US3092062A - Mechanical control for submerged hydrofoil systems - Google Patents

Mechanical control for submerged hydrofoil systems Download PDF

Info

Publication number
US3092062A
US3092062A US195818A US19581862A US3092062A US 3092062 A US3092062 A US 3092062A US 195818 A US195818 A US 195818A US 19581862 A US19581862 A US 19581862A US 3092062 A US3092062 A US 3092062A
Authority
US
United States
Prior art keywords
hydrofoil
flap
vertical
submerged
craft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US195818A
Inventor
Savitsky Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US195818A priority Critical patent/US3092062A/en
Application granted granted Critical
Publication of US3092062A publication Critical patent/US3092062A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B39/061Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water by using trimflaps, i.e. flaps mounted on the rear of a boat, e.g. speed boat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • B63B1/28Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils
    • B63B1/285Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils changing the angle of attack or the lift of the foil

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

June 4, 1963 D. SAVITSKY 3,092,062
MECHANICAL CONTROL FOR SUBMERGED HYDROFOIL SYSTEMS Filed May 18, 1962 2 Sheets-Sheet 1 INVENTOR. MNIEL SA VITSK Y BY m. e?
ATTORN Y8.
June 4, 1963 D. SAVITSKY 3,092,062
MECHANICAL CONTROL FOR SUBMERGED HYDROFOIL SYSTEMS Filed May 18, 1962 2 Sheets-Sheet 2 INVENTOR DAN/EL SA V/TSKY mww A no g s.
The present invention relates to an automatic, passive, mechanical control system for stabilizing the motions of marine craft which are supported by submerged hydrofoil systems and which are subject to operation under either calm Water or wave conditions.
In the operation of hydrofoil marine craft with uncontrolled submerged hydrofoil support systems, it is known that the craft requires some form of height stabilization control when operating in either smooth water or waves. In smooth water uncontrolled submerged hydrofoil systems may develop continuously oscillating heaving and pitching motions or so-called divergent pitching or heaving motions which may cause the hull of the hydrofoil craft to either crash on to the water surface or cause the submerged hydrofoils to suddenly emerge through the water surfaceagain resulting in the crash of the hull against the water surface. When uncontrolled submerged hydrofoil systems are run in a seaway, the wave disturbing forces can either result in extremely uncomfortable heaving and pitching motions of the craft and/ or cause the bow of the hull to crash onto oncoming wave flanks. All the above described events can seriously hamper or prevent successful operation of the hydrofoil boat. In the past, many attempts have been made to control the hydrodynamic forces on the submerged hydrofoil by the use of combined electronic and mechanical control systems. These control systems usually sense the disturbance of the craft by continuously monitoring (usually electrically) the accelerations or motions of the craft and then, by mechanical means, provide for effective angle of attack changes on the submerged foils to vary the hydrodynamic disturbing forces on the hydrofoil in order to overcome the wave disturbances. These electronic-mechanical auto-pilot systems are usually complex in design; require continuous maintenance; are costly; and may cause a hydrofoil boat to be inoperable if only one of the many of its components is defective.
A feature of the present invention is the provision of a passive, mechanical, automatically operating simple hydrofoil control system which possesses all the advantages of a submerged hydrofoil system without the complexity, expense, and involved maintenance required of present electronic-mechanical autopilot systems. To attain this, the present invention consists of mechanically linking a control flap on the submerged hydrofoil to a vertical trailing edge flap on the vertical strut which supports the submerged hydrofoil to the hull of the craft.
In smooth water operation, as the hydrofoil boat tends to fall towards the water surface, the vertical flap on the vertical support strut is so arranged as to be deflected by the hydrodynamic force developed by the increased effective immersion of the flap. Through a suitable linkage system the deflection of the vertical flap causes a deflection of the control flap on the submerged hydrofoil thus increasing the hydrodynamic lift on the hydrofoil causing the hydrofoil craft to rise until an equilibrium altitude is attained. At some preselected operating height of the boat, the vertical flap is designed to be clear of the water and the height stabilization is achieved by the natural hydrodynamic phenomena wherein the submerged hydrofoil loses hydrodynamic lift as it approaches the free water surface and gains lift as its submergence is increased.
In operations in waves the rising water surface of the $392,962 Patented June 4, 1963 "ice wave profile actuates the vertical flap so that its deflection causes a deflection of the flap of the submerged foil which in turn increases the hydrodynamic lift force on the submerged hydrofoil so as to raise the hull over the oncoming wave flank. The size of the submerged hydrofoil control flap, the size of the vertical depth control flap on the vertical support strut and the required mechanical linkages between these flaps are arranged and proportioned to provide any desired sensitivity and response characteristics to wave disturbances as to assure a minimum total craft response to the hydrodynamic forces developed by operation in waves.
Another feature of my invention is the provision, by the proper proportionment of the various elements of the control system, for any desired degree of response to the various wave systems to be encountered.
A further feature of the invention is a passively activated hydrofoil flap control which will automatically provide for large hydrofoil lift coeflicients at low speed and also provide for low lift COCfilCifil'ltS at high speed or cruise condition.
An additional feature is a completely mechanical selfoperating control and stabilizing system for submerged hydrofoils in which the depth sensing element is not affected by the vertical orbital velocities in the wave system.
Other features and the attendant advantages of this invention will be readily appreciated by reference to the following description when considered in connection with the accompanying drawings wherein:
FIGURE 1 shows a schematic view of a preferred embodiment of the invention as installed on a hydrofoil boat;
FIGURE 2 shows a schematic detailed view of a preferred embodiment of the invention when operating at speeds and submergences when the vertical flap is par: tially submerged;
FIGURE 3 shows a schematic detailed view of a preferred embodiment of the invention when operating at speeds and submergences such that the vertical flap is not submerged.
Referring now to the drawings wherein like reference characters designate like or corresponding facts throughout the several views, there is shown in FIGURE 1 a sub merged hydrofoil 4, attached to a vertical support strut 2, which in turn is attached to the hull 1. A vertical flap 3, is attached and pivoted at the trailing edge of the vertical support strut 2.
A trailing edge control flap, 5, is attached to the trailing edge of the submerged hydrofoil 4. A mechanical linkage generally indicated as 6 is connected between the vertical flap 3, and the horizontal flap 5. The details of the linkage 6, are shown in FIGURES 2 and 3.
The operation of this linkage system 6 is as follows: When the surface craft altitude is such that the free Water surface 7 intersects a portion of the vertical flap 3, the hydrodynamic loads on this flap cause it to pivot about its vertical axis. This flap motion causes a ball joint 11, which is attached to the ventical flap, to rotate in a horizontal plane. A rigid rod 8, which is fixed in length, is connected to the flap ball joint 11, at its upper end, and at its lower end, to a similar ball joint 11a attached to a lever 9, which is limited to movement in a vertical plane. The lever, 9, is attached through a pivot 12, disposed on the vertical strut 2. When the vertical flap 3 is deflected then the rod 8, causes the lever 9, to move up or down depending upon the direction of rotation of the flap 3. A vertical rod 10, is connected to a point on the lever 9 by a pivot pin 13. The lower end of rod 10 is pivotally connected to the submerged hydrofoil flap 5, by another pivotal connection 14.
By proper design of the basic linkage system 6, the
hydrofoil flap deflection rate can be made to be any desired proportion of the vertical flap deflection rate.
In low spmed operation, as illustrated in FIG. 2, the vertical flap 3, is immersed in the water and the hydrodynamic load on this flap causes a full down deflection of the submerged hydrofoil flap 5. The full deflection of the flap 5, causes a large lift coefficient to be developed by the submerged hydrofoil. The large lift coefficient on the submerged hydrofoil develops a large hydrodynamic lift force so that hydrofoil boat 1, tends to lift itself out of the water. As the speed of the craft is increased, two conditions are developed: one is, that the required lift coefiicient to support the craft is decreased and secondly, the craft will start to rise so that the hull is lifted out of the water. As the craft rises, the vertical flap 3 rises, immersion is reduced and its hydrodynamic load is reduced. The increased load on the submerged flap 5 then causes its own deflection to be reduced and in turn, through the linkage system 6', causes the vertical flap to increase its flap angle until an equilibrium moment condition is achieved between the vertical flap and horizontal flap loads. This process continues, i.e. as the craft goes faster, the hydrofoil flap 5, loads are increased, the craft rises, reducing the effectiveness of the vertical flap 3 until the craft reaches an equilibrium cruise height at which the vertical flaps are completely out of the water and the hydrofoil flap is no longer deflected, its further movement being prevented by a physical upper stop 16 (FIGS. 2 and 3 Further increases in craft height are then controlled by the hydrodynamic phenomena which causes a reduction in hydrofoil lift as the submerged dihedral hydrofoil approaches the free water surface. If, for some reason the craft is caused to move towards the free water surface, the vertical ilap 3 is then actuated causing a deflection of the hydrofoil flap 5, which in turn causes the hydrodynamic lift force to be increased and hence causes the craft to rise again to an equilibrium condition. As can be seen from the above explanation, the present invention is an entirely passive and mechanical height stabilizing system for submerged hydrofoil systems.
When operating in waves the dynamics of the control system will develop adesired low response to the high frequency of wave encounter associated with high speed operation in waves, and hence achieve stable platform operation. These low responses to the high frequencies of Wave encounter will be especially beneficial when operating in short wave lengths and hence the motions of the craft and loads on the craft will be very much reduced compared to a surface-piercing hydrofoil system which is directly loaded by each wave it encounters. For long waves, where the frequency of encounter is small, the dynamics of the control system will respond to these long waves so that the hydrofoil craft will essentially contour these waves. The dynamics of the control system are controlled through proper linkage design and mass distribution in the flaps. It is obvious from the above description that the vertical flap control system in the present invention is insensitive to the vertical orbital velocities of the Wave system.
Iclaim:
1. In combination with a Water borne vessel, a passive self-compensating hydrofoil control system comprising a substantially vertical hydrofoil strut member and a hydrofoil plane, said vertical strut member being connected at its upper end to the hull of said vessel, said hydrofoil plane being disposed at the lower end of said strut member and operable to maintain a hydrodynamic lift of the vessel to a minimum submergence of the hydrofoil plane below the free water surface at cruise speed of the vessel, each of said strut and plane members having integral pivotal flaps defining at least a port-ion of the trailing edges of said members, said pivotal flap of the strut member terminating at its lower end at a height above said hydrofoil plane which is greater than said minimum submergence, and mechanical linkage means interconnecting both of said pivotal flaps and operable, on application of unbalanced external forces to one flap causing it to pivot, to apply to the other iiap a force acting to move said other flap toward a position for equalizing the forces applied to both flaps.
2. The combination according to claim 1 wherein the mechanical linkage means interconnecting said flaps includes means for producing a mechanical advantage.
3. The combination according to claim 1 wherein said mechanical linkage means comprises a first push rod, an intermediate lever and a second push rod, one end of each of said push rods being pivotally connected to one of said flaps and the other end of each of said push rods being pivotally connected to said intermediate lever.
4. The combination of claim 3 wherein the means interconnecting one of said push rods with its respective flap and said lever are ball and socket joints, whereby rotational movement of said flap is converted into unidirectional movement of said lever.
5. The combination according to claim 1, comprising also a stop for limiting pivotal movement of said flap of the hydrofoil plane in the upward direction.
References Cited in the file of this patent UNITED STATES PATENTS 2,703,063 Gilruth Mar. 1, 1955 2,722,189 Hobday Nov. 1, 1955 2,749,871 Scherer et al June 12, 1956 2,890,671 Hobday June 16, 1959

Claims (1)

1. IN COMBINATION WITH A WATER BORNE VESSEL, A PASSIVE SELF-COMPENSATING HYDROFOIL CONTROL SYSTEM COMPRISING A SUBSTANTIALLY VERTICAL HYDROFOIL STRUT MEMBER AND A HYDROFOIL PLANE, SAID VERTICAL STRUT MEMBER BEING CONNECTED AT ITS UPPER END TO THE HULL OF SAID VESSEL, SAID HYDROFOIL PLANE BEING DISPOSED AT THE LOWER END OF SAID STRUT MEMBER AND OPERABLE TO MAINTAIN A HYDRODYNAMIC LIFT OF THE VESSEL TO A MINIMUM SUBMERGENCE OF THE HYDROFOIL PLANE BELOW THE FREE WATER SURFACE AT CRUISE SPEED OF THE VESSEL, EACH OF SAID STRUT AND PLANE MEMBERS HAVING INTEGRAL PIVOTAL FLAPS DEFINING AT LEAST A PORTION OF THE
US195818A 1962-05-18 1962-05-18 Mechanical control for submerged hydrofoil systems Expired - Lifetime US3092062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US195818A US3092062A (en) 1962-05-18 1962-05-18 Mechanical control for submerged hydrofoil systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US195818A US3092062A (en) 1962-05-18 1962-05-18 Mechanical control for submerged hydrofoil systems

Publications (1)

Publication Number Publication Date
US3092062A true US3092062A (en) 1963-06-04

Family

ID=22722943

Family Applications (1)

Application Number Title Priority Date Filing Date
US195818A Expired - Lifetime US3092062A (en) 1962-05-18 1962-05-18 Mechanical control for submerged hydrofoil systems

Country Status (1)

Country Link
US (1) US3092062A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1236966B (en) * 1964-04-14 1967-03-16 Atlantic Hydrofoils Inc Automatic, passive, mechanical control system for stabilizing the movements of a hydrofoil
US3988994A (en) * 1974-06-14 1976-11-02 Aktiengesellschaft "Weser" Catamaran
US4089492A (en) * 1977-01-27 1978-05-16 The United States Of America As Represented By The Secretary Of The Navy Ocean adapted airship
US4208980A (en) * 1976-10-18 1980-06-24 Henry Henkel Hydrofoil boat
US4953492A (en) * 1989-06-21 1990-09-04 Fmc Corporation Water supporting and propulsion systems
WO1991005696A1 (en) * 1989-10-13 1991-05-02 Fmc Corporation Asymmetric hydrofoil propulsion method and apparatus
WO2000038971A1 (en) * 1998-12-29 2000-07-06 Jorde Jens Herman Foil system device for vessels
US6164235A (en) * 1997-05-06 2000-12-26 Universiteit Van Stellenbosch Hydrofoil supported water craft
US6634310B2 (en) * 2002-02-04 2003-10-21 Donald E. Burg High efficiency high speed ship
US6805068B1 (en) 2003-08-05 2004-10-19 Raimer Tossavainen Hydrofoil system for lifting a boat partially out of water an amount sufficient to reduce drag
US6948441B2 (en) 2003-02-10 2005-09-27 Levine Gerald A Shock limited hydrofoil system
US20060070565A1 (en) * 2003-02-10 2006-04-06 Levine Gerald A Shock limited hydrofoil system
FR2886270A1 (en) * 2005-05-31 2006-12-01 Gerard Roger Aldin ANTI-CONTROLLED AILERON WITH HYDRODYNAMIC PORTABILITY PILOTED BY ROTATING DAWN DRIVING A LEADING FLIGHT COMPONENT
US20070044701A1 (en) * 2005-09-01 2007-03-01 Kang-Chin Lin Nautical transport vehicle having enhanced stability
US7743720B1 (en) * 2006-11-08 2010-06-29 Steven John Salani Multihull hydrofoil watercraft
NO331286B1 (en) * 1998-12-29 2011-11-14 Jan Ingar Norheim Device for vessel foil system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703063A (en) * 1951-01-16 1955-03-01 Hydrofoil Corp Hydrofoil craft
US2722189A (en) * 1947-10-29 1955-11-01 Hobday Stephen William Craft adapted to travel on water
US2749871A (en) * 1952-09-12 1956-06-12 Hydrofoil Corp Flap depth control for hydrofoil craft
US2890671A (en) * 1948-10-29 1959-06-16 Hobday Stephen William Hydrofoil watercraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722189A (en) * 1947-10-29 1955-11-01 Hobday Stephen William Craft adapted to travel on water
US2890671A (en) * 1948-10-29 1959-06-16 Hobday Stephen William Hydrofoil watercraft
US2703063A (en) * 1951-01-16 1955-03-01 Hydrofoil Corp Hydrofoil craft
US2749871A (en) * 1952-09-12 1956-06-12 Hydrofoil Corp Flap depth control for hydrofoil craft

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1236966B (en) * 1964-04-14 1967-03-16 Atlantic Hydrofoils Inc Automatic, passive, mechanical control system for stabilizing the movements of a hydrofoil
US3988994A (en) * 1974-06-14 1976-11-02 Aktiengesellschaft "Weser" Catamaran
US4208980A (en) * 1976-10-18 1980-06-24 Henry Henkel Hydrofoil boat
US4089492A (en) * 1977-01-27 1978-05-16 The United States Of America As Represented By The Secretary Of The Navy Ocean adapted airship
US4953492A (en) * 1989-06-21 1990-09-04 Fmc Corporation Water supporting and propulsion systems
WO1991005696A1 (en) * 1989-10-13 1991-05-02 Fmc Corporation Asymmetric hydrofoil propulsion method and apparatus
US5134954A (en) * 1989-10-13 1992-08-04 Fmc Corporation Asymmetric hydrofoil propulsion method and apparatus
US6164235A (en) * 1997-05-06 2000-12-26 Universiteit Van Stellenbosch Hydrofoil supported water craft
NO331286B1 (en) * 1998-12-29 2011-11-14 Jan Ingar Norheim Device for vessel foil system
WO2000038971A1 (en) * 1998-12-29 2000-07-06 Jorde Jens Herman Foil system device for vessels
AU759826B2 (en) * 1998-12-29 2003-05-01 Jens-Herman Jorde Foil system device for vessels
US6748893B1 (en) * 1998-12-29 2004-06-15 Jens-Herman Jorde Foil system device for vessels
US6634310B2 (en) * 2002-02-04 2003-10-21 Donald E. Burg High efficiency high speed ship
US6948441B2 (en) 2003-02-10 2005-09-27 Levine Gerald A Shock limited hydrofoil system
US20060070565A1 (en) * 2003-02-10 2006-04-06 Levine Gerald A Shock limited hydrofoil system
US7182036B2 (en) 2003-02-10 2007-02-27 Levine Gerald A Shock limited hydrofoil system
US6805068B1 (en) 2003-08-05 2004-10-19 Raimer Tossavainen Hydrofoil system for lifting a boat partially out of water an amount sufficient to reduce drag
FR2886270A1 (en) * 2005-05-31 2006-12-01 Gerard Roger Aldin ANTI-CONTROLLED AILERON WITH HYDRODYNAMIC PORTABILITY PILOTED BY ROTATING DAWN DRIVING A LEADING FLIGHT COMPONENT
WO2006129011A2 (en) * 2005-05-31 2006-12-07 Aldin Gerard Orientable aileron controlled by setting a rotatable paddle
WO2006129011A3 (en) * 2005-05-31 2007-01-25 Gerard Aldin Orientable aileron controlled by setting a rotatable paddle
US20070044701A1 (en) * 2005-09-01 2007-03-01 Kang-Chin Lin Nautical transport vehicle having enhanced stability
US7287480B2 (en) * 2005-09-01 2007-10-30 Kang-Chin Lin Nautical transport vehicle having enhanced stability
US7743720B1 (en) * 2006-11-08 2010-06-29 Steven John Salani Multihull hydrofoil watercraft

Similar Documents

Publication Publication Date Title
US3092062A (en) Mechanical control for submerged hydrofoil systems
US2804038A (en) Sailing vessels
US4100876A (en) Hydrofoil fixed strut steering control
US3270699A (en) Hydrofoil craft
US2749871A (en) Flap depth control for hydrofoil craft
US3065723A (en) Supercavitating hydrofoils
US3977348A (en) Adjustable hydrodynamic section for submerged foils
US3789789A (en) Hydrofoil sailing craft
US4711195A (en) Hydrofoil apparatus
US2139303A (en) Watercraft
US3459146A (en) Hydrofoil watercraft
US4615291A (en) Hydrofoil boat
JPS62255295A (en) Hydrofoil
US3199484A (en) Load-alleviator hydrofoil unit for watercraft
US2960960A (en) Paravane
US3797434A (en) Hydrofoil control means
US3141437A (en) Constant lift system for craft
US3844238A (en) Sailing boats with rigid sails
US3104642A (en) Carrier wing unit for a craft with a constant predetermined lift, and selfvariable incidence
US3286673A (en) Hydrofoil stabilizing means for watercraft
US3742890A (en) Free trailing forward hydrofoil strut
US4517912A (en) Hydrofoil control
US3225728A (en) Hulled body equipped with wave-riding device
US2722189A (en) Craft adapted to travel on water
US3031999A (en) Adjustable hydrofoil