction of diamines with dicarboxylic acids or amideforming derivatives of dibasic carboxylic acids. In addition to those set forth in the examples, other suitable polyamide fibers which may be specifically mentioned are those prepared from the polymers disclosed in U.S. Patents 2,071,253, 2,130,523, and 2,130,948. Interpolyamides prepared from mixtures of diarnines, dibasic acids and amino acids can also be used for the practice of this Likewise, melt blends of two or more polyinvention.
amides can be used as a source of suitable fibers. A further limitation is that the polyamide fibers employed must be substantially free of cross links, otherwise the abrasion resistance will be lowered excessively.
While the preferred textile product of this invention is carpets, particularly loop pile carpets, other knitted and woven structures such as blankets, sweaters, fiannels, hosiery and suitings may be made to advantage from the filaments and fibers disclosed herein.
This application is directed to the non-elected invention disclosed in our copending application Serial No. 94,447, filed March 9, 1961, now Patent No. 3,050,822, and is a continuation-in-part of that application. 7
Having thus described the invention, what is claimed as new and desired to be secured by Letters Patent is: e
1. In the production of polyamide yarn, the steps of: crimping a filament; treating the crimped filament in an aqueous solution of an oxidizing agent; and removing excess solution from the treated filament, the time-concentration relationship of the treating step being sufiicient to produce weak spots in the length of the filament and to reduce its loop toughness to a value of from 2.27.
2. In the production of polyamide yarn, the steps of: crimping a filament; treating the crimped filament with an aqueous solution of hydrogen peroxide; and removing excess solution from the treated filament, the timeconcentration relationship of the treating step being sufficient to produce weak spots in the length of the filament and to reduce its loop toughness to a value of from 227.
3. The process of claim 2 wherein excess solution is removed by centrifuging and wherein the treated filament is steamed.
4. The process of claim 3 wherein the time-concentration-temperature relationship of the treating-steaming steps is such as to produce weak spots in the filament, predominantly at crimp nodes, said weak spots being characterized as to frequency and severity by a value of less than 0.80 for the ratio T T where T is the break tenacity in grams per denier of a one-inch sample and T is the break tenacity of a zero-length sample, said filament being further characterized by a value of at least for the expression MW-SOOO toughness where MW is the molecular weight of the polyamide in the filament and by a toughness of from 2-15.
5. In the production of yarn, the steps of: crimping polyamide fibers; treating the crimped fibers with an aqueous solution of hydrogen peroxide; centrifuging the treated fibers to remove excess peroxide solution therefrom; and heating the centrifuged fibers.
6. In the production of yarn, the steps of: crimping polyamide fibers; spraying the crimped fibers with an aqueous solution of hydrogen peroxide; centrifuging the treated fibers to remove excess peroxide solution therefrom; and heating the centrigued fibers by passing steam References Cited in the file of this patent FOREIGN PATENTS 1,154,495 France Apr. 10, 1958 1,024,482 Germany Feb. 20, 1958 1,033,175 Germany July 3, 1958 1,034,133 Germany July 17, 1958

Claims (1)

1. IN THE PRODUCTION OF POLYAMIDE YARN, THE STEPS OF: CRIMPING A FILAMENT; TREATING THE CRIMPED FILAMENT IN AN AQUEOUS SOLUTION OF AN OXIDIZING AGENT; AND REMOVING EXCESS SOLUTION FROM THE TREATED FILAMENT, THE TIME-CONCENTRATION RELATIONSHIP OF THE TREATING STEP BEING SUFFICIENT TO PRODUCE WEAK SPOTS IN THE LENGTH OF THE FILAMENT AND TO REDUCE ITS LOOP TOUGHNESS TO A AVALUE OF FROM 2-27.
US177762A 1962-03-06 1962-03-06 Process for producing non-pilling polyamide fibers Expired - Lifetime US3114192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US177762A US3114192A (en) 1962-03-06 1962-03-06 Process for producing non-pilling polyamide fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US177762A US3114192A (en) 1962-03-06 1962-03-06 Process for producing non-pilling polyamide fibers

Publications (1)

Publication Number Publication Date
US3114192A true US3114192A (en) 1963-12-17

Family

ID=22649889

Family Applications (1)

Application Number Title Priority Date Filing Date
US177762A Expired - Lifetime US3114192A (en) 1962-03-06 1962-03-06 Process for producing non-pilling polyamide fibers

Country Status (1)

Country Link
US (1) US3114192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557729A (en) * 1984-05-24 1985-12-10 A. E. Staley Manufacturing Company Color stabilization of glycosides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1024482B (en) * 1956-06-05 1958-02-20 Hoechst Ag Process to reduce the pilling of textile material made from fully synthetic fibers
FR1154495A (en) * 1955-05-31 1958-04-10 Ici Ltd Textile articles made from synthetic linear polymer fibers
DE1033175B (en) * 1956-06-05 1958-07-03 Hoechst Ag Process for reducing pilling of textile material based on polyesters containing six-membered carbocyclic rings
DE1034133B (en) * 1956-06-05 1958-07-17 Hoechst Ag Process for reducing pilling of textile material based on polyesters containing six-membered carbocyclic rings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1154495A (en) * 1955-05-31 1958-04-10 Ici Ltd Textile articles made from synthetic linear polymer fibers
DE1024482B (en) * 1956-06-05 1958-02-20 Hoechst Ag Process to reduce the pilling of textile material made from fully synthetic fibers
DE1033175B (en) * 1956-06-05 1958-07-03 Hoechst Ag Process for reducing pilling of textile material based on polyesters containing six-membered carbocyclic rings
DE1034133B (en) * 1956-06-05 1958-07-17 Hoechst Ag Process for reducing pilling of textile material based on polyesters containing six-membered carbocyclic rings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557729A (en) * 1984-05-24 1985-12-10 A. E. Staley Manufacturing Company Color stabilization of glycosides

Similar Documents

Publication Publication Date Title
US2157117A (en) Steam treatment of polyamides
US2197896A (en) Artificial wool
US5284009A (en) Fiber blends for improved carpet texture retention
US2604689A (en) Melt spinning process and fiber
US2226529A (en) Synthetic filament
US2251508A (en) Treatment of polyamides
US3186155A (en) Textile product of synthetic organic filaments having randomly varying twist along each filament
RU2514760C2 (en) Nylon staple fibres suitable for use in abrasion-resistant high strength nylon mixed yarns and materials
US2287099A (en) Artificial wool
US3534540A (en) Composite multi-color or colorable yarn structures
US3225534A (en) Differential shrinkage yarn
JPS60231834A (en) Improvement in dyeability of nylon fiber for carpet
EP0547176B1 (en) Carpet yarns and carpets with improved balance of newness retention and bulk
US4069363A (en) Crimpable nylon bicomponent filament and fabrics made therefrom
US5414987A (en) Pre-stuffer box conditioning of ply-twisted carpet yarn
US2174878A (en) Yarn and method of producing same
US3050822A (en) Pill resistant polyamide fiber
US3114192A (en) Process for producing non-pilling polyamide fibers
US3262257A (en) Polypropylene bulked yarn
US3321903A (en) Mop yarn
JP4226319B2 (en) Method for producing heat-resistant crimped yarn
US3420049A (en) Process for making combination yarn and product
US3396529A (en) Elastic yarn process and product
US3121278A (en) Production of uniformly pill-resistant polyamide fibers
IE43335B1 (en) Composite bicomponent polyamide filaments