US3112850A - Dicing of micro-semiconductors - Google Patents
Dicing of micro-semiconductors Download PDFInfo
- Publication number
- US3112850A US3112850A US23437362A US3112850A US 3112850 A US3112850 A US 3112850A US 23437362 A US23437362 A US 23437362A US 3112850 A US3112850 A US 3112850A
- Authority
- US
- United States
- Prior art keywords
- slab
- dicing
- scribed
- semiconductor
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 39
- 239000000463 material Substances 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 description 23
- 235000012431 wafers Nutrition 0.000 description 23
- 238000010894 electron beam technology Methods 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/08—Removing material, e.g. by cutting, by hole drilling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
- B28D1/22—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
- B28D1/221—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
- B28D5/0011—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/3002—Details
- H01J37/3005—Observing the objects or the point of impact on the object
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
- H01J37/3053—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
- H01J37/3056—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching for microworking, e. g. etching of gratings or trimming of electrical components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/2633—Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/10—Methods
- Y10T225/12—With preliminary weakening
Definitions
- My invention overcomes the above-mentioned disadvantages of the prior art by providing a novel method of dicing semiconductor ribbons or wafers which is faster and produces a higher yield than previously obtainable.
- FIGURE 1 is a schematic view of an electron beam machine which is utilized to generate a high energy, precisely focused beam for scribing the semiconductor wafer or ribbon.
- FIGURE 2 is a view of a scribed micro-semiconductor wafer.
- FIGURE 3 is a schematic view of an ultrasonic cell in which the scribed wafer of FIGURE 2 is diced.
- an electron beam machine is indicated generally as 10. While the scribing step of my novel process may be performed with any device, such as a Laser, which generate a highly energized and extremely finely focused beam, I have found the electron beam 21 most advantageous tool.
- Electron beam machines are devices which use the kinetic energy of an electron beam to work a material. US. Patent No. 2,987,610, issued June 6, 1961, to K. H. Steigerwald, discloses such a machine. These machines operate by generating a highly focused beam of electrons. The electron beam is a welding, cutting and machining tool which has practically no mass but has high kinetic energy because of the extremely high velocity imparted to the electrons.
- Machine comprises an evacuated chamber 12 containing the micro-semiconductor wafer or ribbon 14 to be diced positioned on a movable table 1.6.
- This wafer or ribbon may be Si, Ge, GaAs, InSb, SiC, AlP etc.
- the machine also comprises an electron beam column 18 which is in communication with chamber 12 and which contains a source of electrons, beam forming means and beam focusing means.
- the sources of electrons comprises a directly heated cathode or filament 20 which is supplied with heating current from a filament supply, not shown, and which has a high negative acceleration volage applied thereto from a high voltage source, not shown.
- An apertured anode 22 is positioned in the electron beam column 18 between the cathode and the material to be worked.
- the anode is connected to the case of the machine which is grounded at 24.
- the difference in potential between the cathode 20 and anode 22 causes the electrons emitted from the cathode to be accelerated down column 18.
- the electrons are focused into a beam indicatcd genenally as 26 by an electron optical system com prising adjustment coils 23 and 30, and a magnetic lens assembly 32.
- the beam impinges on the wafer or ribbon 14 where it gives up its kinetic energy in the form of heat.
- This heating causes local evaporation of the semiconductor material and thus grooves, hereinafter referred to as lines, are scribed in the surface of the wafer or ribbon.
- the scribing or etching is preferably done along cleavage planes when possible.
- the width of these scribed lines can be maintained less than 0.001 inch. This, of course, is a much smaller area of waste or erosion than obtainable by any of the prior art dicing methods.
- the wafer or ribbon may be precisely scribed along lines where division of components is desired by causing deflection of beam 26 across the surface of the wafer by means of varying the current to deflection coils 34.
- This deflection may be controlled manually by an operator observing the wafer through an optical system comprising a penta-mirror assembly consisting of mirrors 36 and 38, a protective glass 40, a viewing light 42 for illuminating the work area and a viewing system 44 which includes means for magnifying the image of the piece being worked which is reflected thereto by the mirrors.
- the deflection and pulsing of beam 26 will be controlled automatically by programming means such as a computer or a flying spot scanner which is scanning a negative of the pattern to be scribed.
- the motion of table 16 may be programmed so as to cause scribing of the desired pattern by a fixed electron beam or the scribing can be accomplished by a combination of table movement and beam deflection both of which are programmed by means well known in the art.
- the wafer or segment of ribbon After the wafer or segment of ribbon has been scribed, it is removed from the evacuated work chamber 16 and is placed in an ultrasonic cell. Such a cell is depicted in the ultrasonic energy.
- FIGURE 3 and comprises a tank 50 vibrated by a transducer 52.
- the frequency of vibration of transducer 52 is controlled by a frequency generator 54-.
- Tank *50 holds a liquid 56 such as acetone or distilled water which will not react with or otherwise contaminate the semiconductor material.
- the scribed wafer or ribbon 14 is suspended in the bath 56 and is broken along the scribed lines by I have also found it to be pos sible to fnacture the semiconductor material along the scribed lines mechanically by causing distortion of the wafer or ribbon by passing it between rubber balls of different diameter and hardness.
- materials such as alumina, beryllia, cermets and metals such as tungsten and molybdenum which, when scribed or indented, show propensity upon loading to fracture in a brittle fashion without plastic flow and thus yield sharply defined interfaces may be formed into desired shapes by my invention.
- Such materials, and particularly the ceramics, may not readily be shaped by other techniques such as machining or chemical milling.
- my invention is described by way of illustration rather than limitation and accordingly, it is understood that my invention is to be limited only by the appended claims taken in view of the prior art.
- the method of fabricating micro-semiconductor devices from a slab of semiconductor material including the steps of scribing the slab of semiconductor material with a high energy beam,
- the method of fabricating micro-semiconductor devices from a slab of semiconductor material including the steps of scribing the slab of semiconductor material with a high energy beam
- step of fracturing the slab includes immersing the scribed slab in the fluid medium of an ultrasonic cell and passing ultrasonic energy through the fluid medium.
- step of scribing the slab of semiconductor material includes passing the working beam of an electron beam machine over said slab to locally evaporate part of the slab and produce lines therein.
- the method of fabricating micro-semiconductor devices from a slab of semiconductor material including the steps of placing said slab of semiconductor material in the vacuum chamber of an electron beam machine, focusing the working beam of the electron beam machine on said slab,
- the method of dicing notch sensitive materials including the steps of scribing a pattern of grooves in a slab of notch sensitive material with a high energy beam, and then fracturing said slab in accordance with the pattern of scribing.
- the step of scribing includes placing the slab in the work chamber of an apparatus which generates and utilizes an intense beam of charged particles,
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- High Energy & Nuclear Physics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mining & Mineral Resources (AREA)
- Plasma & Fusion (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL299821D NL299821A (enrdf_load_stackoverflow) | 1962-10-31 | ||
US23437362 US3112850A (en) | 1962-10-31 | 1962-10-31 | Dicing of micro-semiconductors |
GB4095663A GB1057127A (en) | 1962-10-31 | 1963-10-17 | Improvements in or relating to the fabrication of micro-plates, particularly micro-seiconductor devices |
FR952251A FR1373472A (fr) | 1962-10-31 | 1963-10-30 | Morcellement en dés de micro semi-conducteurs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23437362 US3112850A (en) | 1962-10-31 | 1962-10-31 | Dicing of micro-semiconductors |
Publications (1)
Publication Number | Publication Date |
---|---|
US3112850A true US3112850A (en) | 1963-12-03 |
Family
ID=22881112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US23437362 Expired - Lifetime US3112850A (en) | 1962-10-31 | 1962-10-31 | Dicing of micro-semiconductors |
Country Status (3)
Country | Link |
---|---|
US (1) | US3112850A (enrdf_load_stackoverflow) |
GB (1) | GB1057127A (enrdf_load_stackoverflow) |
NL (1) | NL299821A (enrdf_load_stackoverflow) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3207198A (en) * | 1963-10-25 | 1965-09-21 | Jr Clement T Beeson | Method and apparatus for breaking and separating eggs |
US3226527A (en) * | 1963-10-23 | 1965-12-28 | William H Harding | Apparatus for perforating sheet material |
US3384279A (en) * | 1966-08-23 | 1968-05-21 | Western Electric Co | Methods of severing brittle material along prescribed lines |
US3469076A (en) * | 1967-06-01 | 1969-09-23 | Producto Machine Co The | Apparatus for removing flashing from molded plastic articles |
US3474219A (en) * | 1965-03-30 | 1969-10-21 | Steigerwald Gmbh K H | Machining process using radiant energy |
US3610871A (en) * | 1970-02-19 | 1971-10-05 | Western Electric Co | Initiation of a controlled fracture |
US3629545A (en) * | 1967-12-19 | 1971-12-21 | Western Electric Co | Laser substrate parting |
US3634646A (en) * | 1969-06-03 | 1972-01-11 | Velcro Sa Soulie | Method of and apparatus for cutting loops placed on a support for producing hooks therefrom |
US3695497A (en) * | 1970-08-26 | 1972-10-03 | Ppg Industries Inc | Method of severing glass |
US3696742A (en) * | 1969-10-06 | 1972-10-10 | Monsanto Res Corp | Method of making a stencil for screen-printing using a laser beam |
US3701880A (en) * | 1968-11-29 | 1972-10-31 | Westinghouse Electric Corp | Method for sculpturing an indicia or decorative design in the surface of an article with a beam of corpuscular energy |
US3818577A (en) * | 1971-01-15 | 1974-06-25 | Caterpillar Tractor Co | Connecting rod manufacturing |
US3824678A (en) * | 1970-08-31 | 1974-07-23 | North American Rockwell | Process for laser scribing beam lead semiconductor wafers |
US3863333A (en) * | 1973-08-31 | 1975-02-04 | Bell Telephone Labor Inc | Methods for making semiconductor devices |
US3952404A (en) * | 1973-07-30 | 1976-04-27 | Sharp Kabushiki Kaisha | Beam lead formation method |
US3970819A (en) * | 1974-11-25 | 1976-07-20 | International Business Machines Corporation | Backside laser dicing system |
US3997964A (en) * | 1974-09-30 | 1976-12-21 | General Electric Company | Premature breakage resistant semiconductor wafer and method for the manufacture thereof |
US4019248A (en) * | 1974-06-04 | 1977-04-26 | Texas Instruments Incorporated | High voltage junction semiconductor device fabrication |
US4174561A (en) * | 1976-02-09 | 1979-11-20 | Semicon, Inc. | Method of fabricating high intensity solar energy converter |
US4203127A (en) * | 1977-07-18 | 1980-05-13 | Motorola, Inc. | Package and method of packaging semiconductor wafers |
US4224101A (en) * | 1976-09-03 | 1980-09-23 | U.S. Philips Corporation | Method of manufacturing semiconductor devices using laser beam cutting |
US4473424A (en) * | 1981-06-17 | 1984-09-25 | Sorko Ram Paul O | Decorative mirrored article |
US4661718A (en) * | 1984-06-07 | 1987-04-28 | Nippondenso Co., Ltd. | Information and electrical power transmission system and method for vehicle |
US4694568A (en) * | 1982-01-07 | 1987-09-22 | North American Philips Corporation | Method of manufacturing chip resistors with edge around terminations |
EP0613765A1 (de) * | 1993-03-02 | 1994-09-07 | Hoechst CeramTec Aktiengesellschaft | Verfahren zum Herstellen von unterteilbaren Platten aus sprödem Material mit hoher Genauigkeit sowie Vorrichtung zum Aufnehmen und Präzisionsschleifen der Stirnseiten einer Platte |
US5552675A (en) * | 1959-04-08 | 1996-09-03 | Lemelson; Jerome H. | High temperature reaction apparatus |
US5609284A (en) * | 1992-04-02 | 1997-03-11 | Fonon Technology Limited | Method of splitting non-metallic materials |
EP0863231A1 (en) * | 1997-03-04 | 1998-09-09 | Ngk Insulators, Ltd. | A process for dicing a preform made of an oxide single crystal, and a process for producing functional devices |
US5922224A (en) * | 1996-02-09 | 1999-07-13 | U.S. Philips Corporation | Laser separation of semiconductor elements formed in a wafer of semiconductor material |
US6268641B1 (en) | 1998-03-30 | 2001-07-31 | Kabushiki Kaisha Toshiba | Semiconductor wafer having identification indication and method of manufacturing the same |
US6489588B1 (en) | 1999-11-24 | 2002-12-03 | Applied Photonics, Inc. | Method and apparatus for separating non-metallic materials |
US20030180731A1 (en) * | 2002-03-25 | 2003-09-25 | Worrall Joseph A. | Methods for producing glass substrates for use in biopolymeric microarrays |
US20050009301A1 (en) * | 2003-06-26 | 2005-01-13 | Yusuke Nagai | Semiconductor wafer dividing method utilizing laser beam |
US20060110894A1 (en) * | 2004-11-25 | 2006-05-25 | Matsushita Electric Industrial Co., Ltd. | Manufacturing method of semiconductor laser devices and manufacturing apparatus of the same |
US20140339280A1 (en) * | 2013-05-20 | 2014-11-20 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Method and Device for Scribing and Breaking Glass Substrate |
US20170076982A1 (en) * | 2015-09-11 | 2017-03-16 | Kabushiki Kaisha Toshiba | Device manufacturing method |
US20180229331A1 (en) * | 2017-02-16 | 2018-08-16 | Disco Corporation | SiC WAFER PRODUCING METHOD |
US10562130B1 (en) | 2018-12-29 | 2020-02-18 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10576585B1 (en) | 2018-12-29 | 2020-03-03 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10611052B1 (en) | 2019-05-17 | 2020-04-07 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
US11024501B2 (en) | 2018-12-29 | 2021-06-01 | Cree, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
CN114347281A (zh) * | 2022-01-18 | 2022-04-15 | 锦州神工半导体股份有限公司 | 一种单晶硅片切割方法 |
DE102016200026B4 (de) | 2015-01-06 | 2023-04-27 | Disco Corporation | Wafer-Herstellungsverfahern |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401876A (en) | 1980-05-20 | 1983-08-30 | Martin Cooper | Working gemstones |
US5932119A (en) | 1996-01-05 | 1999-08-03 | Lazare Kaplan International, Inc. | Laser marking system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2337569A (en) * | 1939-05-20 | 1943-12-28 | Pietschack Ernst | Method of producing mosaic electrodes |
US2778926A (en) * | 1951-09-08 | 1957-01-22 | Licentia Gmbh | Method for welding and soldering by electron bombardment |
US2970730A (en) * | 1957-01-08 | 1961-02-07 | Motorola Inc | Dicing semiconductor wafers |
US3061739A (en) * | 1958-12-11 | 1962-10-30 | Bell Telephone Labor Inc | Multiple channel field effect semiconductor |
-
0
- NL NL299821D patent/NL299821A/xx unknown
-
1962
- 1962-10-31 US US23437362 patent/US3112850A/en not_active Expired - Lifetime
-
1963
- 1963-10-17 GB GB4095663A patent/GB1057127A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2337569A (en) * | 1939-05-20 | 1943-12-28 | Pietschack Ernst | Method of producing mosaic electrodes |
US2778926A (en) * | 1951-09-08 | 1957-01-22 | Licentia Gmbh | Method for welding and soldering by electron bombardment |
US2970730A (en) * | 1957-01-08 | 1961-02-07 | Motorola Inc | Dicing semiconductor wafers |
US3061739A (en) * | 1958-12-11 | 1962-10-30 | Bell Telephone Labor Inc | Multiple channel field effect semiconductor |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5628881A (en) * | 1959-04-08 | 1997-05-13 | Lemelson; Jerome H. | High temperature reaction method |
US5552675A (en) * | 1959-04-08 | 1996-09-03 | Lemelson; Jerome H. | High temperature reaction apparatus |
US3226527A (en) * | 1963-10-23 | 1965-12-28 | William H Harding | Apparatus for perforating sheet material |
US3207198A (en) * | 1963-10-25 | 1965-09-21 | Jr Clement T Beeson | Method and apparatus for breaking and separating eggs |
US3474219A (en) * | 1965-03-30 | 1969-10-21 | Steigerwald Gmbh K H | Machining process using radiant energy |
US3384279A (en) * | 1966-08-23 | 1968-05-21 | Western Electric Co | Methods of severing brittle material along prescribed lines |
US3469076A (en) * | 1967-06-01 | 1969-09-23 | Producto Machine Co The | Apparatus for removing flashing from molded plastic articles |
US3629545A (en) * | 1967-12-19 | 1971-12-21 | Western Electric Co | Laser substrate parting |
US3701880A (en) * | 1968-11-29 | 1972-10-31 | Westinghouse Electric Corp | Method for sculpturing an indicia or decorative design in the surface of an article with a beam of corpuscular energy |
US3634646A (en) * | 1969-06-03 | 1972-01-11 | Velcro Sa Soulie | Method of and apparatus for cutting loops placed on a support for producing hooks therefrom |
US3696742A (en) * | 1969-10-06 | 1972-10-10 | Monsanto Res Corp | Method of making a stencil for screen-printing using a laser beam |
US3610871A (en) * | 1970-02-19 | 1971-10-05 | Western Electric Co | Initiation of a controlled fracture |
US3695497A (en) * | 1970-08-26 | 1972-10-03 | Ppg Industries Inc | Method of severing glass |
US3824678A (en) * | 1970-08-31 | 1974-07-23 | North American Rockwell | Process for laser scribing beam lead semiconductor wafers |
US3818577A (en) * | 1971-01-15 | 1974-06-25 | Caterpillar Tractor Co | Connecting rod manufacturing |
US3952404A (en) * | 1973-07-30 | 1976-04-27 | Sharp Kabushiki Kaisha | Beam lead formation method |
US3863333A (en) * | 1973-08-31 | 1975-02-04 | Bell Telephone Labor Inc | Methods for making semiconductor devices |
US4019248A (en) * | 1974-06-04 | 1977-04-26 | Texas Instruments Incorporated | High voltage junction semiconductor device fabrication |
US3997964A (en) * | 1974-09-30 | 1976-12-21 | General Electric Company | Premature breakage resistant semiconductor wafer and method for the manufacture thereof |
US3970819A (en) * | 1974-11-25 | 1976-07-20 | International Business Machines Corporation | Backside laser dicing system |
US4174561A (en) * | 1976-02-09 | 1979-11-20 | Semicon, Inc. | Method of fabricating high intensity solar energy converter |
US4224101A (en) * | 1976-09-03 | 1980-09-23 | U.S. Philips Corporation | Method of manufacturing semiconductor devices using laser beam cutting |
US4203127A (en) * | 1977-07-18 | 1980-05-13 | Motorola, Inc. | Package and method of packaging semiconductor wafers |
US4473424A (en) * | 1981-06-17 | 1984-09-25 | Sorko Ram Paul O | Decorative mirrored article |
US4694568A (en) * | 1982-01-07 | 1987-09-22 | North American Philips Corporation | Method of manufacturing chip resistors with edge around terminations |
US4661718A (en) * | 1984-06-07 | 1987-04-28 | Nippondenso Co., Ltd. | Information and electrical power transmission system and method for vehicle |
US5609284A (en) * | 1992-04-02 | 1997-03-11 | Fonon Technology Limited | Method of splitting non-metallic materials |
EP0613765A1 (de) * | 1993-03-02 | 1994-09-07 | Hoechst CeramTec Aktiengesellschaft | Verfahren zum Herstellen von unterteilbaren Platten aus sprödem Material mit hoher Genauigkeit sowie Vorrichtung zum Aufnehmen und Präzisionsschleifen der Stirnseiten einer Platte |
US5922224A (en) * | 1996-02-09 | 1999-07-13 | U.S. Philips Corporation | Laser separation of semiconductor elements formed in a wafer of semiconductor material |
US6257224B1 (en) | 1997-03-04 | 2001-07-10 | Ngk Insulators, Ltd. | Process for working a preform made of an oxide single crystal, and a process for producing functional devices |
EP0863231A1 (en) * | 1997-03-04 | 1998-09-09 | Ngk Insulators, Ltd. | A process for dicing a preform made of an oxide single crystal, and a process for producing functional devices |
US6268641B1 (en) | 1998-03-30 | 2001-07-31 | Kabushiki Kaisha Toshiba | Semiconductor wafer having identification indication and method of manufacturing the same |
US6544804B2 (en) | 1998-03-30 | 2003-04-08 | Kabushiki Kaisha Toshiba | Semiconductor wafer having identification indication and method of manufacturing the same |
US6660963B2 (en) | 1999-11-24 | 2003-12-09 | Applied Photonics, Inc. | Method and apparatus for separating non-metallic materials |
US6489588B1 (en) | 1999-11-24 | 2002-12-03 | Applied Photonics, Inc. | Method and apparatus for separating non-metallic materials |
US6919531B2 (en) * | 2002-03-25 | 2005-07-19 | Agilent Technologies, Inc. | Methods for producing glass substrates for use in biopolymeric microarrays |
US20050150881A1 (en) * | 2002-03-25 | 2005-07-14 | Worrall Joseph A.Iii | Methods for producing glass substrates for use in biopolymeric microarrays |
US7026573B2 (en) | 2002-03-25 | 2006-04-11 | Agilent Technologies, Inc. | Methods for producing glass substrates for use in biopolymeric microarrays |
US20030180731A1 (en) * | 2002-03-25 | 2003-09-25 | Worrall Joseph A. | Methods for producing glass substrates for use in biopolymeric microarrays |
US20050009301A1 (en) * | 2003-06-26 | 2005-01-13 | Yusuke Nagai | Semiconductor wafer dividing method utilizing laser beam |
US7141443B2 (en) * | 2003-06-26 | 2006-11-28 | Disco Corporation | Semiconductor wafer dividing method utilizing laser beam |
US20060110894A1 (en) * | 2004-11-25 | 2006-05-25 | Matsushita Electric Industrial Co., Ltd. | Manufacturing method of semiconductor laser devices and manufacturing apparatus of the same |
US7700392B2 (en) * | 2004-11-25 | 2010-04-20 | Panasonic Corporation | Manufacturing method of semiconductor laser devices and manufacturing apparatus of the same |
US20140339280A1 (en) * | 2013-05-20 | 2014-11-20 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Method and Device for Scribing and Breaking Glass Substrate |
DE102016200026B4 (de) | 2015-01-06 | 2023-04-27 | Disco Corporation | Wafer-Herstellungsverfahern |
DE102016200026B8 (de) | 2015-01-06 | 2023-06-22 | Disco Corporation | Wafer-Herstellungsverfahren |
US20170076982A1 (en) * | 2015-09-11 | 2017-03-16 | Kabushiki Kaisha Toshiba | Device manufacturing method |
US10828726B2 (en) * | 2017-02-16 | 2020-11-10 | Disco Corporation | SiC wafer producing method using ultrasonic wave |
US20180229331A1 (en) * | 2017-02-16 | 2018-08-16 | Disco Corporation | SiC WAFER PRODUCING METHOD |
US11024501B2 (en) | 2018-12-29 | 2021-06-01 | Cree, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
US10576585B1 (en) | 2018-12-29 | 2020-03-03 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US11219966B1 (en) | 2018-12-29 | 2022-01-11 | Wolfspeed, Inc. | Laser-assisted method for parting crystalline material |
US10562130B1 (en) | 2018-12-29 | 2020-02-18 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US11826846B2 (en) | 2018-12-29 | 2023-11-28 | Wolfspeed, Inc. | Laser-assisted method for parting crystalline material |
US11901181B2 (en) | 2018-12-29 | 2024-02-13 | Wolfspeed, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
US11911842B2 (en) | 2018-12-29 | 2024-02-27 | Wolfspeed, Inc. | Laser-assisted method for parting crystalline material |
US11034056B2 (en) | 2019-05-17 | 2021-06-15 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
US11654596B2 (en) | 2019-05-17 | 2023-05-23 | Wolfspeed, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
US10611052B1 (en) | 2019-05-17 | 2020-04-07 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
US12070875B2 (en) | 2019-05-17 | 2024-08-27 | Wolfspeed, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
CN114347281A (zh) * | 2022-01-18 | 2022-04-15 | 锦州神工半导体股份有限公司 | 一种单晶硅片切割方法 |
Also Published As
Publication number | Publication date |
---|---|
GB1057127A (en) | 1967-02-01 |
NL299821A (enrdf_load_stackoverflow) | 1900-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3112850A (en) | Dicing of micro-semiconductors | |
US5912186A (en) | Method for processing semiconductor material | |
KR100701013B1 (ko) | 레이저 빔을 이용한 비금속 기판의 절단방법 및 장치 | |
EP0567129B1 (en) | Method of working diamond | |
JP2005086175A (ja) | 半導体薄膜の製造方法、半導体薄膜、半導体薄膜チップ、電子管、及び光検出素子 | |
Tam et al. | Picosecond laser sputtering of sapphire at 266 nm | |
KR20160117531A (ko) | 취성 재료를 묘각하고 화학 식각하는 방법 및 시스템 | |
JP2000156358A (ja) | レ―ザ―を用いる透明媒質の加工装置及び加工方法 | |
US20200075414A1 (en) | SiC SUBSTRATE PROCESSING METHOD | |
CN111055029A (zh) | 电磁场控制等离子体调控裂纹扩展的激光切割装置及方法 | |
CN102615432A (zh) | 使用经倾斜的雷射扫描来加工工作件的方法和设备 | |
US20150158117A1 (en) | System and method for obtaining laminae made of a material having known optical transparency characteristics | |
CN111055028A (zh) | 基于等离子体的扩展可控裂纹的激光切割装置及方法 | |
US12230543B2 (en) | Die cleaning systems and related methods | |
CN117139865A (zh) | 一种低损耗的碳化硅晶锭激光切片方法 | |
JP4477325B2 (ja) | 加工用ビームを用いた加工方法と装置 | |
KR20100015895A (ko) | 반도체 바디로부터 얇은 디스크 또는 필름을 제조하기 위한 방법 및 장치 | |
JP4307915B2 (ja) | サンプルの劈開を利用した加工方法と装置 | |
US6753500B2 (en) | Method and apparatus for cutting a substrate using laser irradiation | |
JPH0919787A (ja) | 非金属材料の加工方法及びその加工装置 | |
JPH0740336A (ja) | ダイヤモンドの加工方法 | |
Ostendorf | Precise structuring using femtosecond lasers | |
CN1723547A (zh) | 制造单晶半导体晶片的方法及实施该方法的激光加工设备 | |
KR20250007702A (ko) | 비드 블라스팅을 이용하지 않는 표면의 텍스처라이징 | |
Sysoev et al. | Increasing the efficiency of controllable laser thermal cleavage of insulating materials |