US3026199A - Metal alloy - Google Patents

Metal alloy Download PDF

Info

Publication number
US3026199A
US3026199A US751160A US75116058A US3026199A US 3026199 A US3026199 A US 3026199A US 751160 A US751160 A US 751160A US 75116058 A US75116058 A US 75116058A US 3026199 A US3026199 A US 3026199A
Authority
US
United States
Prior art keywords
percent
temperature
alloy
test bars
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US751160A
Inventor
Rudolf H Thielemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sierra Metals Corp
Original Assignee
Sierra Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sierra Metals Corp filed Critical Sierra Metals Corp
Priority to US751160A priority Critical patent/US3026199A/en
Priority to CH7629759A priority patent/CH384869A/en
Application granted granted Critical
Publication of US3026199A publication Critical patent/US3026199A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt

Definitions

  • This invention relates to a cobalt base metal alloy which includes alloying metal additives which make the resulting alloy corrosion resistant and of great mechanical work strength at temperatures up to as high as 1800" F.
  • alloy of this invention may be cast, it is highly resistant to oxidation and otherv forms of corrosion at temperatures up to about 1800" F., and possesses great mechanical work strength at temperatures up to between about 1500 F. and about 1800 F.
  • this alloy may be used in the fabrication of blades, vanes, and other parts for high temperature gas turbine engines.
  • Other important uses of the alloy of this invention are in exhaust valves and manifolds in internal combustion engines, in heat exchangers and in linings for retorts and container vessels used in the chemical and metallurgical industries. It may also be utilized in high temperature, high strength, corrosion resistant tubing and sheet material.
  • the prior art nickel and/ or cobalt base metal alloys which, for example, have been used as blades, vanes, and other parts of high temperature gas turbine engines have a maximum operating temperature of about 1500 F.
  • a common nickel-cobalt base metal alloy which incorporates molybdenum as a constituent is for all practical purposes non-utilizable as a structural member in a gas turbine engine if the temperature is above 1500 F.
  • One reason for this temperature limitation is that the oxidation resistance of such an alloy fails when the alloy is raised to a temperature above 1500" F.
  • the alloy of this invention can be successfully used in blades or vanes in high temperature gas turbine engines, which engines can be operated at markedly higher temperatures than was possible heretofore due to the high temperature characteristics of the alloy. This results in improvements in the performance of gas turbine engines, since at higher temperatures the total thrust of a gas turbine engine increases and the amount of fuel consumed, per pound of thrust, decreases.
  • the metal alloy of this invention is comprised, by weight, of approximately: 15 to 30 percent of chromium; from to percent of tungsten; 0.5 to 5 percent of columbium; from 0.01 to 3 percent of zirconium; from 0.1 to 1.3 percent of carbon; and the balance being essentially cobalt.
  • Tantalum may be present in the alloy in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent, then the combined amount of columbium and tantalum should be equal to or less than percent by weight of the alloy; and if the columbium is present in the alloy in an amount equal to or less than 3 percent, then the tantalum in the alloy should never exceed twice the amount of columbium in the alloy.
  • Molybdenum may be tolerated in the alloy of this invention without deleteriously affecting the properties of the alloy provided that the amount of molybdenum in the alloy is not more than one-half of the amount of tungsten in the alloy, and in any event is no greater than 3.5 percent by weight of the alloy.
  • any one or more of the following ingredients up to about 0.2 percent of boron, up to about 1.5 percent of silicon, and up to about 5 percent of nickel and/or iron may in certain formulations improve various metallurgical characteristics of the alloy. Additional amounts of these ingredients may in some cases be tolerated inthe alloy without deleterious effects.
  • the alloy of this invention becomes unsatisfactory, particularly in those applications where thermal shock requirements are important.
  • An alloy having the above composition is both resistant to oxidation and has high strength at elevated temperatures, considerably in excess of 1500 F., so as to be suitable for use in forming cast liners for retorts and container vessels used in the chemical and metallurgical industries, as well as other uses previously mentioned.
  • the following impurities in the alloy be held to the following limits, by weight.
  • the manganese content in the final alloy should be no more than about 2 percent.
  • the interstitial elements such as nitrogen, hydrogen, tin, lead and the like should be kept as low as possible.
  • deoxidizers such as calcium, magnesium and the like should be present in the final alloy.
  • Example 1 A 5 pound alloy melt of a cobalt base metal alloy composition containing about 25 percent of chromium; about 15 percent of tungsten; about 2 percent of columbium; about 0.75 percent of carbon; about 0.1 percent of zirconium; about 0.02 percent of boron; about 5 percent of iron; and the balance, substantially all cobalt, all by weight, was prepared by melting a chromium cobalt mix in a magnesia crucible under high vacuum conditions, following. which the remaining constituents, including carbon in the form of graphite, were added.
  • a cluster of 6 test bars were formed from the 5 pound melted alloy heated by the usual investment casting technique under high vacuum conditions. These bars were each 3 inches long and inch in diameter.
  • test bars had an elongation of 1.66 percent at room temperature under a tensile stress of 138,200 p.s.i..
  • test bars of this example had a rupture life in excess of 31 hours under a load of 17,000 p.s.i. at a temperature of 1800 F. in air; and a rupture life in excess of 19 hours under a load of 8000 p.s.i. at a temperature of 2000 F. in air.
  • Example 2 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 25 percent of chromium; about 15 percent of tungsten; about 0.1 percent of zirconium; about 2 percent of columbium; about 0.75 percent of carbon; about 0.02 percent of boron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 0.84 percent at room temperature under a tensile stress of 122,000 p.s.i.
  • test bars of this example had a rupture life in excess of 32 hours under a load of 17,000 p.s.i. at a temperature of about 1800 F. in air and a rupture life in excess of 17 hours under a load of 8000 p.s.i. at a temperature of about 2000 F. in air.
  • the oxidation penetration was 0.19 mil per side per hour after 24 hours at 2100 F. in moving air.
  • Example 3 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 1.5 percent of zirconium; about 0.5 percent of columbium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 4 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about percent of chromium; about 15 percent of tungsten; about 1.5 percent of columbium; about 1.5 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 5 percent at room temperature under a tensile stress of 98,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 5 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about percent of chromium; about 11 percent of tungsten; about 0.5 percent of columbium; about 1.5 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100- hours under a load of 15,000 p.s.i. at a temperature of about 1800" F. in air.
  • Example 6 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 4 percent of columbium; about 0.2 percent of zirconium; about 0.1 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 8 percent at room temperature under a tensile stress of 95,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1700" F. in air and a rupture life in excess of 100 hours under a load of 10,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 7 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 4 percent of columbium; about 0.2 percent of zirconium; about 0.3 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
  • test bars. of this example had a rupture life in excess of hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800" F. in air.
  • Example 8 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 4 percent of columbium; about 0.2 percent of zirconium; about 0.75 percent of carbon; and the balance, essentially cobalt, all by weight, Were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 9 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 30 percent of chromium; about 5 percent of tungsten; about 1.5 percent of columbium; about 1.5 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 4 percent at room temperature under a tensile stress of 90,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1700 F. in air.
  • Example 10 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10.5 percent of tungsten; about 1.5 percent of columbium; about 0.4 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
  • the test bars of this example had a rupture life in excess of hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life of 1157 hours under a load of 20,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life of 795 hours under a load of 15,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 13,000 p.s.i. at a temperature of about 1800" F. in arr.
  • Example 11 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about percent of tungsten; about 0.75 percent of colurnbium; about 1.0 percent of tantalum; about 0.04
  • test bars of this example had an elongation of 4.5 percent at room temperature under a tensile stress of 98,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 19,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 14,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 12 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about percent of chromium; about 10 percent of tungsten; about 0.75 percent of colurnoium; about 1.0 percent of tantalum; about 0.04 percent of zirconium; about 0.5 percent of carbon; about 3.5 percent of molybdenum; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 3.5 percent at room temperature under a tensile stress of 100,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 18,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 12,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 13 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 0.5 percent of carbon; about 2.5 percent of tantalum; about 0.04 percent of zirconium; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars or this example had an elongation of 10 percent at room temperature under a tensile stress of 110,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 14 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.04 percent of zirconium; about 0.50 percent of carbon; about 1 percent of molybdenum; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 8 percent at room temperature under a tensile stress of 105,600 p.s.i.
  • test bars of this example had a rupture life of 1 00 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; and a rupture life in excess of hours under a load of 14,000 p.s.i. at a temperature of about 1800" F. in air.
  • Example 15 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1 percent of columbium; about 0.48 percent of zirconium; about 0.5 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 9 percent at room temperature under a tensile stress of 97,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 24,000 p.si. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 17,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 12,000 p.s.i. at a temperature of about 1800" F. in air.
  • Example 16 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1 percent of columbium; about 0.48 percent of zirconium; about 0.5 percent of carbon; about 1.5 percent of silicon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 2.5 percent at room temperature under a tensile stress 0 97,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 24,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 18,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 10,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 17 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1.5 percent of columbium; about 1 percent of zirconium; about 0.5 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 4 percent at room temperature under a tensile stress of 117,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about -l600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 18 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1.5 percent of columbium; about 1 percent of zirconium; about 0.5 percent of carbon; about 0.2 percent of boron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 3 percent at room temperature under a tensile stress of 117,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under -a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 19 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 0.5 percent of carbon; about 0.1 percent of boron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 4 percent at room temperature under a tensile stress of 97,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of 1800" F. in air.
  • Example 20 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about percent of tungsten; about 1.5 percent of columbium; about 2.0 percent of zirconium; about 0.5 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 2 percent at room temperature under a tensile stress of 119,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of 1800 F. in air.
  • Example 21 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1.5 percent of columbium; about 2 percent of zirconium; about 0.5 percent of carbon; about 0.2 percent of silicon; about 2.5 percent of nickel; about 2.5 percent of iron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 6.5 percent at room temperature under a tensile stress of 124,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 22 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 5 percent of columbium; about 0.01 percent of zirconium; about 0.65 percent of carbon; about 2.5 percent of iron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 1 percent at room temperature under a tensile stress of 108,000 p.s.i.
  • test bars of this example had a rupture life in excess of hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 13,500 p.s.i. at a temperature of about 1800 F. in air.
  • Example 23 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 3.1 percent of columbium; about 6.2 percent of tantalum; about 0.5 percent of zirconium; about 1.3 percent of carbon and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 0.6 percent at room temperature under a tensile stress of 147,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,00 p.s.i. at a temperature of about 1800" F. in air.
  • Example 24 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 0.6 percent of carbon; and the balance, essentially cobalt, all by Weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 3 percent at room temperature under a tensile stress of 110,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 10,000 p.s.i. at a temperature of about 1800" F. in air.
  • Example 25 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 0.8 percent of carbon; about 1.0 percent of nickel; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 2.5 percent at room temperature under a tensile stress of 122,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
  • Example 26 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 1.0 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars had an elongation of 2.5 percent at a room temperature under a tensile stress of 115,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 psi. at a temperature of about 1700 F in air; and a rupture life in excess of 100 hours under a load of 15,000 psi. at a temperature of about 1800 F. in air.
  • Example 27 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 1.3 percent of carbon; about 5 percent of nickel; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
  • test bars of this example had an elongation of 2 percent at room temperature under a tensile stress of 98,000 p.s.i.
  • test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 psi. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 psi. at a temperature of about 1800 F. in air.
  • a metal alloy consisting essentially of by weight: from about to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; from about 0.5 to about 5 percent of columbium; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
  • a metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; from about 0.5 to about 5 percent of columbium, tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is equal to or less than percent of the alloy; and if the columbium is in an amount equal to or less than 3 percent, then the tantalum should not exceed twice the amount of columbium in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
  • a metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium, from about 5 to about 15 percent of tungsten; up to about 0.2 percent of boron; from about 0.5 to about 5 percent of columbium; horn about 0.01 to about 3 percent of zir- 6 10 conium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
  • a metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; up to about 0.2 percent of boron; from about 0.5 to about 5 percent of columbium; tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is less than or equal to 20 percent of the alloy; and if the columbium is in an amount of equal to or less than 3 percent, the tantalum should not exceed twice the amount of columbium in the alloy; up to 3.5 percent of molybdenum, but not more than about 50 percent of the amount of tungsten in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
  • a metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; from about 0.5 to about 5 percent of columbium; tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is less than or equal to 20 percent of the alloy; and if the columbium is in an amount of equal to or less than 3 percent, the tantalum should not exceed twice the amount of columbium in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; up to about 1.5 percent of silicon; up to about 5 percent of nickel; up to about 5 percent of iron; and the balance cobalt.
  • a metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; up to about 0.2 percent of boron; from about 0.5 to about 5 percent of columbium; tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is less than or equal to 20 percent of the alloy; and if the columbium is in an amount of equal to or less than 3 percent, the tantalum should not exceed twice the amount of columbium in the alloy; up to 3.5 percent of molybdenum, but not more than about 50 percent of the amount of tungsten in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; up to about 1.5 percent of silicon; up to about 5 percent of nickel; up to about 5 percent of iron; and the balance cobalt.

Description

United States Patent Ofifice 3,026,199 Patented Mar. 20, 1962 3,026,199 METAL ALLOY Rudolf H. Thielemann, Palo Alto, Calif., assignor to Sierra Metals Corporation, Chicago, 111., a corporation of Delaware No Drawing. Filed July 28, 1958, Ser. No. 751,160 6 Claims.. (Cl. 75-171) This invention relates to a cobalt base metal alloy which includes alloying metal additives which make the resulting alloy corrosion resistant and of great mechanical work strength at temperatures up to as high as 1800" F.
Important features of the alloy of this invention are that it may be cast, it is highly resistant to oxidation and otherv forms of corrosion at temperatures up to about 1800" F., and possesses great mechanical work strength at temperatures up to between about 1500 F. and about 1800 F. As a result, this alloy may be used in the fabrication of blades, vanes, and other parts for high temperature gas turbine engines. Other important uses of the alloy of this invention are in exhaust valves and manifolds in internal combustion engines, in heat exchangers and in linings for retorts and container vessels used in the chemical and metallurgical industries. It may also be utilized in high temperature, high strength, corrosion resistant tubing and sheet material.
The prior art nickel and/ or cobalt base metal alloys which, for example, have been used as blades, vanes, and other parts of high temperature gas turbine engines have a maximum operating temperature of about 1500 F. For example, a common nickel-cobalt base metal alloy which incorporates molybdenum as a constituent is for all practical purposes non-utilizable as a structural member in a gas turbine engine if the temperature is above 1500 F. One reason for this temperature limitation is that the oxidation resistance of such an alloy fails when the alloy is raised to a temperature above 1500" F.
The alloy of this invention can be successfully used in blades or vanes in high temperature gas turbine engines, which engines can be operated at markedly higher temperatures than was possible heretofore due to the high temperature characteristics of the alloy. This results in improvements in the performance of gas turbine engines, since at higher temperatures the total thrust of a gas turbine engine increases and the amount of fuel consumed, per pound of thrust, decreases.
The metal alloy of this invention is comprised, by weight, of approximately: 15 to 30 percent of chromium; from to percent of tungsten; 0.5 to 5 percent of columbium; from 0.01 to 3 percent of zirconium; from 0.1 to 1.3 percent of carbon; and the balance being essentially cobalt.
Tantalum may be present in the alloy in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent, then the combined amount of columbium and tantalum should be equal to or less than percent by weight of the alloy; and if the columbium is present in the alloy in an amount equal to or less than 3 percent, then the tantalum in the alloy should never exceed twice the amount of columbium in the alloy.
Molybdenum may be tolerated in the alloy of this invention without deleteriously affecting the properties of the alloy provided that the amount of molybdenum in the alloy is not more than one-half of the amount of tungsten in the alloy, and in any event is no greater than 3.5 percent by weight of the alloy.
It has been further found that the inclusion of any one or more of the following ingredients: up to about 0.2 percent of boron, up to about 1.5 percent of silicon, and up to about 5 percent of nickel and/or iron may in certain formulations improve various metallurgical characteristics of the alloy. Additional amounts of these ingredients may in some cases be tolerated inthe alloy without deleterious effects.
If the boron content of the alloy exceeds about 0.2 percent, then the alloy of this invention becomes unsatisfactory, particularly in those applications where thermal shock requirements are important.
An alloy having the above composition is both resistant to oxidation and has high strength at elevated temperatures, considerably in excess of 1500 F., so as to be suitable for use in forming cast liners for retorts and container vessels used in the chemical and metallurgical industries, as well as other uses previously mentioned.
In order to assure that the optimum desired properties will be obtained in the alloy, it is preferred that the following impurities in the alloy be held to the following limits, by weight. The manganese content in the final alloy should be no more than about 2 percent. The interstitial elements such as nitrogen, hydrogen, tin, lead and the like should be kept as low as possible. In addition, not more than about 0.5 percent total of deoxidizers such as calcium, magnesium and the like should be present in the final alloy.
The following are examples of the proportions and test results of the cobalt base metal alloy of this invention.
Example 1 A 5 pound alloy melt of a cobalt base metal alloy composition containing about 25 percent of chromium; about 15 percent of tungsten; about 2 percent of columbium; about 0.75 percent of carbon; about 0.1 percent of zirconium; about 0.02 percent of boron; about 5 percent of iron; and the balance, substantially all cobalt, all by weight, was prepared by melting a chromium cobalt mix in a magnesia crucible under high vacuum conditions, following. which the remaining constituents, including carbon in the form of graphite, were added. A cluster of 6 test bars were formed from the 5 pound melted alloy heated by the usual investment casting technique under high vacuum conditions. These bars were each 3 inches long and inch in diameter.
The test bars had an elongation of 1.66 percent at room temperature under a tensile stress of 138,200 p.s.i..
The test bars of this example had a rupture life in excess of 31 hours under a load of 17,000 p.s.i. at a temperature of 1800 F. in air; and a rupture life in excess of 19 hours under a load of 8000 p.s.i. at a temperature of 2000 F. in air.
The oxidation penetration was measured in the conventional manner and was determined to be 0.04 mil per side per hour after hours at 2000 F. in moving air, and 0.03 mil per side per hour after 24 hours at 2100 F. in moving air. Example 2 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 25 percent of chromium; about 15 percent of tungsten; about 0.1 percent of zirconium; about 2 percent of columbium; about 0.75 percent of carbon; about 0.02 percent of boron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
I The test bars of this example had an elongation of 0.84 percent at room temperature under a tensile stress of 122,000 p.s.i.
The test bars of this example had a rupture life in excess of 32 hours under a load of 17,000 p.s.i. at a temperature of about 1800 F. in air and a rupture life in excess of 17 hours under a load of 8000 p.s.i. at a temperature of about 2000 F. in air.
The oxidation penetration was 0.19 mil per side per hour after 24 hours at 2100 F. in moving air.
Example 3 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 1.5 percent of zirconium; about 0.5 percent of columbium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 4 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about percent of chromium; about 15 percent of tungsten; about 1.5 percent of columbium; about 1.5 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 5 percent at room temperature under a tensile stress of 98,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 5 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about percent of chromium; about 11 percent of tungsten; about 0.5 percent of columbium; about 1.5 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
' The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100- hours under a load of 15,000 p.s.i. at a temperature of about 1800" F. in air.
Example 6 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 4 percent of columbium; about 0.2 percent of zirconium; about 0.1 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 8 percent at room temperature under a tensile stress of 95,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1700" F. in air and a rupture life in excess of 100 hours under a load of 10,000 p.s.i. at a temperature of about 1800 F. in air.
Example 7 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 4 percent of columbium; about 0.2 percent of zirconium; about 0.3 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
The test bars. of this example had a rupture life in excess of hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800" F. in air.
Example 8 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 11 percent of tungsten; about 4 percent of columbium; about 0.2 percent of zirconium; about 0.75 percent of carbon; and the balance, essentially cobalt, all by weight, Were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 9 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 30 percent of chromium; about 5 percent of tungsten; about 1.5 percent of columbium; about 1.5 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 4 percent at room temperature under a tensile stress of 90,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1700 F. in air.
Example 10 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10.5 percent of tungsten; about 1.5 percent of columbium; about 0.4 percent of zirconium; about 0.4 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 7 percent at room temperature under a tensile stress of 115,000 p.s.i.
The test bars of this example had a rupture life in excess of hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life of 1157 hours under a load of 20,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life of 795 hours under a load of 15,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 13,000 p.s.i. at a temperature of about 1800" F. in arr.
Example 11 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about percent of tungsten; about 0.75 percent of colurnbium; about 1.0 percent of tantalum; about 0.04
percent of zirconium; about 0.5 percent of carbon; and
the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 4.5 percent at room temperature under a tensile stress of 98,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 19,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 14,000 p.s.i. at a temperature of about 1800 F. in air.
Example 12 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about percent of chromium; about 10 percent of tungsten; about 0.75 percent of colurnoium; about 1.0 percent of tantalum; about 0.04 percent of zirconium; about 0.5 percent of carbon; about 3.5 percent of molybdenum; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 3.5 percent at room temperature under a tensile stress of 100,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 18,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 12,000 p.s.i. at a temperature of about 1800 F. in air.
Example 13 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 0.5 percent of carbon; about 2.5 percent of tantalum; about 0.04 percent of zirconium; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars or" this example had an elongation of 10 percent at room temperature under a tensile stress of 110,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 14 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.04 percent of zirconium; about 0.50 percent of carbon; about 1 percent of molybdenum; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 8 percent at room temperature under a tensile stress of 105,600 p.s.i.
The test bars of this example had a rupture life of 1 00 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; and a rupture life in excess of hours under a load of 14,000 p.s.i. at a temperature of about 1800" F. in air.
Example 15 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1 percent of columbium; about 0.48 percent of zirconium; about 0.5 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 9 percent at room temperature under a tensile stress of 97,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 24,000 p.si. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 17,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 12,000 p.s.i. at a temperature of about 1800" F. in air.
Example 16 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1 percent of columbium; about 0.48 percent of zirconium; about 0.5 percent of carbon; about 1.5 percent of silicon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 2.5 percent at room temperature under a tensile stress 0 97,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 24,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 18,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 10,000 p.s.i. at a temperature of about 1800 F. in air.
Example 17 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1.5 percent of columbium; about 1 percent of zirconium; about 0.5 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 4 percent at room temperature under a tensile stress of 117,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about -l600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 18 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1.5 percent of columbium; about 1 percent of zirconium; about 0.5 percent of carbon; about 0.2 percent of boron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 3 percent at room temperature under a tensile stress of 117,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under -a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 19 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 0.5 percent of carbon; about 0.1 percent of boron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 4 percent at room temperature under a tensile stress of 97,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of 1800" F. in air.
Example 20 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about percent of tungsten; about 1.5 percent of columbium; about 2.0 percent of zirconium; about 0.5 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 2 percent at room temperature under a tensile stress of 119,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of 1800 F. in air.
Example 21 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 1.5 percent of columbium; about 2 percent of zirconium; about 0.5 percent of carbon; about 0.2 percent of silicon; about 2.5 percent of nickel; about 2.5 percent of iron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 6.5 percent at room temperature under a tensile stress of 124,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 22 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 5 percent of columbium; about 0.01 percent of zirconium; about 0.65 percent of carbon; about 2.5 percent of iron; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 1 percent at room temperature under a tensile stress of 108,000 p.s.i.
The test bars of this example had a rupture life in excess of hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 13,500 p.s.i. at a temperature of about 1800 F. in air.
Example 23 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 10 percent of tungsten; about 3.1 percent of columbium; about 6.2 percent of tantalum; about 0.5 percent of zirconium; about 1.3 percent of carbon and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 0.6 percent at room temperature under a tensile stress of 147,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,00 p.s.i. at a temperature of about 1800" F. in air.
Example 24 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 0.6 percent of carbon; and the balance, essentially cobalt, all by Weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 3 percent at room temperature under a tensile stress of 110,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 25,000 p.s.i. at a temperature of about 1600 F. in air; a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 10,000 p.s.i. at a temperature of about 1800" F. in air.
Example 25 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 0.8 percent of carbon; about 1.0 percent of nickel; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 2.5 percent at room temperature under a tensile stress of 122,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 p.s.i. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 p.s.i. at a temperature of about 1800 F. in air.
Example 26 A pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 1.0 percent of carbon; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars had an elongation of 2.5 percent at a room temperature under a tensile stress of 115,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 psi. at a temperature of about 1700 F in air; and a rupture life in excess of 100 hours under a load of 15,000 psi. at a temperature of about 1800 F. in air.
Example 27 A 5 pound alloy melt and test bars of the same dimensions as set forth in Example 1 of a cobalt base metal alloy composition containing about 20 percent of chromium; about 7.5 percent of tungsten; about 1.5 percent of columbium; about 2.5 percent of tantalum; about 0.5 percent of zirconium; about 1.3 percent of carbon; about 5 percent of nickel; and the balance, essentially cobalt, all by weight, were prepared in the same manner as set forth in Example 1.
The test bars of this example had an elongation of 2 percent at room temperature under a tensile stress of 98,000 p.s.i.
The test bars of this example had a rupture life in excess of 100 hours under a load of 20,000 psi. at a temperature of about 1700 F. in air; and a rupture life in excess of 100 hours under a load of 15,000 psi. at a temperature of about 1800 F. in air.
The above detailed description of this invention has been given for clearness of understanding only. No unnecessary limitations should be understood therefrom, as modifications will be obvious to those skilled in the art.
I claim:
1. A metal alloy consisting essentially of by weight: from about to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; from about 0.5 to about 5 percent of columbium; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
2. A metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; from about 0.5 to about 5 percent of columbium, tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is equal to or less than percent of the alloy; and if the columbium is in an amount equal to or less than 3 percent, then the tantalum should not exceed twice the amount of columbium in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
3. A metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium, from about 5 to about 15 percent of tungsten; up to about 0.2 percent of boron; from about 0.5 to about 5 percent of columbium; horn about 0.01 to about 3 percent of zir- 6 10 conium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
4. A metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; up to about 0.2 percent of boron; from about 0.5 to about 5 percent of columbium; tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is less than or equal to 20 percent of the alloy; and if the columbium is in an amount of equal to or less than 3 percent, the tantalum should not exceed twice the amount of columbium in the alloy; up to 3.5 percent of molybdenum, but not more than about 50 percent of the amount of tungsten in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; and the balance cobalt.
5. A metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; from about 0.5 to about 5 percent of columbium; tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is less than or equal to 20 percent of the alloy; and if the columbium is in an amount of equal to or less than 3 percent, the tantalum should not exceed twice the amount of columbium in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; up to about 1.5 percent of silicon; up to about 5 percent of nickel; up to about 5 percent of iron; and the balance cobalt.
6. A metal alloy consisting essentially of by weight: from about 15 to about 30 percent of chromium; from about 5 to about 15 percent of tungsten; up to about 0.2 percent of boron; from about 0.5 to about 5 percent of columbium; tantalum in an amount such that if the columbium is present in the alloy in an amount of more than 3 percent then the combined amount of columbium and tantalum in the alloy is less than or equal to 20 percent of the alloy; and if the columbium is in an amount of equal to or less than 3 percent, the tantalum should not exceed twice the amount of columbium in the alloy; up to 3.5 percent of molybdenum, but not more than about 50 percent of the amount of tungsten in the alloy; from about 0.01 to about 3 percent of zirconium; from about 0.1 to about 1.3 percent of carbon; up to about 1.5 percent of silicon; up to about 5 percent of nickel; up to about 5 percent of iron; and the balance cobalt.
References Cited in the file of this patent UNITED STATES PATENTS 2,247,643 Rohn et a1 July 1, 1941 2,515,774 Johnson July 18, 1950 2,684,299 Binder July 20, 1954 FOREIGN PATENTS 443,821 Great Britain Mar. 6, 1936 686,180 Great Britain Jan. 21, 1953 542,813 Canada June 25, 1957 OTHER REFERENCES Materials and Methods, September 1953; Number 260, page 139.

Claims (1)

  1. 6. A METAL ALLOY CONSISTING ESSENTIALLY OF BY WEIGHT: FROM ABOUT 15 TO ABOUT 30 PERCENT OF CHRONIUM; FROM ABOUT 5 TO ABOUT 15 PERCENT OF TUNGSTEN; UP TO ABOUT 0.2 PERCENT OF BORON; FROM ABOUT 0.5 TO ABOUT 5 PERCENT OF COLUMBIUM; TANTALUM IN AN AMOUNT SUCH THAT IF THE COLUMBIUM IS PERCENT IN THE ALLOY IN AN AMOUNT OF MORE THAN 3 PERCENT THEN THE COMBINED AMOUNT OF COLUMBIUM AND TANTALUM IN THE ALLOY IS LESS THAN OR EQUAL TO 20 PERCENT OF THE ALLOY; AND IF THE COLUMBIUM IS IN AN AMOUNT OF EQUAL TO OR LESS THAN 3 PERCENT, THE TANTALUM SHOULD NOT EXCEED TWICE THE AMOUNT OF COLUMBIUM IN THE ALLOY; UP TO 3.5 PERCENT OF MOLYBDENUM, BUT NOT MORE THAN ABOUT 50 PERCENT OF THE AMOUNG OF TUNGSTEN IN THE ALLOY; FROM ABOUT 0.01 TO ABOUT 3 PERCENT OF ZIRCONIUM; FROM ABOUT 0.1 TO ABOUT 1.3 PERCENT OF CARBON; UP TO ABOUT 1.5 PERCENT OF SILICON; UP TO ABOUT 5 PERCENT OF NICKEL; UP TO ABOUT 5 PERCENT OF IRON; AND THE BALANCE COBALT.
US751160A 1958-07-28 1958-07-28 Metal alloy Expired - Lifetime US3026199A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US751160A US3026199A (en) 1958-07-28 1958-07-28 Metal alloy
CH7629759A CH384869A (en) 1958-07-28 1959-07-28 Cobalt-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US751160A US3026199A (en) 1958-07-28 1958-07-28 Metal alloy

Publications (1)

Publication Number Publication Date
US3026199A true US3026199A (en) 1962-03-20

Family

ID=25020751

Family Applications (1)

Application Number Title Priority Date Filing Date
US751160A Expired - Lifetime US3026199A (en) 1958-07-28 1958-07-28 Metal alloy

Country Status (2)

Country Link
US (1) US3026199A (en)
CH (1) CH384869A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202506A (en) * 1963-01-23 1965-08-24 David E Deutsch High-temperature oxidation-resistant cobalt base alloys
US3205055A (en) * 1960-06-24 1965-09-07 Saint Gobain Metallic elements adapted to come in contact with melted glass
US3223522A (en) * 1963-01-31 1965-12-14 John J Rausch Chromium, tungsten cobalt base alloys containing additions of tantalum, titanium and niobium
US3432294A (en) * 1965-04-21 1969-03-11 Martin Marietta Corp Cobalt-base alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB443821A (en) * 1934-07-14 1936-03-06 Heraeus Vacuumschmelze Ag Improvements in the manufacture of cobalt-tungsten-chromium alloys
US2247643A (en) * 1938-12-24 1941-07-01 Rohn Wilheim Hardening cobalt-nickel-chromium-iron alloys
US2515774A (en) * 1945-05-23 1950-07-18 Gen Electric High-temperature alloy
GB686180A (en) * 1949-10-29 1953-01-21 Jessop William & Sons Ltd Improvements in or relating to alloys
US2684299A (en) * 1949-11-02 1954-07-20 Union Carbide & Carbon Corp Cobalt base alloys and cast articles
CA542813A (en) * 1957-06-25 F. Richardson Bruce Hard surfaced non-ferrous articles and method for making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA542813A (en) * 1957-06-25 F. Richardson Bruce Hard surfaced non-ferrous articles and method for making the same
GB443821A (en) * 1934-07-14 1936-03-06 Heraeus Vacuumschmelze Ag Improvements in the manufacture of cobalt-tungsten-chromium alloys
US2247643A (en) * 1938-12-24 1941-07-01 Rohn Wilheim Hardening cobalt-nickel-chromium-iron alloys
US2515774A (en) * 1945-05-23 1950-07-18 Gen Electric High-temperature alloy
GB686180A (en) * 1949-10-29 1953-01-21 Jessop William & Sons Ltd Improvements in or relating to alloys
US2684299A (en) * 1949-11-02 1954-07-20 Union Carbide & Carbon Corp Cobalt base alloys and cast articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205055A (en) * 1960-06-24 1965-09-07 Saint Gobain Metallic elements adapted to come in contact with melted glass
US3202506A (en) * 1963-01-23 1965-08-24 David E Deutsch High-temperature oxidation-resistant cobalt base alloys
US3223522A (en) * 1963-01-31 1965-12-14 John J Rausch Chromium, tungsten cobalt base alloys containing additions of tantalum, titanium and niobium
US3432294A (en) * 1965-04-21 1969-03-11 Martin Marietta Corp Cobalt-base alloy

Also Published As

Publication number Publication date
CH384869A (en) 1965-02-26

Similar Documents

Publication Publication Date Title
US3164465A (en) Nickel-base alloys
US3061426A (en) Creep resistant alloy
US4437913A (en) Cobalt base alloy
US5516381A (en) Rotating blade or stationary vane of a gas turbine
US4476091A (en) Oxidation-resistant nickel alloy
US3343950A (en) Nickel-chromium alloys useful in the production of wrought articles for high temperature application
US2809110A (en) Alloy for high temperature applications
US3918964A (en) Nickel-base alloys having a low coefficient of thermal expansion
US3085005A (en) Alloys
US3118763A (en) Cobalt base alloys
US2948606A (en) High temperature nickel base alloy
US2838396A (en) Metal production
US2850385A (en) Molybdenum-base alloy
US3622234A (en) Hot corrosion resistant superalloys
US4126495A (en) Nickel-base superalloy
US3150971A (en) High-temperature tungsten base alloys
US2974036A (en) High temperature cobalt-base alloy
US2907654A (en) High temperature tantalum-columbium base alloys
US3322534A (en) High temperature nickel-chromium base alloys
US3026199A (en) Metal alloy
US2974037A (en) High temperature cobalt base alloy
US2780545A (en) High-temperature alloy
US2860970A (en) Metal alloy
US2805154A (en) Nickel-base alloy
US2746860A (en) High temperature co-cr alloys