US3012959A - Device for holding magnesium or other galvanic anodes - Google Patents

Device for holding magnesium or other galvanic anodes Download PDF

Info

Publication number
US3012959A
US3012959A US798725A US79872559A US3012959A US 3012959 A US3012959 A US 3012959A US 798725 A US798725 A US 798725A US 79872559 A US79872559 A US 79872559A US 3012959 A US3012959 A US 3012959A
Authority
US
United States
Prior art keywords
anode
magnesium
flange
anodes
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US798725A
Inventor
Kenneth N Barnard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US798725A priority Critical patent/US3012959A/en
Priority to GB3705/60A priority patent/GB888791A/en
Application granted granted Critical
Publication of US3012959A publication Critical patent/US3012959A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/18Means for supporting electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures

Definitions

  • This invention relates to an improved device for retaining magnesium or other galvanic anodes in position so that such anodes perform as satisfactorily as possible for their whole useful life in the prevention of corrosion by sea water and the like in relatively confined spaces, the mechanical and electrical features of the device being superior to those incorporated in previously known retaining devices.
  • Serious corrosion problems can occur when a corrosive electrolyte is in contact with a metallic structure.
  • the corrosion is likely to be particularly severe when the structure consists of different metals connected together electrically.
  • a typical structure causing difficulty is a heat exchanger in contact with sea water where the heat exchanger consists of copper alloy tubes in a cast steel vessel. It is apparent that with such an arrangement a strong galvanic cell is set up in which the cast steel disintegrates just as the zinc casing of an ordinary dry cell battery disintegrates, and in due time the equipment in question is rendered useless.
  • the use of a magnesium anode largely overcomes the corrosion due to galvanic action, and the magnesium anode is consumed over a period of time, rather than steel or other metal of the structure.
  • the anode will consist of a slab of magnesium, mechanically but not electrically fastened to a solid surface of the structure sought to be protected.
  • the magnesium slab is so placed as to be in contact with the corrosive liquid, and an electrical connection is made between the magnesium slab and the surface to which the slab is fastened through a resistor to regulate the flow of current to the desired value.
  • FIGURE 1 shows an embodiment of the invention in use in a heat exchanger, the latter being shown in lateral cross-section;
  • FIGURE 2 shows diagrammatically the electrical function of the embodiment of the invention
  • FIGURE 3 shows an oblique, partly diagrammatic, partly cut-away view illustrating the embodiment of the invention in service
  • FIGURE 4 shows a medial cross-sectional view of substantially what is shown in FIGURE 3, for greater certainty of disclosure of the invention.
  • a magnesium anode is shown at 1, mounted by means of a pedestal denoted by 2 in a vessel indicated by 3.
  • the anode would be made of magnesium, but the principle involved here is of general application and other materials could be used. For example particularly if metals lower in the galvanic series than steel were to be protected, it might be found more advantageous to use anodes of aluminum or zinc alloys. In practice, overall economic considerations dictate the selection of anode material.
  • pedestal 2 does not require bolts attached to the vessel 3 in order that the pedestal 2 may be mounted on vessel 3, but welding is contemplated instead. It might be thought that welding is obvious in such circumstances, but it must be kept in mind that the pedestal 2 mechanically attaches but electrically isolates the anode 1 from vessel 3. Accordingly, the structure of pedestal 2,
  • pedestal 2 is used herein such that the anode 1 can readily be mounted on structures having thin surfaces and which must be kept liquid and air tight.
  • the vessel 3 has sea water therein, denoted by 4 and tubes indicated at 5 are part of the structure. If the vessel shell is made of cast steel and the tubes are of copper, the presence of sea Water will result in a galvanic cell and vessel 3 will be rapidly damaged.
  • the anode 1 is electrically connected to a resistor denoted at 6, which is in turn connected to the vessel 3. This cannot be seen in detail in FIGURE 1, but will be discussed in more detail below.
  • FIGURE 2 The electrical relationship can be seen with reference to FIGURE 2.
  • the anode 1, vessel 3 and tubes 5 are shown in the form of a simple cell.
  • the resistor 6 connects the vessel 3 and the anode 1 and limits the current flow to the desired value. No very specific directions can be laid down for the value of resistor 6, and the value must be determined by the circumstances in a particular case.
  • Factors involved are the conductivity and geometrical configuration of the liquid involved, the potential difference available (governed by the anode material selected and the cathode materials to be protected), and the polarization characteristics of the metal surfaces involved.
  • the resistance chosen should permit a sufiicient current to flow to polarize the structure to a potential at which corrosion is arrested. For bare steel in sea water, a minimum current of about 10 milllarnperes per square foot is required for protection.
  • magnesium anodes are to be used for protecting structures consisting wholly or partly of steel, if the value of resistor 6 tended to zero ohms the consumption of anode 1 would be uneconomically large, whereas if the value of resistor 6 were 1000 ohms there would be insufficient current flow for complete protection.
  • resistor 6 For anodes of magnesium in cylindrical shape, approximately six inches in diameter and four inches in height, resistance values of from one to five ohms have been successfully used for steam condenser applications with sea water as coolant, and in sea chests, bilge compartments, etc.
  • anode 1 is held by a single bolt denoted by 11 imbedded in anode 1.
  • Attached to bolt 11 is a bar denoted by 10, and bolt 11 with its attached bar 10 are cased in anode 1.
  • the general appearance of anode 1 with its attaching bolt 11 is that of a bolt with a very large magnesium head.
  • the pedestal 2 consists of a circular flange denoted by 12, a threaded collar denoted by 13 centrally disposed thereon, an annular flange denoted by 14 arranged coaxially about collar 13, and layers of insulating material denoted by 15 and 16. It is seen that when flange 14 is welded to a supporting structure such as vessel 3 the anode is rigidly fixed mechanically, but at the same time insulated from vessel 3.
  • the resistor 6 is in annular form as shown, although this is not essential, and the resistor 6 could, for example, be imbedded in layers of insulating material 16.
  • two connecting collars are provided, shown at 17 and 18.
  • Collar 17 is soldered to collar 13, which is in turn connected to anode 1
  • collar 18 is soldered to flange 14 which is of course connected to the support- 6 ing structure.
  • the use of the embodiment of the invention is the essence of simplicity.
  • the flange 14, which is appropriately dished to receive flange 12 and the layers of insulating material, is assembled with the other parts mentioned in the dished portion, and welded around its edges to the supporting structure. When this is done, the collar 13 with its internal thread for the reception of bolt 11 will be left in exposed position, and the bolt 11, carrying anode 1 may be simply attached by turning anode 1.
  • a lock washer denoted by 19 may be used if desired.
  • the aforementioned parts may be pre-bonded together before flange 14 is welded to the supporting structure.
  • a device for the cathodic protection of a metallic body which is subject to corrosive action comprising a relatively bulky block of metal having a high position in the electrochemical series, an attaching bolt of a metal lower in the electro-chemical series than the metal of said block, means at least partially embedded in said block for rigidly connecting said attachment bolt to said block, and a mounting arrangement for said block and said bolt for securing the same to a surface of said metallic body, said mounting arrangement comprising an attachment plate including an annular flange which is adapted to be welded to said surface of said metallic body and constructed to define a housing bounded at its base by a portion of said surface of said metallic body, a first layer of insulating material for overlying said surface and disposed within said annular flange, a mounting pedestal for said block overlying said first insulating layer and to be separated from said metal body thereby, said mounting pedestal including a pedestal flange abutting said first insulating layer and a collar sup ported thereby and in threade

Description

Dec. 12, 1961 K. N. BARNARD 3,012,959
DEVICE FOR HOLDING MAGNESIUM OR OTHER GALVANIC ANODES Filed March 11. 1959 forneys 3,012,959 DEVICE FOR HOLDING MAGNESlUM OR OTHER GALVANIC ANODES Kenneth N. Barnard, 74 Victoria Road, Dartmouth, Nova Scotia, Canada Filed Mar. 11, 1959, Ser. No. 798,725 1 Claim. (Cl. 204-197) This invention relates to an improved device for retaining magnesium or other galvanic anodes in position so that such anodes perform as satisfactorily as possible for their whole useful life in the prevention of corrosion by sea water and the like in relatively confined spaces, the mechanical and electrical features of the device being superior to those incorporated in previously known retaining devices.
It is known that the corrosion of metals in contact with corrosive electrolytes may be prevented by the application of electric current of appropriate polarity and intensity. The electric current may be applied externally as from batteries or a generator, or internally by the use of galvanic anodes electrically connected to the structure desired to be protected from corrosion.
It is the latter type of circumstances to which the present invention is directed, and particularly where magnesium anodes are used.
Serious corrosion problems can occur when a corrosive electrolyte is in contact with a metallic structure. The corrosion is likely to be particularly severe when the structure consists of different metals connected together electrically. For a discussion of background information see, for example, the Dow Chemical Company, Midland, Michigan, U.S.A., publication entitled The Magnesium Anode, volume 5, No. l. A typical structure causing difficulty is a heat exchanger in contact with sea water where the heat exchanger consists of copper alloy tubes in a cast steel vessel. It is apparent that with such an arrangement a strong galvanic cell is set up in which the cast steel disintegrates just as the zinc casing of an ordinary dry cell battery disintegrates, and in due time the equipment in question is rendered useless.
In the heat exchanger structure cited above, the use of a magnesium anode largely overcomes the corrosion due to galvanic action, and the magnesium anode is consumed over a period of time, rather than steel or other metal of the structure. Typically the anode will consist of a slab of magnesium, mechanically but not electrically fastened to a solid surface of the structure sought to be protected. The magnesium slab is so placed as to be in contact with the corrosive liquid, and an electrical connection is made between the magnesium slab and the surface to which the slab is fastened through a resistor to regulate the flow of current to the desired value.
In the absence of the magnesium slab, connected as aforesaid, current flows through the liquid from a metal higher in the electrochemical series to a metal lower in the series. In the example given above where copper tubes are in a cast steel vessel containing sea water, the current flow is away from the steel toward the copper, thus decomposing the steel. When the magnesium slab is connected to the steel through a resistor, a slightly different type of galvanic cell is produced, but one which is harmless so far as the steel and copper are concerned. The galvanic cell now has as its negative plate the magnesium slab, and as its positive plate the combined steel and copper structure, since both steel and copper are lower in the electrochemical series than magnesium. In the result, the magnesium anode is gradually decomposed and the steel and copper remain practically unharmed.
Although theoretically very adavntageous, the use of magnesium slabs in the manner just described presents ree certain practical difficulties. It is apparent that such slabs must be large and relatively heavy if protection over a long period is desired, It is also apparent that such slabs may be subjected to vibration, shocks, sudden changes of temperature, liquid turbulence and other disturbing forces. Because of the necessity of rugged mechanical attachment combined With electrical isolation from the structure to be protected, all this in the presence of corrosive and conductign liquid, the ordinarily simple problem of attachment has become one of considerable ditficulty. One structure heretofore used has employed bolts surrounded by insulating sleeves passing through the magnesium slab, with the slab separated from the supporting structure by means of an insulating pad or layer. This functions satisfactorily initially, but as the slab decomposes, the region around the bolt holes disintegrates and the slab tends to work loose. When this occurs, the electrical function of the anode is upset, if not destroyed altogether. At best the corrosion protection would suffer because of partial or complete interruption of the protective current flow, and at worst the anode would become detached mechanically and cause damage such as by blockage of heat exchanger tubes.
It is accordingly the principal object of this invention to provide a mounting for anodes used in cathodic corrosion protection which will hold such anodes securely in place during the entire useful life of such anodes, and will combine proper mechanical attachment with proper electrical connection.
Other objects and advantages will become apparent to one skilled in the art from an examination of the present specification and the accompanying drawings.
The invention will now be described with the assistance of the accompanying drawings, illustrating an embodiment of the invention by way of example. In the drawings,
FIGURE 1 shows an embodiment of the invention in use in a heat exchanger, the latter being shown in lateral cross-section; 1
FIGURE 2 shows diagrammatically the electrical function of the embodiment of the invention;
FIGURE 3 shows an oblique, partly diagrammatic, partly cut-away view illustrating the embodiment of the invention in service; and
FIGURE 4 shows a medial cross-sectional view of substantially what is shown in FIGURE 3, for greater certainty of disclosure of the invention.
In the present disclosure like parts are denoted by the same reference numerals throughout.
Referring first to FIGURE 1, a magnesium anode is shown at 1, mounted by means of a pedestal denoted by 2 in a vessel indicated by 3. In any uses of the invention contemplated at this time, the anode would be made of magnesium, but the principle involved here is of general application and other materials could be used. For example particularly if metals lower in the galvanic series than steel were to be protected, it might be found more advantageous to use anodes of aluminum or zinc alloys. In practice, overall economic considerations dictate the selection of anode material.
It will be seen that the pedestal 2 does not require bolts attached to the vessel 3 in order that the pedestal 2 may be mounted on vessel 3, but welding is contemplated instead. It might be thought that welding is obvious in such circumstances, but it must be kept in mind that the pedestal 2 mechanically attaches but electrically isolates the anode 1 from vessel 3. Accordingly, the structure of pedestal 2,
to be discussed below, must be carefully considered. It
may be mentioned here, however, that the form of pedestal 2 is used herein such that the anode 1 can readily be mounted on structures having thin surfaces and which must be kept liquid and air tight.
The vessel 3 has sea water therein, denoted by 4 and tubes indicated at 5 are part of the structure. If the vessel shell is made of cast steel and the tubes are of copper, the presence of sea Water will result in a galvanic cell and vessel 3 will be rapidly damaged.
The anode 1 is electrically connected to a resistor denoted at 6, which is in turn connected to the vessel 3. This cannot be seen in detail in FIGURE 1, but will be discussed in more detail below.
The electrical relationship can be seen with reference to FIGURE 2. Here the anode 1, vessel 3 and tubes 5 are shown in the form of a simple cell. The resistor 6 connects the vessel 3 and the anode 1 and limits the current flow to the desired value. No very specific directions can be laid down for the value of resistor 6, and the value must be determined by the circumstances in a particular case. Factors involved are the conductivity and geometrical configuration of the liquid involved, the potential difference available (governed by the anode material selected and the cathode materials to be protected), and the polarization characteristics of the metal surfaces involved. The resistance chosen should permit a sufiicient current to flow to polarize the structure to a potential at which corrosion is arrested. For bare steel in sea water, a minimum current of about 10 milllarnperes per square foot is required for protection.
Where for example magnesium anodes are to be used for protecting structures consisting wholly or partly of steel, if the value of resistor 6 tended to zero ohms the consumption of anode 1 would be uneconomically large, whereas if the value of resistor 6 were 1000 ohms there would be insufficient current flow for complete protection. For anodes of magnesium in cylindrical shape, approximately six inches in diameter and four inches in height, resistance values of from one to five ohms have been successfully used for steam condenser applications with sea water as coolant, and in sea chests, bilge compartments, etc.
Referring now to FIGURES 3 and 4, it will be seen that the anode 1 is held by a single bolt denoted by 11 imbedded in anode 1. Attached to bolt 11 is a bar denoted by 10, and bolt 11 with its attached bar 10 are cased in anode 1. Being relatively near the center of anode 1, corrosive disintegration does not affect the firm attachment of anode 1 until the anode has completed or very nearly completed its useful life. This is in contrast to attachment by bolts through holes in anode 1, as is known in the art. The general appearance of anode 1 with its attaching bolt 11 is that of a bolt with a very large magnesium head.
The pedestal 2 consists of a circular flange denoted by 12, a threaded collar denoted by 13 centrally disposed thereon, an annular flange denoted by 14 arranged coaxially about collar 13, and layers of insulating material denoted by 15 and 16. It is seen that when flange 14 is welded to a supporting structure such as vessel 3 the anode is rigidly fixed mechanically, but at the same time insulated from vessel 3.
The resistor 6 is in annular form as shown, although this is not essential, and the resistor 6 could, for example, be imbedded in layers of insulating material 16. In the form shown, two connecting collars are provided, shown at 17 and 18. Collar 17 is soldered to collar 13, which is in turn connected to anode 1, and collar 18 is soldered to flange 14 which is of course connected to the support- 6 ing structure. Thus, when resistor 6 is connected between collars 17 and 18, connection is made through resistor 6 between the anode 1 and the supporting structure.
The use of the embodiment of the invention is the essence of simplicity. The flange 14, which is appropriately dished to receive flange 12 and the layers of insulating material, is assembled with the other parts mentioned in the dished portion, and welded around its edges to the supporting structure. When this is done, the collar 13 with its internal thread for the reception of bolt 11 will be left in exposed position, and the bolt 11, carrying anode 1 may be simply attached by turning anode 1. A lock washer denoted by 19 may be used if desired.
If the dimensions of the parts of pedestal 2 are chosen so that the depth of the dished portion of flange 14 is equal the thickness of flange 12 and the layers of insulating material 15 and 16, the collar 13 will be retained firmly in place coaxially within flange 14. However, if desired, the aforementioned parts may be pre-bonded together before flange 14 is welded to the supporting structure.
What is claimed is:
A device for the cathodic protection of a metallic body which is subject to corrosive action, comprising a relatively bulky block of metal having a high position in the electrochemical series, an attaching bolt of a metal lower in the electro-chemical series than the metal of said block, means at least partially embedded in said block for rigidly connecting said attachment bolt to said block, and a mounting arrangement for said block and said bolt for securing the same to a surface of said metallic body, said mounting arrangement comprising an attachment plate including an annular flange which is adapted to be welded to said surface of said metallic body and constructed to define a housing bounded at its base by a portion of said surface of said metallic body, a first layer of insulating material for overlying said surface and disposed within said annular flange, a mounting pedestal for said block overlying said first insulating layer and to be separated from said metal body thereby, said mounting pedestal including a pedestal flange abutting said first insulating layer and a collar sup ported thereby and in threaded engagement with said attaching bolt, a second layer of insulating material on the side of said pedestal flange remote from said first insulating layer and overlying said pedestal flange, said pedestal flange being sandwiched between said first and second layers of insulating material, the sandwiched assembly of said first and second insulating layers and said pedestal flange being maintained in assembled relation with respect to each other by a portion of said attachment plate which overlies said second insulating layer, said portion of said attachment plate being spaced relative to said surface and being offset with respect to said annular flange.
References Cited in the file of this patent UNITED STATES PATENTS
US798725A 1959-03-11 1959-03-11 Device for holding magnesium or other galvanic anodes Expired - Lifetime US3012959A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US798725A US3012959A (en) 1959-03-11 1959-03-11 Device for holding magnesium or other galvanic anodes
GB3705/60A GB888791A (en) 1959-03-11 1960-02-02 Improvements in or relating to devices for holding galvanic anodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US798725A US3012959A (en) 1959-03-11 1959-03-11 Device for holding magnesium or other galvanic anodes

Publications (1)

Publication Number Publication Date
US3012959A true US3012959A (en) 1961-12-12

Family

ID=25174116

Family Applications (1)

Application Number Title Priority Date Filing Date
US798725A Expired - Lifetime US3012959A (en) 1959-03-11 1959-03-11 Device for holding magnesium or other galvanic anodes

Country Status (2)

Country Link
US (1) US3012959A (en)
GB (1) GB888791A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179582A (en) * 1961-07-26 1965-04-20 Herman S Preiser Welding attachment of anodes for cathodic protection
US3657084A (en) * 1963-02-04 1972-04-18 Ernst Beer Method of mounting electrode
US4397726A (en) * 1981-10-13 1983-08-09 A. O. Smith Harvestore Products, Inc. Cathodically protected vessel
EP1662222A3 (en) * 2004-11-25 2011-01-19 Dieter Sieber Device for tempering forming tools
USRE47494E1 (en) * 2008-12-05 2019-07-09 Frank Amidio Catalano Electrolysis prevention device and method of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526357A (en) * 1894-09-18 Antirust-ware
GB190611216A (en) * 1906-05-14 1907-02-21 Donald Barns Morison Improvements in and relating to Apparatus for Preventing or Lessening the Corrosion of Condenser Tubes.
GB721712A (en) * 1952-08-05 1955-01-12 Hughes & Co Improvements in or relating to the cathodic protection of metallic structures against corrosion
US2779729A (en) * 1950-07-01 1957-01-29 Dow Chemical Co Cathodic protection assembly
GB780348A (en) * 1955-02-11 1957-07-31 Hughes & Co Improvements in or relating to cathodic protection of metallic structures
GB783348A (en) * 1955-02-01 1957-09-25 Hughes & Co Improvements in or relating to cathodic protection of ferrous metallic structures
US2934485A (en) * 1957-05-13 1960-04-26 Rolland C Sabins Device and its use for protecting elements against galvanic dissolution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526357A (en) * 1894-09-18 Antirust-ware
GB190611216A (en) * 1906-05-14 1907-02-21 Donald Barns Morison Improvements in and relating to Apparatus for Preventing or Lessening the Corrosion of Condenser Tubes.
US2779729A (en) * 1950-07-01 1957-01-29 Dow Chemical Co Cathodic protection assembly
GB721712A (en) * 1952-08-05 1955-01-12 Hughes & Co Improvements in or relating to the cathodic protection of metallic structures against corrosion
GB783348A (en) * 1955-02-01 1957-09-25 Hughes & Co Improvements in or relating to cathodic protection of ferrous metallic structures
GB780348A (en) * 1955-02-11 1957-07-31 Hughes & Co Improvements in or relating to cathodic protection of metallic structures
US2934485A (en) * 1957-05-13 1960-04-26 Rolland C Sabins Device and its use for protecting elements against galvanic dissolution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179582A (en) * 1961-07-26 1965-04-20 Herman S Preiser Welding attachment of anodes for cathodic protection
US3657084A (en) * 1963-02-04 1972-04-18 Ernst Beer Method of mounting electrode
US4397726A (en) * 1981-10-13 1983-08-09 A. O. Smith Harvestore Products, Inc. Cathodically protected vessel
EP1662222A3 (en) * 2004-11-25 2011-01-19 Dieter Sieber Device for tempering forming tools
USRE47494E1 (en) * 2008-12-05 2019-07-09 Frank Amidio Catalano Electrolysis prevention device and method of use

Also Published As

Publication number Publication date
GB888791A (en) 1962-02-07

Similar Documents

Publication Publication Date Title
US3313721A (en) Dish-shaped anode
US3240688A (en) Aluminum alloy electrode
US3133872A (en) Anode for electrochemical applications
US2779729A (en) Cathodic protection assembly
US3108939A (en) Platinum plug-valve metal anode for cathodic protection
US2444174A (en) Galvanic coating process
US2934485A (en) Device and its use for protecting elements against galvanic dissolution
US3012959A (en) Device for holding magnesium or other galvanic anodes
US2478478A (en) Potential gradient anode for galvanic protection
US3368952A (en) Alloy for cathodic protection galvanic anode
US4489277A (en) Cathodic protection monitoring system
US3594706A (en) Ground connector
US4559017A (en) Constant voltage anode system
US2758082A (en) Cathodic protection
US3726779A (en) Marine anticorrosion anode structure
US3001924A (en) Sacrificial magnesium anodes
US2826543A (en) Mounting means for cathodic protection anodes
JP3139938B2 (en) Cathodic protection current monitor and monitoring system using the same
US2641622A (en) Electric primary cell
US3408280A (en) Anode-assembly for cathodic protection systems
US3869373A (en) Contact device for electrochemically deburring workpieces
US3383297A (en) Zinc-rare earth alloy anode for cathodic protection
US3657084A (en) Method of mounting electrode
US2404031A (en) Corrosion preventing electrode
US3421990A (en) Sacrificial anode