US3043113A - Refrigerating systems - Google Patents

Refrigerating systems Download PDF

Info

Publication number
US3043113A
US3043113A US31205A US3120560A US3043113A US 3043113 A US3043113 A US 3043113A US 31205 A US31205 A US 31205A US 3120560 A US3120560 A US 3120560A US 3043113 A US3043113 A US 3043113A
Authority
US
United States
Prior art keywords
ice
evaporator
switch
valve
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US31205A
Inventor
Muffly Glenn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US663526A external-priority patent/US2993347A/en
Application filed by Individual filed Critical Individual
Priority to US31205A priority Critical patent/US3043113A/en
Application granted granted Critical
Publication of US3043113A publication Critical patent/US3043113A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators

Definitions

  • One object of this invention is to control a system having multiple evaporators in a manner which provides for heating a first evaporator While cooling one or more other evaporators.
  • Another object is to utilize the warming of the first evaporator to release ice which is then stored for future use.
  • a further object is to defrost the evaporator which cools a freezer while continuing to cool another section of a refrigerator.
  • a still further object is to utilize the warming of one evaporator to reheat air after it has been cooled to a lower-than-desired temperature in an air conditioning system for the purpose of reducing its humidity.
  • An additional object is to do the reheating, defrosting or ice releasing with specific heat of liquid refrigerant instead of with latent heat, thereby effecting a considerable economy of operation.
  • Another object is to provide an improved type of refrigerant flow control which not only regulates normal flow of liquid refrigerant to an evaporator while it is actively cooling, but also opens wide to cause the evaporator to be heated by high pressure refrigerant.
  • An additional object is to provide for a more compact arrangement of parts in a refrigerator, minimizing the occupation of space in which foods are stored.
  • Another object is to provide an arrangement of ice maker parts such that they do not interfere with the use of sliding or revolving shelves within the refrigerator.
  • a still further object is to'provide improved methods and controls for performing the ice-releasing and freezerdefrosting operations.
  • Still another object is to provide a more efiicient system by separating the cooling of the freezer from the cooling of the ice maker and of the air in the main food space.
  • Another additional object is to provide an improved method for defrosting one evaporator with warm liquid refrigerant which then expands in a second evaporator at higher efficiency because the liquid has been cooled nearer to the evaporating temperature, thereby reducing the loss due to flash gas forming as the liquid enters the second evaporator.
  • FIGURE 1 is a partial front view of the left side of a refrigerator, showing the ice storage bin, water tank and pump as seen with the refrigerator door open.
  • FIGURE 2 is a side view of the parts seen in FIG- URE 1, partly in section.
  • FIGURE 3 is a top view of FIGURE 2 on the line 33 thereof, partly in section and showing a top view of the ice maker and the ice storage bin.
  • FIGURE 4 is a diagram of the refrigerating system and of electrical connections to the various controls.
  • FIGURE 5 is a view of an evaporator suitable for use as a part of the ice maker, showing the two ice maker evaporators of FIGURE 3 as made in one piece prior to forming into the necessary U-shape.
  • FIGURE 6 is a section of FIGURE 5.
  • FIGURE 7 is a plan view showing how the triangular water tank fits into a refrigerator with revolving shelves to utilize space otherwise wasted.
  • FIGURE 8 is a vertical sectional view of a household refrigerator of two-zone type showing parts of the system enlarged and in section.
  • FIGURE 9 is an alternative control and wiring diagram showing thermal instead of clock control of defrosting.
  • FIGURE 10 is a diagrammatic view of a refrigerating system anda portion of an air conditioning system, illustrating the application of my improved control method to air conditioning.
  • FIGURE 11 combines certain elements of FIGURES 1 to 4- and 8 to show a typical design in a cabinet.
  • FIGURES l, 2 and 3 are arranged relative to each other in the common (3rd angle or American) relationship to aid in identification of parts, which are each indicated by the same numeral throughout the various figures.
  • the numeral 10 is located in the main food space of the refrigerator cabinet which has portions of its outer insulated walls shown in section. 12 is the door of this cabinet closing the main food space, and 14 is the usual door gasket.
  • the tank 16 of flat rectangular form, is placed vertically in a rear corner of the food space, the two longer outer sides being contacted by the embossed portions of evaporators 18 and 19 on spaced round areas, preferably about one inch in diameter and arranged directly opposite each other.
  • evaporators may be combined in one, as shown later, and may be provided with fins 20 to aid in cooling the air in space 10 and by transfer of heat from the air to aid in releasing ice disks 2.2.
  • FIGURE 3 An edge of evaporator 18 and portions of tank 16 are seen in FIGURE 1, indicating that the tank 16 extends upward beyond the evaporator 18 and is closed at its top to prevent air circulation from the food compartment 10 contacting the ice and water within the tank.
  • Water is circulated through the tank 16, entering from tube 2- at, or near, the bottom of the tank, under force of'the centrifugal pump 26 driven by the motor 28.
  • the pump is supplied from the tank 31 ⁇ through pipe 32 and water overflows near the top of tank 16 into the ice delivery chute 34 which guides the ice into the ice bin 36, the ice disks rolhng or sliding on the wire 38, which serves as a track, while the water falls into the return tube 49 leading back into the water tank 30.
  • a grid, or screen, 42 prevents any ice except very small pieces from falling into the water tank.
  • the tank 16 and evaporator 18 are here shown with the ice-making areas staggered in two vertical rows and set at an angle, but in some cabinets it may be preferred to place these areas in one vertical row, making tank 16 narrower. Also the tank 16 may be parallel ,with a rear or side wall of the cabinet where that fits in with location of the ice bin 36. Another modification would be to use two single-row tanks in parallel where space may be thus conserved.
  • the cooling is cut off md the ice released by thawing free from the walls of tank 16, whereupon the flow of water causes the released disks of ice to float or roll out of the tank 16 (over the edge not sectioned in FIGURE 3) into the chute 34 and thence to bin 36, as above described.
  • This cyclic operation continues, with pump 26 operating during ice release as well as during ice freezing periods until the ice accumulated in bin 36 has partiallycovered the control bulb 44, which may be merely a part of the tube leading to it.
  • Bulb 44 is connected with a switch to stop the motor 28, as will be described in more detail later herein.
  • Bulb 44 shown broken in FIGURE 4, may be longer than shown in FIGURE 2 and is vapor-charged, thus response is to any short coldest portion of the bulb.
  • the ice bin 36 is fitted with a door 46, hinged at 48 just'above the top edge of wall 50 and is formed with two Wings 52 fittingas tightly against the side walls of 36 as is practical for free movement of door 46. These wings are to prevent the ice from falling out when the door is opened, as provided for by the handle or lip 54.
  • md preferably supported on it, is the scoop 56 for use in removing ice from the binand transferring it to drinking glassesor' other dishes.
  • a drain is provided in the bottom of bin 36 for returning meltage water to the tank 30.
  • the edge 50 forms a pan-like bottom for bin 36 and drain 58 insures that meltage water does not overflow at 50.
  • An opening in the pan or shelf. supporting bin 36 serves to anchor drain tube or collar 58 to hold the bin in place, butit can be removed by lifting, say a half inch, whichalso releases 36 from 40.
  • Water is supplied to tank 30 through tube 6! which leads from a suitable valved connection with the'water supplysysternof the house;
  • the tube 69 is preferably connected within tank 36' to a float valve (not shown) which opens Whenever the water level falls below a desired minimum level such as 62.
  • a float valve (not shown) which opens Whenever the water level falls below a desired minimum level such as 62.
  • pump 26-stops and water drains back into tank 30 the water therein will rise to some slightly higher level as indicated at 64.
  • This higher level is preferably a considerable distance below the top of tank 39 to allow a capacity for storage of meltage water from bin 36 in the event of failure of the refrigeratingsystem or of its currentsupply.
  • the trap feature is shown as applied to a commercial ice maker in my US.
  • ice disks 22 roll from chute 34 in a direction which causes them to strike one wall of bin 36 and rebound to aid in filling the bin more uniformly than if allowed to drop at one point in the bin each time.
  • Another arrangement would be to deliver the ice in a direction to pile up at the front next to the door. This piling of the ice is preferably so related to the position of bulb 44that the bin is nearly filled before ice begins to cover a part of the bulb, thus insuring the maximum supply of ice before stopping pump 26.
  • FIGURE 4 illustrates the refrigerant and electrical circuits of a system as used in a refrigerator such as the one shown in FIGURES l, 2' and 3, including the freezer evaporator which is designed to cool a drawer-type freezer such as shown in my US. Patents Nos. 2,709,343 and 2,765,633.
  • This freezer drawer is in the lower portion of the cabinet 10 which is broken off in FIGURES 1 and 2. Further details of it are shown in the above'patents and pending divisions of the including S.N. 444,422, filed July 2Q, 1954, now Patent No. 2,866,322 issued December 20, 1958, S.N. 464,041, filed October 22, 1954, now Patent No. 2,894,374 issued July 14, 1959, and S.N. 552,530, filed December 12, 1955, now Patent No. 2,942,- 432 issued June 28, 1960.
  • FIGURE 4 The normal path of refrigerant while making ice and cooling the main food space is indicated in FIGURE 4 by the solid arrows leading from motor-compressor unit to condenser $2, receiver 84 through valve 86, tube 88, and expansion valve 91 'tothe ice maker evaporator 18.
  • Mixed vapor and liquid refrigerant leaving the ice maker evaporator flows through open valve 92 to the evaporator 94 which cools the air'in the main food space, returning as vapor through tube 96 to the unit 80.
  • This circuit is modified in either of two Ways:
  • switch 162 When switch 162 is closed in response to the cooling of bulb 104 'by the ice forming within tank 16, the current actuates valve 166 to open it and valve 92 to close it, causing high pressure refrigerant to follow the dotted arrows, entering evaporator 18 to release the ice and then flowing through the expansion valve or other pressurereducing device 108 to cool evaporator 94 while the ice is being released. This warms bulb 104 to reopen switch 162 causing normal flow through and 92 to resume, cooling both 18 and 94.
  • the evaporators 18 and 94 are operated in series at substantially the same pressure while ice is being frozen, expansion device 198 being bypassed through the open valve 92.
  • valve 106 is opened and valve 92 closed by the closing of switch '102 upon completion of the freezing of a batch of ice, the evaporating pressure in evaporator 94 is controlled by expansion device 108.
  • This pressure may be approximatelythe same as that previously maintained in the two evaporators by 90, but
  • evaporator 94 is intended to defrost during idle periods under the efiect of heat picked up from the air in the main food space 10, whereas evaporator 18 is cyclically defrosted by Warm liquid refrigerant and evaporator 118 is defrosted by hot gas or by the heating coil 12%, as will be described.
  • valves 1% and 92 are energized simultaneously and only for the very short periods when ice is being released.
  • expansion device 168 is used only during ice releasing periods which may last for two to six minutes and occur only a few times in twentyfour hours, thus 108 may be a simple orifice or restrictor. combined in the body of valve 92.
  • This orifice for either 106 or 92 may be a simple hole, a tube or a groove in the valve or its seat, as shown by FIGURES 4, 11, 13, 16, 17 or 13 of my US. Patent No.
  • Valve 106 differs from 92 in being designed to open instead of to close when current is supplied to its solenoid.
  • the switch 122 is of the usual thermostatic type which closes to operate the motor-compressor unit 80 when bulb 124 rises to the cut-in temperature of air in the main food space. This bulb 124 is also warmed to the out-in point by either of the two resistance heaters 125 or 126; by 126 when switch 128 is closed and 112 is not. In this condition motor 28 drives the water pump 26 for the purpose of making ice.
  • the long bulb 44 located in the ice bin 35 warms up when not contacted by ice to close switch 128 and start ice production, which continues in cycles controlled by switch 102 until a short section of bulb 44 is again contacted by enough ice to cool it to the cut-out point of switch 128 or the operation is interrupted by starting of freezer cooling or freezer defrost.
  • switch 122 remains closed to operate the compressor. If switch 122 remains closed, due to high air temperature in space 10, after the ice supply has been replenished, and switch 128 has opened, the compressor continues to operate, cooling the two evaporators 18 and 94- both of which now cool the air of the main food space 111', but no ice is made'since the water pump 26 is now idle. This continues until bulb 124 is cooled to the cutout point of switch 122.
  • switch 112 has remained open, but in the event that the bulb 119, which is atfected by changes of temperature in the frozen food compartment of the refrigerator, rises to the cut-in point of switch 112, the solenoid 131i is energized to open switch 132 and stop the water pump. This prevents unnecessary operation of pump 26 during cooling of evaporator 118. Since closing of switch 112 heats coil 125, warming bulb 124 to close switch 122, the compressor is operated. At the same time solenoid 114 is energized to lift valve 86 and direct the flow of liquid refrigerant to expansion device 116 and freezer evaporator 118 while flow to evaporators 1S and 94 is stopped. Such flow is indicated by dot-dash arrows, only the freezer evaporator 118 being cooled.
  • Elements 114, 12 and 131! are shown connected in series as none of them requires much current and they are always actuated together. They may, of course, be connected in parallel to employ the full line voltage if such design is preferred. Likewise it is optional whether 1416 and 92 be connected in parallel as shown or designed for lower voltage and connected in series.
  • the evaporating pressure in evaporator 118 may be (and preferably is) much lower than that in either of the other evaporators.
  • the clock motor 134 runs continuously and is mechanically connected to shift switch 136 to its dotted position during short periods, which may be one to seven days apart. Normally switch 136 remains in the position shown, and when actuated by the clock it moves to the dotted position, in which it remains for a very short period of say five minutes to energize the motor 138, which is connected as shown in my previous US. patent applications, to move drawer 141 in its opening direction away from 14 2, thus allowing the spring-actuated switch 142 to close so that heater coil is energized to defrost the freezer evaporator 118.
  • the drawer is held open by the stalled motor 138 and 120 remains hot until the clockactuated switch 136 snaps back to its solid-line position, thus cutting off the current from motor 138 and heater 129 so that the defrosting is terminated and the drawer 1411 allowed to reclose under the force of gravity or a yieldable element as explained in the earlier applications above mentioned. It will be seen that switch 136 cuts 011 unit 30 and all controls in the upper portion of FIGURE 4 during the freezer defrost. My preferred method for reclosing the drawer is by utilizing its own weight and the fact that it rolls closed on slightly inclined tracks.
  • the switch 144 may be manually moved to its dotted position by means of a pedal or push button 145 to energize motor 133 when it is desired to open the freezer drawer without energizing the defrost heater 120.
  • This switch is designed to remain in the dotted position for a short period, during which the stalled motor 138 holds the drawer open. While the switch is in its dotted position the small heater coil 146 is energized, thus causing the bellows or diaphragm 148 to expand slowly. At the end of a preselected length of time the switch 144 assumes its normal solid line position, allowing the drawer to reclose, thus providing against the chance that the user may I forget to reclose the drawer.
  • the lamp 150 located in the main food space, lights when door-actuated switch 152 is closed, in accordance with standard practice.
  • Lamp 154 likewise lights when switch 156 is closed by the opening of the freezer drawer, whether the drawer opens for defrost, is pulled open by hand, or is openedby the manual operation of switch 144.
  • the door or doors of the main food space may be opened at any time by closing switch 158 to energize the door motor 169, as disclosed in my earlier patents and applications above mentioned.
  • the door switch 152 (FIGURE 4) may have another Contact to stop motor 206 as it lights lamp 151).
  • FIGURE 5 shows details of the ice maker evaporator or evaporators 18, here shown asone sheet metal evaporator in the flat to illustrate the refrigerant passages.
  • This fiat evaporator is then bent into U-shape with contact areas 162 in alignment on opposite sides of the tank 1.6.
  • the small sectional view in FIGURE 6 shows one of the passages leading to the outlet tube 164.
  • This evaporator may also be formed by bending into U-shape and then opening the passages by means of hydraulic pressure, particularly in case the two sheets are welded together by the roll-bond method.
  • FIGURE 7 shows a small plan view of a corner of the main food space and relationship of the water tank 30 to a swingable shelf, this being the next shelf below the tube 70 and faucet 68.
  • the shelf 166 which can be rotated on vertical post 168, is fitted with a stop 17% engaging stop 172 on vertical post 168 to prevent rotation in the wrong direction.
  • This shelf can be rotated clockwise with no danger of interference between tube 70 and articles on the shelf.
  • the cut-away corner of the shelf next below the faucet makes room for a pitcher while filling it with ice water.
  • Other shelves may be rotatable in either direction if desired.
  • An alternative arrangement allowing all of the ro- 75 tata-ble shelves to be alike, is to curve the tube 70 so that it clears the marrirnurn radius of shelf 166. Such curvature may call for a clearance pocket in the liner of the cabinet, or optionally the'tub'e 7a may be embedded in the wall and the faucet- 68 made accessible from outside of the refrigerator without opening a door of the cabinet, but it is preferred to keep the tank 30 and its connections more easily removable for service or cleaning.
  • Another alternative is to make the tank 30 flat with one small horizontal dimension and locate it at one side of the shelf.
  • either the flat or triangular tank 30 may also be used in connection with sliding shelves, though in that case the designer may prefer to use a fiat vertical tank across the back of the space at the rear of the shelf, placing the ice maker'tank parallel with the rear -wall, as shown in FIGURE 5, of my US. Patent No. 2,695,502, but including features of the present application. j i 7 Certain modifications will be obvious to a designer familiar with my previous US. Patents and pending applications] For example the switch 102 its bulb 104 and in some cases the solenoid valves 106 and 92 can be replaced by elements from various of my earlier 115.
  • Patents such as 2,145,777; 2,349,367; 2,359,780; 2,497,903; 2,774,223 or 2,795,112, to provide a preselected length for the ice freezing period and a minimum length of time for the release of ice.
  • Another optional design would be to use a timer switch on the order of 52 in FIGURE 2 of my Patent 2,709,343 in place of the thermally-actuated device illustrated by 144148 in this application to end the freezer defrost operation and reclose the freezer drawer.
  • FIGURE 8 shows an application of this defrost method to a system having only two evaporator's, of 'which "the first. one in series (18) cools the freezer compartment 180 of a two-temperature refrigerator which has an upper compartment 132 cooled by the second evaporator 94'.
  • the defrosting is to keep the freezerevaporator clear of frost rather than for the purpose of releasing ice.
  • the evaporator 94' may be operated on adefrosting cycle, as 94 is in FIGURE 4. It may be used in part for making ice or ice may be frozen in the freezer 180, but the ice making feature is omitted in FIGURE 8 to allow a simpler showing of the defrosting method, whic is a main feature of this invention.
  • the receiver and valve assembly 84' replaces 84, 9t) and 106 of FIGURE 4 while, elements 92' and 103" replace 92 and 108, no equivalent of S6 and 114 being required since no third evaporator is shown.
  • the float 186 Within the assembly 84 is the float 186, which is free to move on the stem 188 of valve 90 except as limited by collar 190',
  • Armature 192 also movable on stem 188, lifts valve 90' when solenoid coil 194 is energized, causing 192 to strike the top head of 183 and lift valve 90' so that liquid refrig-- erant in 84' flows freely into evaporator 18' to defiost it,
  • valve 92" being closed by the resulting rush of refrigerant to prevent defrosting of 94.
  • assembly 84 acts as a high side float valve assembly and as a receiver holding a definite volume of liquid refrigerant in the high side of the system, the liquid level being higher than shown.
  • valve 92 Liquid and vapor flowing fromevaporator 18'. through tube 1-64- during such normal operation passes valve 92 without liftingit, hence flows freely into evaporator 94' where the remaining liquid evaporates at substantially the same pressure as prevails in evaporator :18, while vapor flows to the motor-compressor unit 80.
  • the stem of valve 92' is deeply fluted to allow fairly free flow of refrigerant and 'is'heavy enough to keep it from lifting when refrigerantflo'w is normal, but the valve is light enough to be lifted by a sudden increase of flow to close evaporator 94.
  • Valve 92' will, however, remain closed and liquid continue to flow through 103 into'evapo-rator 94 until the pressure in 1% drops to a point which allows evaporation to resume in 18.
  • Meantime liquid collects in 84' until float 1% again lifts valve 90 slightly to resume normal operation.
  • valve 90' The liquid volume normally held back in 34 by valve 90' is such that it will fill evaporator 18 with liquid during'the defrost period. This volume is also such that the time required to refill 84 withliquid is ample to allow the pressure in 18 to drop to an operating level and valve 92' to reopen under its own weight before valve 90' is again opened by the float.
  • pan 212 which catches the defrost water from both evaporators and provides for its re-evaporation to ambient air.
  • the clock motor ofswitch 196 is here shown as 9 a running continuously, but it may alternatively be wired to run only while unit 80 operates, thus regulating the frequency of defrost periods on accumulated running time instead of upon elapsed time.
  • Parts such as 84' and cold tubes, shown outside of the cabinet for convenience, will naturally be located inside or insulated.
  • FIGURE 9 shows another method of controlling defrost periods.
  • Substituted for 196 is a thermostatic switch 214 with a bulb 2% located much as is 288, but preferably closer to a tube of 18'. The switch closes on a drop of temperature instead of on a rise.
  • thermostatic switch 214 closes to initiate the defrosting period and reopens at a temperature which insures that all of the frost has been melted from evaporator 18.
  • FIGURE illustrates another use of the features of this invention, showing an application to air conditioning systems instead of to household refrigerators.
  • the refrigerating system and the controls for defrosting can be identical except for size, but some modifications are included in FIGURE 10 to show optional designs which are also usable in the systems or" FIGURE 4 and FIG- URE 8.
  • Expansion device 90 regulates the flow of liquid refrigerant to the two evaporators in series with valve 106" closed and valve 92" open. Now, if we energize the two solenoids 22% and.
  • valve 186 by moving switch 224 upwardly the valve 186" opens and valve 92" closes so that warm high pressure refrigerant liquid stored in receiver 84 evaporator 18 and through it to expansion valve 108 which now controls flow into evaporator 94" since valve 92 is closed.
  • the result is to warm evaporator 18" while cooling evaporator 94", just as in FIGURE 4 or 8, but for a difierent purpose.
  • the switch 224 energizes motor-compressor unit 80 when closed in either direction, but only when moved upwardly are the two solenoids 220 and 222 also energized to operate valves so that 18" reheats the air after it has been cooled by evaporator 94" and before delivery to the air-conditioned space. Since the refrigerants in common use today have rather high specific heats in their liquid phase there is a lot of heat available in 18" at no cost and the resultant cooling of liquid before it enters the expansion valve 108 represents an actual increase in the available latent heat capacity of evaporator 94".
  • valves of FIGURE 10 may be controlled by a humidistat connected as thermostat 102 is in FIGURE 4 to switch between the full cooling and the reheat method of operation as the humidity varies. In other installations it may be the exception to operate both 18-"and 24 as evaporators, but this does not change the basic similarity of the three systems shown. It is apparent that the valves of FIGURES 4 or 8 might be used in FIGURE 10.
  • the duct 218 is shown as provided with a drain for moisture removed from air by either evaporator.
  • the drain from 94' to 21-2 is not shown in FIGURE 8, this being shown in my earlier patent applications mentioned herein.
  • the armature of solenoid 229 in FIGURE 10 may have the lost-motion feature of solenoid 192 in FIG- URE 8 if required to lift the valve against the high side pressure, or a valve such as 92 may replace 92" in FIG- URE l0, eliminating the solenoid 222.
  • FIGURES 4, 8 and 11 show self-contained systems and FIGURE 10 shows a remote system, illustrating the fact that the principles of this invention are general in application. They may be employed in many types of systems, of which only four are illustrated.
  • the condenser 82 may be either air or water cooled, with or without a separate fan. While no specific defrosting means is shown for evaporator 94, 94' or 94" they are normally located in air above 32 F. and may be assumed to defrost at each cycle. In FIGURE 8, for instance, the fan motor 206 may be operated while the system is idle to defrost evaporator 94'.
  • FIGURE 11 shows in a partially diagrammatic manner how the main portions of FIGURE 4 fit into a cabinet such as seen in FIGURE 8.
  • the ice-maker evaporator 18 is shown at one side of the ice bin 36 instead of behind it as in FIGURES 1 to 3, and some optional features, such as evaporator 94, are omitted.
  • the pump 26 will restart, supplying water to make more ice.
  • the bulb may be warmed by a rise of air temperature in freezer 180 to 0 F. or slightly above, heating coil to close switch 122 and cause the compressor to operate, cooling the freezer only since valve 86 is actuated by solenoid 114' to divert flow of refrigerant liquid to evaporator 118.
  • the freezer is given first call on cooling while the ice maker and cooling of air in182 have second call, bearing in mind the fact thatspace 1 22 is cooled during 'ice formation as well as while bulb 12-4 is warmed'by'the air in compartment 182.
  • switch 102 Since the sole purpose of switch 102 is to stop operation of the ice-maker evaporator during ice harvest, its bulb 104 is in good thermal contact with ice-maker tank 16, spaced or insulated from 18, and so influenced by ice growth tothe desired size and by release of ice, not by evaporator 18. This is seen more clearly in FIG. 4.
  • switch 102 operates within a colder range of temperature than does switch 122 makes it quite simple to ensure that 102 remains closed at all times except during ice harvest.
  • Thermostatic switches are shown diagrammatically, but are assumed to have the usual readily accessible adjustments.
  • the drawer 140 is automatically opened, but the manual opening of the drawer by means of its handle (FIGURE 8) or by switch 144 of FIGURE4 does not cause defrosting.
  • valve 90 (FIGURE 8) serves both as a high side float valve and as a solenoid-actuated valve which allows free flow, thus by-passing the restricting device although flow is through the same valve port. This might also be done by using concentric valves with the expansion valve" port in the larger valve which allows free flow when open. Valve 90 stops or arrests the free flow at the end of a defrost period, yet it continues after the float rises again to regulate the flow of liquid as a float-type expansion valve, which is one form of pressure reducing device.
  • a refrigerating system employing a'volatile refrigerant and including an evaporator in heat exchange with air in 'said' compartment, a frozen food storage space, a second evaporator forming a part of said system and serving to cool said space, an ice 7 maker cooled bythe first said evaporator and arranged to make and release ice, a water circulator for said ice maker, a motor connected to drive said circulator, a thermostatic switch for starting said system in response to a rise of temperature in said compartment, a bin for storing ice produced and released by said ice maker, a control device for stopping said water circulator motor in response to an increase in the amount of ice in said bin whereby the production of ice is suspended and the ice-maker evaporator continues operating to cool air, and additional thermostatic means for causing said thermostatic switch to close and thus starting said system in response to a rise of temperature in said frozen
  • a refrigerator comprising a compartment to be cooled, an ice maker element, means for circulating water in contact with said element, an evaporator arranged in heat exchange relationship with said element and with air in said compartment for forming ice on said element and cooling air in said compartment, controllable cooling means for cooling said evaporator, condition responsive control means for alternately energized and de-energizing said water circulating means, drain means for draining water clear of contact with said element during times that said water circulating means is tie-energized, and condition responsive control means for energizing said cooling means in response to an increase in temperature of the air in said compartment, whereby said evaporator is operative to cool air in said compartment during nonice-making periods.
  • an ice maker comprising a relatively tall water storage tank of generally triangular horizontal section positioned in a corner of the compartment and shaped to fit in and to occupy the space between the compartment walls and a vertical arcuate surface defined by the arcuate edges of the shelves, a relatively tall and thin ice-making element positioned above said tank and fitted substantially entirely within said space, vertically arranged conduit means connecting said ice-making element with said tank and also disposed within said space in a manner to provide clearance for the arcuate edges of the shelves and for articles stored thereon, and circulation means for controllably circulating water from means completely supporting said shelf and its load during the full extent of such movement, and ice freezing apparatus located in said compartment and including a part located between a wall of the compartment and an edge of the shelf when the shelf is in its normal position, whereby an otherwise less accessible portion of the compartment is utilized to accommodate said ice maker.
  • an ice maker including a water supply tank in said compartment, said tank being in 'heat exchange with air in the compartment, a movable shelf normally located within said compartment in front of a part of said ice maker, and supporting means for said shelf arranged to carry the shelf and its food load during movement outwardly from said normal position of the shelf to a position in which the foods on the shelf are more readily accessible for removal and replacement or rearrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

y 1962 G. MUFFLY REFRIGERATING SYSTEMS 4 Sheets-Sheet 1 Original Filed June 4, 1957 mmmm I I I h//M//M///// 1A w July 10, 1962 e. MUFFLY REFRIGERATING SYSTEMS 4 Sheets-Sheet 3 Original Filed June 4, 1957 lJa " /94 /5 INVENTOR.
I; 2/6 ,1 .5. /%MW ZINE 4 Sheets-Sheet 4 Original Filed June 4, 1957 :1. ill.
INVENTOR United States Patent 3,043,113 REFRIGERATEQG SYSTEMS Gienn Mnfiy, 15 11 (Irestview Drive, Springfield, Ghio Qriginal application June 4, 1957, Ser. No. 663,526,
now Patent No. 2,993,347, dated .Iuly 25, 1961.
Divided and this application May 23, 1960, Ser. No.
Claims. (Cl. 62-137) This is a division of application Serial Number 663,526, filed June 4, 1957, now Patent No. 2,993,347. The invention relates to refrigerators, ice makers, and air condi tioning systems, referring particularly to the two-zone or refrigerator-freezer type of household refrigerator equipped with an automatic ice maker and to controls therefor. Various earlier patents and patent applications of mine are referred to herein as explanatory and to call attention to them as representing prior art in this field.
One object of this invention is to control a system having multiple evaporators in a manner which provides for heating a first evaporator While cooling one or more other evaporators.
Another object is to utilize the warming of the first evaporator to release ice which is then stored for future use.
A further object is to defrost the evaporator which cools a freezer while continuing to cool another section of a refrigerator.
A still further object is to utilize the warming of one evaporator to reheat air after it has been cooled to a lower-than-desired temperature in an air conditioning system for the purpose of reducing its humidity.
An additional object is to do the reheating, defrosting or ice releasing with specific heat of liquid refrigerant instead of with latent heat, thereby effecting a considerable economy of operation.
Another object is to provide an improved type of refrigerant flow control which not only regulates normal flow of liquid refrigerant to an evaporator while it is actively cooling, but also opens wide to cause the evaporator to be heated by high pressure refrigerant.
An additional object is to provide for a more compact arrangement of parts in a refrigerator, minimizing the occupation of space in which foods are stored.
Another object is to provide an arrangement of ice maker parts such that they do not interfere with the use of sliding or revolving shelves within the refrigerator.
A still further object is to'provide improved methods and controls for performing the ice-releasing and freezerdefrosting operations.
Still another object is to provide a more efiicient system by separating the cooling of the freezer from the cooling of the ice maker and of the air in the main food space.
Another additional object is to provide an improved method for defrosting one evaporator with warm liquid refrigerant which then expands in a second evaporator at higher efficiency because the liquid has been cooled nearer to the evaporating temperature, thereby reducing the loss due to flash gas forming as the liquid enters the second evaporator.
With these and other objects in view, I describe the system and the refrigerator with reference to the following figures of the drawings:
FIGURE 1 is a partial front view of the left side of a refrigerator, showing the ice storage bin, water tank and pump as seen with the refrigerator door open.
FIGURE 2 is a side view of the parts seen in FIG- URE 1, partly in section.
FIGURE 3 is a top view of FIGURE 2 on the line 33 thereof, partly in section and showing a top view of the ice maker and the ice storage bin.
FIGURE 4 is a diagram of the refrigerating system and of electrical connections to the various controls.
FIGURE 5 is a view of an evaporator suitable for use as a part of the ice maker, showing the two ice maker evaporators of FIGURE 3 as made in one piece prior to forming into the necessary U-shape.
FIGURE 6 is a section of FIGURE 5.
FIGURE 7 is a plan view showing how the triangular water tank fits into a refrigerator with revolving shelves to utilize space otherwise wasted.
FIGURE 8 is a vertical sectional view of a household refrigerator of two-zone type showing parts of the system enlarged and in section.
FIGURE 9 is an alternative control and wiring diagram showing thermal instead of clock control of defrosting.
FIGURE 10 is a diagrammatic view of a refrigerating system anda portion of an air conditioning system, illustrating the application of my improved control method to air conditioning.
FIGURE 11 combines certain elements of FIGURES 1 to 4- and 8 to show a typical design in a cabinet.
FIGURES l, 2 and 3 are arranged relative to each other in the common (3rd angle or American) relationship to aid in identification of parts, which are each indicated by the same numeral throughout the various figures. Referring to the three figures of Sheet 1, it will be seen that the numeral 10 is located in the main food space of the refrigerator cabinet which has portions of its outer insulated walls shown in section. 12 is the door of this cabinet closing the main food space, and 14 is the usual door gasket.
Within the main food space, which is to be held at a non-freezing temperature, are the ice maker and asso ciated parts now to be described. The tank 16, of flat rectangular form, is placed vertically in a rear corner of the food space, the two longer outer sides being contacted by the embossed portions of evaporators 18 and 19 on spaced round areas, preferably about one inch in diameter and arranged directly opposite each other. These evaporators may be combined in one, as shown later, and may be provided with fins 20 to aid in cooling the air in space 10 and by transfer of heat from the air to aid in releasing ice disks 2.2. These parts are best seen in FIGURE 3, but an edge of evaporator 18 and portions of tank 16 are seen in FIGURE 1, indicating that the tank 16 extends upward beyond the evaporator 18 and is closed at its top to prevent air circulation from the food compartment 10 contacting the ice and water within the tank.
Water is circulated through the tank 16, entering from tube 2- at, or near, the bottom of the tank, under force of'the centrifugal pump 26 driven by the motor 28. The pump is supplied from the tank 31} through pipe 32 and water overflows near the top of tank 16 into the ice delivery chute 34 which guides the ice into the ice bin 36, the ice disks rolhng or sliding on the wire 38, which serves as a track, while the water falls into the return tube 49 leading back into the water tank 30. A grid, or screen, 42 prevents any ice except very small pieces from falling into the water tank.
The tank 16 and evaporator 18 are here shown with the ice-making areas staggered in two vertical rows and set at an angle, but in some cabinets it may be preferred to place these areas in one vertical row, making tank 16 narrower. Also the tank 16 may be parallel ,with a rear or side wall of the cabinet where that fits in with location of the ice bin 36. Another modification would be to use two single-row tanks in parallel where space may be thus conserved.
The operation of the ice maker, whichemploys the principle disclosed in my US. Patent No. 2,774,223, is briefly as follows: Water flowing upwardly through the ice maker tank 16' is cooled by the tank walls, particularly by inner areas where the outer wall of 16 is contacted by As the water is cooled a portion of it freezes upon these several small, directly opposed, areas in the form of thindisks which grow in thickness and diameter until the two disks of each pair join to form a thicker disk of the general shape shown at 22 in FIGURES 2 and 3.
After formation of ice disks to the desired size and shape, the cooling is cut off md the ice released by thawing free from the walls of tank 16, whereupon the flow of water causes the released disks of ice to float or roll out of the tank 16 (over the edge not sectioned in FIGURE 3) into the chute 34 and thence to bin 36, as above described. This cyclic operation continues, with pump 26 operating during ice release as well as during ice freezing periods until the ice accumulated in bin 36 has partiallycovered the control bulb 44, which may be merely a part of the tube leading to it. Bulb 44 is connected with a switch to stop the motor 28, as will be described in more detail later herein. Bulb 44, shown broken in FIGURE 4, may be longer than shown in FIGURE 2 and is vapor-charged, thus response is to any short coldest portion of the bulb.
When the Water flow stops, the water in tank 16 drains back through tube24, pump 26 and tube 32, into storage tank 30, thus no more ice is produced, even though evaporators 18-19 continue to be cooled. Y V
The ice bin 36 is fitted with a door 46, hinged at 48 just'above the top edge of wall 50 and is formed with two Wings 52 fittingas tightly against the side walls of 36 as is practical for free movement of door 46. These wings are to prevent the ice from falling out when the door is opened, as provided for by the handle or lip 54.
Within the door, md preferably supported on it, is the scoop 56 for use in removing ice from the binand transferring it to drinking glassesor' other dishes. 7
A drain is provided in the bottom of bin 36 for returning meltage water to the tank 30. The edge 50 forms a pan-like bottom for bin 36 and drain 58 insures that meltage water does not overflow at 50. An opening in the pan or shelf. supporting bin 36 serves to anchor drain tube or collar 58 to hold the bin in place, butit can be removed by lifting, say a half inch, whichalso releases 36 from 40.
Water is supplied to tank 30 through tube 6! which leads from a suitable valved connection with the'water supplysysternof the house; The tube 69 is preferably connected within tank 36' to a float valve (not shown) which opens Whenever the water level falls below a desired minimum level such as 62. When pump 26-stops and water drains back into tank 30, the water therein will rise to some slightly higher level as indicated at 64. This higher level is preferably a considerable distance below the top of tank 39 to allow a capacity for storage of meltage water from bin 36 in the event of failure of the refrigeratingsystem or of its currentsupply. In the event that tank 31 .has inadvertently been filled too full, this meltage water will overflow tank 30 at a notch or hole 66 to the drain regularly provided for drip water in refrigerators. See my U.S. Patent No. 2,765,633 for'such a drain to a pan (84) in the. base of the cabinet with provision for evaporating the drip water to room air and ample storage capacity to hold the water until it is evaporated. V
As in previous patents of mine, I have provided a faucet 68, here connected by means of tubes 70 and 32 with tank 30, for drawing cold drinking water. Since the amount of cold water which a normal family will use is many times the amount of blow-down water required to be removed from an ice maker (say 10% of a normal daily production of 2 or 3 pounds of ice) in order to make clear ice, it is not considered necessary to provide the blow-down feature in a household refrigerator; but where this feature is desired, I propose to use the trap '72 which 4 collects a denser portion of the water circulated by pump 26. This trap may be drained to the base of the cabinet for evaporation, as from the pan 84 of my US. Patent 2,765,633 above mentioned. The trap feature is shown as applied to a commercial ice maker in my US. Patent As seen in FIGURE 3, ice disks 22 roll from chute 34 in a direction which causes them to strike one wall of bin 36 and rebound to aid in filling the bin more uniformly than if allowed to drop at one point in the bin each time. Another arrangement would be to deliver the ice in a direction to pile up at the front next to the door. This piling of the ice is preferably so related to the position of bulb 44that the bin is nearly filled before ice begins to cover a part of the bulb, thus insuring the maximum supply of ice before stopping pump 26.
FIGURE 4 illustrates the refrigerant and electrical circuits of a system as used in a refrigerator such as the one shown in FIGURES l, 2' and 3, including the freezer evaporator which is designed to cool a drawer-type freezer such as shown in my US. Patents Nos. 2,709,343 and 2,765,633. This freezer drawer is in the lower portion of the cabinet 10 which is broken off in FIGURES 1 and 2. Further details of it are shown in the above'patents and pending divisions of the including S.N. 444,422, filed July 2Q, 1954, now Patent No. 2,866,322 issued December 20, 1958, S.N. 464,041, filed October 22, 1954, now Patent No. 2,894,374 issued July 14, 1959, and S.N. 552,530, filed December 12, 1955, now Patent No. 2,942,- 432 issued June 28, 1960.
The normal path of refrigerant while making ice and cooling the main food space is indicated in FIGURE 4 by the solid arrows leading from motor-compressor unit to condenser $2, receiver 84 through valve 86, tube 88, and expansion valve 91 'tothe ice maker evaporator 18. Mixed vapor and liquid refrigerant leaving the ice maker evaporator flows through open valve 92 to the evaporator 94 which cools the air'in the main food space, returning as vapor through tube 96 to the unit 80. This circuit is modified in either of two Ways:
First: When switch 162 is closed in response to the cooling of bulb 104 'by the ice forming within tank 16, the current actuates valve 166 to open it and valve 92 to close it, causing high pressure refrigerant to follow the dotted arrows, entering evaporator 18 to release the ice and then flowing through the expansion valve or other pressurereducing device 108 to cool evaporator 94 while the ice is being released. This warms bulb 104 to reopen switch 162 causing normal flow through and 92 to resume, cooling both 18 and 94.
Second: When bulb 110', located near the freezer evaporator, rises to the cut-in temperature of switch 112, the solenoid 114 is energized to actuate valve 86 and cause a change in the path of refrigerant flow. Liquid leaving receiver'84 now flows through the expansion valve or other pressure-reducing device 116 to the freezer evaporator 113 where it evaporatores under a lower pressure than is required in the evaporators just mentioned, return- 7 ing in vapor form to the unit 84 The receiver'84'may be eliminated and vapor-lock restrictorstsuch as capillary tubes) used in place of expansion valves if the internal volumes and heat transfer capacities of the three evaporators are so proportioned as to operate with valve 36 in either position. On the other hand, thermostatic expansion valves or float valves may be used at 98 and 116 if desired.
The evaporators 18 and 94 are operated in series at substantially the same pressure while ice is being frozen, expansion device 198 being bypassed through the open valve 92. When valve 106 is opened and valve 92 closed by the closing of switch '102 upon completion of the freezing of a batch of ice, the evaporating pressure in evaporator 94 is controlled by expansion device 108. This pressure may be approximatelythe same as that previously maintained in the two evaporators by 90, but
is preferably higher than that maintained in evaporator 118 by the expansion device 116. The evaporator 94 is intended to defrost during idle periods under the efiect of heat picked up from the air in the main food space 10, whereas evaporator 18 is cyclically defrosted by Warm liquid refrigerant and evaporator 118 is defrosted by hot gas or by the heating coil 12%, as will be described.
It will be noted that the solenoid valves 1% and 92 are energized simultaneously and only for the very short periods when ice is being released. This means that expansion device 168 is used only during ice releasing periods which may last for two to six minutes and occur only a few times in twentyfour hours, thus 108 may be a simple orifice or restrictor. combined in the body of valve 92. This orifice for either 106 or 92 may be a simple hole, a tube or a groove in the valve or its seat, as shown by FIGURES 4, 11, 13, 16, 17 or 13 of my US. Patent No. 2,145,774, but in the present case free flow is in the same direction as the restricted flow, hence solenoids or other power means are provided to actuate the valves instead of opening them by reversal of flow. Valve 106 differs from 92 in being designed to open instead of to close when current is supplied to its solenoid.
The switch 122 is of the usual thermostatic type which closes to operate the motor-compressor unit 80 when bulb 124 rises to the cut-in temperature of air in the main food space. This bulb 124 is also warmed to the out-in point by either of the two resistance heaters 125 or 126; by 126 when switch 128 is closed and 112 is not. In this condition motor 28 drives the water pump 26 for the purpose of making ice. The long bulb 44 located in the ice bin 35, as seen in FIGURE 2, warms up when not contacted by ice to close switch 128 and start ice production, which continues in cycles controlled by switch 102 until a short section of bulb 44 is again contacted by enough ice to cool it to the cut-out point of switch 128 or the operation is interrupted by starting of freezer cooling or freezer defrost.
During operation of the ice maker the heater 126 insures that switch 122 remains closed to operate the compressor. If switch 122 remains closed, due to high air temperature in space 10, after the ice supply has been replenished, and switch 128 has opened, the compressor continues to operate, cooling the two evaporators 18 and 94- both of which now cool the air of the main food space 111', but no ice is made'since the water pump 26 is now idle. This continues until bulb 124 is cooled to the cutout point of switch 122. V
The above description assumes that switch 112 has remained open, but in the event that the bulb 119, which is atfected by changes of temperature in the frozen food compartment of the refrigerator, rises to the cut-in point of switch 112, the solenoid 131i is energized to open switch 132 and stop the water pump. This prevents unnecessary operation of pump 26 during cooling of evaporator 118. Since closing of switch 112 heats coil 125, warming bulb 124 to close switch 122, the compressor is operated. At the same time solenoid 114 is energized to lift valve 86 and direct the flow of liquid refrigerant to expansion device 116 and freezer evaporator 118 while flow to evaporators 1S and 94 is stopped. Such flow is indicated by dot-dash arrows, only the freezer evaporator 118 being cooled.
Elements 114, 12 and 131! are shown connected in series as none of them requires much current and they are always actuated together. They may, of course, be connected in parallel to employ the full line voltage if such design is preferred. Likewise it is optional whether 1416 and 92 be connected in parallel as shown or designed for lower voltage and connected in series.
The evaporating pressure in evaporator 118 may be (and preferably is) much lower than that in either of the other evaporators. By operating 18 and 94 separately from the freezer evaporator 118, a considerable gain of efficiency is obtained since the compressor is not required to operate at a low suction pressure except when low temperature cooling is required.
The clock motor 134 runs continuously and is mechanically connected to shift switch 136 to its dotted position during short periods, which may be one to seven days apart. Normally switch 136 remains in the position shown, and when actuated by the clock it moves to the dotted position, in which it remains for a very short period of say five minutes to energize the motor 138, which is connected as shown in my previous US. patent applications, to move drawer 141 in its opening direction away from 14 2, thus allowing the spring-actuated switch 142 to close so that heater coil is energized to defrost the freezer evaporator 118. The drawer is held open by the stalled motor 138 and 120 remains hot until the clockactuated switch 136 snaps back to its solid-line position, thus cutting off the current from motor 138 and heater 129 so that the defrosting is terminated and the drawer 1411 allowed to reclose under the force of gravity or a yieldable element as explained in the earlier applications above mentioned. It will be seen that switch 136 cuts 011 unit 30 and all controls in the upper portion of FIGURE 4 during the freezer defrost. My preferred method for reclosing the drawer is by utilizing its own weight and the fact that it rolls closed on slightly inclined tracks.
The switch 144 may be manually moved to its dotted position by means of a pedal or push button 145 to energize motor 133 when it is desired to open the freezer drawer without energizing the defrost heater 120. This switch is designed to remain in the dotted position for a short period, during which the stalled motor 138 holds the drawer open. While the switch is in its dotted position the small heater coil 146 is energized, thus causing the bellows or diaphragm 148 to expand slowly. At the end of a preselected length of time the switch 144 assumes its normal solid line position, allowing the drawer to reclose, thus providing against the chance that the user may I forget to reclose the drawer.
The lamp 150, located in the main food space, lights when door-actuated switch 152 is closed, in accordance with standard practice. Lamp 154 likewise lights when switch 156 is closed by the opening of the freezer drawer, whether the drawer opens for defrost, is pulled open by hand, or is openedby the manual operation of switch 144. The door or doors of the main food space may be opened at any time by closing switch 158 to energize the door motor 169, as disclosed in my earlier patents and applications above mentioned.
The door switch 152 (FIGURE 4) may have another Contact to stop motor 206 as it lights lamp 151).
FIGURE 5 shows details of the ice maker evaporator or evaporators 18, here shown asone sheet metal evaporator in the flat to illustrate the refrigerant passages. This fiat evaporator is then bent into U-shape with contact areas 162 in alignment on opposite sides of the tank 1.6. The small sectional view in FIGURE 6 shows one of the passages leading to the outlet tube 164. This evaporator may also be formed by bending into U-shape and then opening the passages by means of hydraulic pressure, particularly in case the two sheets are welded together by the roll-bond method.
FIGURE 7 shows a small plan view of a corner of the main food space and relationship of the water tank 30 to a swingable shelf, this being the next shelf below the tube 70 and faucet 68. The shelf 166, which can be rotated on vertical post 168, is fitted with a stop 17% engaging stop 172 on vertical post 168 to prevent rotation in the wrong direction. This shelf can be rotated clockwise with no danger of interference between tube 70 and articles on the shelf. Also, the cut-away corner of the shelf next below the faucet makes room for a pitcher while filling it with ice water. Other shelves may be rotatable in either direction if desired.
An alternative arrangement, allowing all of the ro- 75 tata-ble shelves to be alike, is to curve the tube 70 so that it clears the marrirnurn radius of shelf 166. Such curvature may call for a clearance pocket in the liner of the cabinet, or optionally the'tub'e 7a may be embedded in the wall and the faucet- 68 made accessible from outside of the refrigerator without opening a door of the cabinet, but it is preferred to keep the tank 30 and its connections more easily removable for service or cleaning. Another alternative is to make the tank 30 flat with one small horizontal dimension and locate it at one side of the shelf.
It will be seen that either the flat or triangular tank 30 may also be used in connection with sliding shelves, though in that case the designer may prefer to use a fiat vertical tank across the back of the space at the rear of the shelf, placing the ice maker'tank parallel with the rear -wall, as shown in FIGURE 5, of my US. Patent No. 2,695,502, but including features of the present application. j i 7 Certain modifications will be obvious to a designer familiar with my previous US. Patents and pending applications] For example the switch 102 its bulb 104 and in some cases the solenoid valves 106 and 92 can be replaced by elements from various of my earlier 115. Patents such as 2,145,777; 2,349,367; 2,359,780; 2,497,903; 2,774,223 or 2,795,112, to provide a preselected length for the ice freezing period and a minimum length of time for the release of ice. Another optional design would be to use a timer switch on the order of 52 in FIGURE 2 of my Patent 2,709,343 in place of the thermally-actuated device illustrated by 144148 in this application to end the freezer defrost operation and reclose the freezer drawer.
FIGURE 8 shows an application of this defrost method to a system having only two evaporator's, of 'which "the first. one in series (18) cools the freezer compartment 180 of a two-temperature refrigerator which has an upper compartment 132 cooled by the second evaporator 94'. In this case the defrosting is to keep the freezerevaporator clear of frost rather than for the purpose of releasing ice. The evaporator 94' may be operated on adefrosting cycle, as 94 is in FIGURE 4. It may be used in part for making ice or ice may be frozen in the freezer 180, but the ice making feature is omitted in FIGURE 8 to allow a simpler showing of the defrosting method, whic is a main feature of this invention.
The receiver and valve assembly 84' replaces 84, 9t) and 106 of FIGURE 4 while, elements 92' and 103" replace 92 and 108, no equivalent of S6 and 114 being required since no third evaporator is shown. Within the assembly 84 is the float 186, which is free to move on the stem 188 of valve 90 except as limited by collar 190',
Armature 192, also movable on stem 188, lifts valve 90' when solenoid coil 194 is energized, causing 192 to strike the top head of 183 and lift valve 90' so that liquid refrig-- erant in 84' flows freely into evaporator 18' to defiost it,
valve 92" being closed by the resulting rush of refrigerant to prevent defrosting of 94.
Normally valve 90' is lifted slightly by float 186 after the liquid level in 84' rises to the height at which the float strikes collar 199 plus enough more to lift the added weight and overcome the pressure difference at 90. At this time assembly 84 acts as a high side float valve assembly and as a receiver holding a definite volume of liquid refrigerant in the high side of the system, the liquid level being higher than shown.
Liquid and vapor flowing fromevaporator 18'. through tube 1-64- during such normal operation passes valve 92 without liftingit, hence flows freely into evaporator 94' where the remaining liquid evaporates at substantially the same pressure as prevails in evaporator :18, while vapor flows to the motor-compressor unit 80. As shown, the stem of valve 92' is deeply fluted to allow fairly free flow of refrigerant and 'is'heavy enough to keep it from lifting when refrigerantflo'w is normal, but the valve is light enough to be lifted by a sudden increase of flow to close evaporator 94.
its port, leaving only the restrictor 108 open for flow some liquid lifts valve 92 to prevent the warm liquid from flowing on into evaporator 94" under high pressure. The result is that the warm liquid at too high a pressure to evaporatedefrosts evaporator 18 and flows slowly therefrom through the restrictor 103' into evaporator 94', which thus'continues to be cooled while 18' is heated. At the end of the desired defrost period, predetermined by the clock-driven switch or by a thermostat, the switch opens the circuit of coil 194, allowing armature 192 to drop and valve 90 to reclose. Valve 92' will, however, remain closed and liquid continue to flow through 103 into'evapo-rator 94 until the pressure in 1% drops to a point which allows evaporation to resume in 18. Meantime liquid collects in 84' until float 1% again lifts valve 90 slightly to resume normal operation.
The liquid volume normally held back in 34 by valve 90' is such that it will fill evaporator 18 with liquid during'the defrost period. This volume is also such that the time required to refill 84 withliquid is ample to allow the pressure in 18 to drop to an operating level and valve 92' to reopen under its own weight before valve 90' is again opened by the float.
Whenever the air temperature in main food space 182 rises to the desired cut'in point the bulb 202 (located near but preferably isolated and shielded from direct cooling by 94) is warmed, closing switch 204 which starts both the motor-compressor unit and motor 206 to drive the centrifugal fan drawing air through Likewise when bulb 298 adjacent evaporator 18' :rises to the desired cut-in point for cooling freezer 180 it causes switch 210 to close, starting the motor compressor 80, but not the fan motor 206. Thus refrigeration starts whenever space 182 rises to say 40 F. and also whenever space 180 rises to say '10 F., continuing until both switches 204 and 210 reopen at say 35 F. in space 182 and 20 F. in space .180. However, should switch 204 reopen before switch 210 the motor 206 will stop so that its fan no longer circulates air over evaporator 94, thus stopping most of the cooling of space 182 while evaporator 18' continues to cool freezer space 180. Under this condition there is no danger of freezing foods on shelves above evaporator 94.
When the defrost switch 196 closes it energizes solenoid 194'to open valve full, as before described. It motor-compressor 80 is not running at that time it will be started promptly by the rise of temperature of evaporator 18, 'thus insuring that the compressor operates during the defrost period and until evaporator 18 is again cooled down to the normal cut-out temperature of switch 210 as controlled by bulb 208. i
V The insulated drawer containing freezer space 1% opens during the defrost operation, as disclosed in my US. Patent 2,765,633, issued October 6, 1956 and in my copending application SN. 444,422, filed July 20, 1954,
pan 212 which catches the defrost water from both evaporators and provides for its re-evaporation to ambient air. The clock motor ofswitch 196 is here shown as 9 a running continuously, but it may alternatively be wired to run only while unit 80 operates, thus regulating the frequency of defrost periods on accumulated running time instead of upon elapsed time. Parts such as 84' and cold tubes, shown outside of the cabinet for convenience, will naturally be located inside or insulated.
FIGURE 9 shows another method of controlling defrost periods. Substituted for 196 is a thermostatic switch 214 with a bulb 2% located much as is 288, but preferably closer to a tube of 18'. The switch closes on a drop of temperature instead of on a rise. Thus when the bulb 216 is embedded by frost and hence cooled to more nearly the temperature of evaporator 18' thermostatic switch 214 closes to initiate the defrosting period and reopens at a temperature which insures that all of the frost has been melted from evaporator 18.
FIGURE illustrates another use of the features of this invention, showing an application to air conditioning systems instead of to household refrigerators. The refrigerating system and the controls for defrosting can be identical except for size, but some modifications are included in FIGURE 10 to show optional designs which are also usable in the systems or" FIGURE 4 and FIG- URE 8.
When operating the evaporator-s 1'8" and 94 in air duct 218, with solenoids 220 and 222 not energized, bot-h evaporators are cooled, just as are the corresponding evaporators .18 and 94 of FIGURE 4 or 18' and 94' of FIGURE 8. Expansion device 90" regulates the flow of liquid refrigerant to the two evaporators in series with valve 106" closed and valve 92" open. Now, if we energize the two solenoids 22% and. 222 by moving switch 224 upwardly the valve 186" opens and valve 92" closes so that warm high pressure refrigerant liquid stored in receiver 84 evaporator 18 and through it to expansion valve 108 which now controls flow into evaporator 94" since valve 92 is closed. The result is to warm evaporator 18" while cooling evaporator 94", just as in FIGURE 4 or 8, but for a difierent purpose.
In air conditioning systems it is often advisable to cool air to a lower temperature than is desired in the space cooled in order to condense out more of the water vapor below the outlet to 90" now flows into contained in the air. After thus removing excess moisture the air is reheated prior to mixing with room air. Such reheating is wasteful of energy when done with steam or by passing the air over a portion of the condenser, but in the present case the heat is supplied by the specific heat of warm liquid refrigerant, which heat would otherwise cancel a portion of the refrigerating effect by causing flash gas to form in the evaporator. This economy of employing specific heat of liquid is important in 'both air conditioning and in the defrosting of an ice maker or a freezer evaporator, and for the same reason that the added heat is subtracted from the heat which otherwise ofisets a porion of the refrigerating effect.
The switch 224 energizes motor-compressor unit 80 when closed in either direction, but only when moved upwardly are the two solenoids 220 and 222 also energized to operate valves so that 18" reheats the air after it has been cooled by evaporator 94" and before delivery to the air-conditioned space. Since the refrigerants in common use today have rather high specific heats in their liquid phase there is a lot of heat available in 18" at no cost and the resultant cooling of liquid before it enters the expansion valve 108 represents an actual increase in the available latent heat capacity of evaporator 94".
Since operation by the reheat method may be considered normal in certain air conditioning applications, the designer may prefer to arrange 220 and 222 to act in reverse, solenoids moving the valve to the positions shown instead of to their reheat positions. There are times and locations where both 18 and 94" will be operated as evaporators to obtain the maximum cooling efiect on dry air, just as 18 and 94 of FIGURE 4 or 18 and 94' of FIG- URE 8 are most of the time. The valves of FIGURE 10 may be controlled by a humidistat connected as thermostat 102 is in FIGURE 4 to switch between the full cooling and the reheat method of operation as the humidity varies. In other installations it may be the exception to operate both 18-"and 24 as evaporators, but this does not change the basic similarity of the three systems shown. It is apparent that the valves of FIGURES 4 or 8 might be used in FIGURE 10.
The duct 218 is shown as provided with a drain for moisture removed from air by either evaporator. The drain from 94' to 21-2 is not shown in FIGURE 8, this being shown in my earlier patent applications mentioned herein. The armature of solenoid 229 in FIGURE 10 may have the lost-motion feature of solenoid 192 in FIG- URE 8 if required to lift the valve against the high side pressure, or a valve such as 92 may replace 92" in FIG- URE l0, eliminating the solenoid 222. These are optional features of design which it does not seem necessary to show in drawings as they Will be readily understood to those skilled in the art of refrigeration.
FIGURES 4, 8 and 11 show self-contained systems and FIGURE 10 shows a remote system, illustrating the fact that the principles of this invention are general in application. They may be employed in many types of systems, of which only four are illustrated. The condenser 82 may be either air or water cooled, with or without a separate fan. While no specific defrosting means is shown for evaporator 94, 94' or 94" they are normally located in air above 32 F. and may be assumed to defrost at each cycle. In FIGURE 8, for instance, the fan motor 206 may be operated while the system is idle to defrost evaporator 94'.
FIGURE 11 shows in a partially diagrammatic manner how the main portions of FIGURE 4 fit into a cabinet such as seen in FIGURE 8.
For better illustration in one figure the ice-maker evaporator 18 is shown at one side of the ice bin 36 instead of behind it as in FIGURES 1 to 3, and some optional features, such as evaporator 94, are omitted.
Water is shown overflowing the ice maker 16 to tank 39, as occurs during ice formation and during the transfer of released ice to bin 36. The ice-maker evaporator 18 is shown with fins, as in FIG. 3, thus providing ample surface to cool the main food space 182 without the aid of an additional evaporator 94. This is as disclosed in several of my earlier patents including Numbers 2,349,- 367; 2,359,780; 2,765,633; 2,866,322 and 2,942,432.
Following the cycle from the ice harvesting point shown, while evaporator 18 is idle with water pump 26 still running (since bulb 44 has not yet been contacted by ice in bin 36) the bulb 104 will rise in temperature to restart cooling of evaporator 18 soon after the ice has floated from ice-maker tank 16, thus starting the formation of another batch of ice.
This cycling continues until ice accumulated in bin 36 contacts bulb 44 and stops pump motor 28, whereupon the water in the ice maker drains back through idle centrifugal pump 26 into tank 39 and no more ice is formed, although evaporator 18 (and/or 94 if used) will continue to be cooled so long as bulb 124 is warm enough to hold switch 122 closed to cool the air in compartment 182.
However, should some of the ice be removed from bin 36 the pump 26 will restart, supplying water to make more ice. Also, regardless of whether or not the compressor is operating to make ice and/or cool the air of compartment 182, the bulb may be warmed by a rise of air temperature in freezer 180 to 0 F. or slightly above, heating coil to close switch 122 and cause the compressor to operate, cooling the freezer only since valve 86 is actuated by solenoid 114' to divert flow of refrigerant liquid to evaporator 118. Thus the freezer is given first call on cooling while the ice maker and cooling of air in182 have second call, bearing in mind the fact thatspace 1 22 is cooled during 'ice formation as well as while bulb 12-4 is warmed'by'the air in compartment 182.
Since the sole purpose of switch 102 is to stop operation of the ice-maker evaporator during ice harvest, its bulb 104 is in good thermal contact with ice-maker tank 16, spaced or insulated from 18, and so influenced by ice growth tothe desired size and by release of ice, not by evaporator 18. This is seen more clearly in FIG. 4. The fact that switch 102 operates within a colder range of temperature than does switch 122 makes it quite simple to ensure that 102 remains closed at all times except during ice harvest.
In case ice removal or meltage causes pump 26 to start while freezer evaporator 118 is being cooled no ice will be formed since evaporator 18 is idle, but the circulation of cold water will do some cooling of air in 182 and ice formation will start as soon as the freezer is pulled down to the cut-out temperature of switch 112.
Thermostatic switches are shown diagrammatically, but are assumed to have the usual readily accessible adjustments. During defrost of evaporator 18' in FIGURE 8 the drawer 140 is automatically opened, but the manual opening of the drawer by means of its handle (FIGURE 8) or by switch 144 of FIGURE4 does not cause defrosting.
Where the term compressor is used herein it is understood that this refers to any pressure imposing element such as a jet-type pump, an absorber-generator or other device for delivering refrigerant vapor to a condenser. The terms restrictor, expansion valve, pressure reducing device, capillary tube, float valve, etc. as used herein are in the main equivalents, but attention is called to the fact that valve 90' (FIGURE 8) serves both as a high side float valve and as a solenoid-actuated valve which allows free flow, thus by-passing the restricting device although flow is through the same valve port. This might also be done by using concentric valves with the expansion valve" port in the larger valve which allows free flow when open. Valve 90 stops or arrests the free flow at the end of a defrost period, yet it continues after the float rises again to regulate the flow of liquid as a float-type expansion valve, which is one form of pressure reducing device.
The choice between various controls shown will depend to a great extent upon the purpose for which the system is designed and the internal volumes of the evaporators and the pressures employed. If desired to insure that defrost does not start while the system is idle the use of a running-time clock may be preferred for switch 196, but there is no object in using such a clock on switch 224 of the air conditioning system, which may be actuated manually or in response to humidity changes.
I claim: 1. In a refrigerator, a compartment for storing foods at temperatures above 32 F., a refrigerating system employing a'volatile refrigerant and including an evaporator in heat exchange with air in 'said' compartment, a frozen food storage space, a second evaporator forming a part of said system and serving to cool said space, an ice 7 maker cooled bythe first said evaporator and arranged to make and release ice, a water circulator for said ice maker, a motor connected to drive said circulator, a thermostatic switch for starting said system in response to a rise of temperature in said compartment, a bin for storing ice produced and released by said ice maker, a control device for stopping said water circulator motor in response to an increase in the amount of ice in said bin whereby the production of ice is suspended and the ice-maker evaporator continues operating to cool air, and additional thermostatic means for causing said thermostatic switch to close and thus starting said system in response to a rise of temperature in said frozen food space, the last said means also acting to stop refrigerant how to the'first said evaporator and direct said flow through said second evaporaton' V 2. A refrigerator comprising a compartment to be cooled, an ice maker element, means for circulating water in contact with said element, an evaporator arranged in heat exchange relationship with said element and with air in said compartment for forming ice on said element and cooling air in said compartment, controllable cooling means for cooling said evaporator, condition responsive control means for alternately energized and de-energizing said water circulating means, drain means for draining water clear of contact with said element during times that said water circulating means is tie-energized, and condition responsive control means for energizing said cooling means in response to an increase in temperature of the air in said compartment, whereby said evaporator is operative to cool air in said compartment during nonice-making periods.
3. In a refrigeratorof the'type having a food storage compartment of generally rectangular horizontal section and a plurality of arcuately shaped horizontal shelves mounted therein, an ice maker comprising a relatively tall water storage tank of generally triangular horizontal section positioned in a corner of the compartment and shaped to fit in and to occupy the space between the compartment walls and a vertical arcuate surface defined by the arcuate edges of the shelves, a relatively tall and thin ice-making element positioned above said tank and fitted substantially entirely within said space, vertically arranged conduit means connecting said ice-making element with said tank and also disposed within said space in a manner to provide clearance for the arcuate edges of the shelves and for articles stored thereon, and circulation means for controllably circulating water from means completely supporting said shelf and its load during the full extent of such movement, and ice freezing apparatus located in said compartment and including a part located between a wall of the compartment and an edge of the shelf when the shelf is in its normal position, whereby an otherwise less accessible portion of the compartment is utilized to accommodate said ice maker. 7
5. In a refrigerator having a food storage compartment, an ice maker including a water supply tank in said compartment, said tank being in 'heat exchange with air in the compartment, a movable shelf normally located within said compartment in front of a part of said ice maker, and supporting means for said shelf arranged to carry the shelf and its food load during movement outwardly from said normal position of the shelf to a position in which the foods on the shelf are more readily accessible for removal and replacement or rearrangement.
References (lited in the file of this patent UNITED STATES PATENTS Blum July 7, 1959
US31205A 1957-06-04 1960-05-23 Refrigerating systems Expired - Lifetime US3043113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US31205A US3043113A (en) 1957-06-04 1960-05-23 Refrigerating systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US663526A US2993347A (en) 1957-06-04 1957-06-04 Refrigerating systems
US31205A US3043113A (en) 1957-06-04 1960-05-23 Refrigerating systems

Publications (1)

Publication Number Publication Date
US3043113A true US3043113A (en) 1962-07-10

Family

ID=26706951

Family Applications (1)

Application Number Title Priority Date Filing Date
US31205A Expired - Lifetime US3043113A (en) 1957-06-04 1960-05-23 Refrigerating systems

Country Status (1)

Country Link
US (1) US3043113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131234A (en) * 1990-10-09 1992-07-21 Hoshizaki Denki Kabushiki Kaisha Ice stock level detecting apparatus for ice making machines
US20100155043A1 (en) * 2007-06-19 2010-06-24 University Of Technology Element for emission of thermal radiation
US20110185760A1 (en) * 2007-12-18 2011-08-04 Lg Electronics Inc. Ice maker for refrigerator
US20120036883A1 (en) * 2009-04-15 2012-02-16 Kyung-Han Jeong Apparatus for purifying water

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2317234A (en) * 1940-08-03 1943-04-20 Servel Inc Refrigeration
US2384210A (en) * 1941-12-08 1945-09-04 James J Sunday Refrigeration unit
US2449132A (en) * 1944-09-22 1948-09-14 Louis V Lucia Refrigerator for making and using crushed ice
US2549747A (en) * 1946-07-24 1951-04-17 Flakice Corp Ice-making apparatus
US2563093A (en) * 1949-03-08 1951-08-07 Icecrafter Trust Ice-making machine
US2667757A (en) * 1952-02-07 1954-02-02 Philco Corp Plural temperature refrigeration system
US2672016A (en) * 1948-09-20 1954-03-16 Muffly Glenn Ice-making and refrigerating system
US2693989A (en) * 1952-12-16 1954-11-09 Santana Robert Revolving tray for refrigerators
US2893220A (en) * 1956-05-22 1959-07-07 Seymour H Blum Air conditioner unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2317234A (en) * 1940-08-03 1943-04-20 Servel Inc Refrigeration
US2384210A (en) * 1941-12-08 1945-09-04 James J Sunday Refrigeration unit
US2449132A (en) * 1944-09-22 1948-09-14 Louis V Lucia Refrigerator for making and using crushed ice
US2549747A (en) * 1946-07-24 1951-04-17 Flakice Corp Ice-making apparatus
US2672016A (en) * 1948-09-20 1954-03-16 Muffly Glenn Ice-making and refrigerating system
US2563093A (en) * 1949-03-08 1951-08-07 Icecrafter Trust Ice-making machine
US2667757A (en) * 1952-02-07 1954-02-02 Philco Corp Plural temperature refrigeration system
US2693989A (en) * 1952-12-16 1954-11-09 Santana Robert Revolving tray for refrigerators
US2893220A (en) * 1956-05-22 1959-07-07 Seymour H Blum Air conditioner unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131234A (en) * 1990-10-09 1992-07-21 Hoshizaki Denki Kabushiki Kaisha Ice stock level detecting apparatus for ice making machines
US20100155043A1 (en) * 2007-06-19 2010-06-24 University Of Technology Element for emission of thermal radiation
US20110185760A1 (en) * 2007-12-18 2011-08-04 Lg Electronics Inc. Ice maker for refrigerator
US20120036883A1 (en) * 2009-04-15 2012-02-16 Kyung-Han Jeong Apparatus for purifying water
US8769980B2 (en) * 2009-04-15 2014-07-08 Lg Electronics Inc. Apparatus for purifying water

Similar Documents

Publication Publication Date Title
US2765633A (en) Defrosting of evaporator
US3009336A (en) Ice making machine
US2942432A (en) Defrosting of evaporator
US2812642A (en) Refrigerating apparatus
US2641109A (en) Multitemperature refrigerating system
US2866322A (en) Refrigerator and ice maker
US2133949A (en) Refrigeration apparatus
US2713249A (en) Liquid defrosting system and the like
US2487182A (en) Two-temperature refrigerator having means for defrosting
US2145776A (en) Refrigerating mechanism
US2863300A (en) Refrigerating apparatus
US3261173A (en) Refrigerating apparatus
US2695502A (en) Ice-making apparatus
US2145775A (en) Refrigerating mechanism
US2709343A (en) Defrosting means for refrigeration apparatus
US2888808A (en) Refrigerating apparatus
US2909907A (en) Refrigerating apparatus with hot gas defrost means
US2788641A (en) Freezing unit
US3010288A (en) Refrigerating apparatus
US2944410A (en) Refrigerating apparatus
US2291826A (en) Refrigerating mechanism
US3043113A (en) Refrigerating systems
US2723533A (en) Refrigerating apparatus
US3136138A (en) Refrigeration system having serially arranged evaporators
US2672017A (en) Ice-making and refrigerating system