US2996692A - Ultrahigh-frequency apparatus - Google Patents

Ultrahigh-frequency apparatus Download PDF

Info

Publication number
US2996692A
US2996692A US26385A US2638560A US2996692A US 2996692 A US2996692 A US 2996692A US 26385 A US26385 A US 26385A US 2638560 A US2638560 A US 2638560A US 2996692 A US2996692 A US 2996692A
Authority
US
United States
Prior art keywords
slot
cover
probe
section
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US26385A
Inventor
James H Christensen
Anthony J Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tennessee Valley Authority (ATV)
Original Assignee
Tennessee Valley Authority (ATV)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tennessee Valley Authority (ATV) filed Critical Tennessee Valley Authority (ATV)
Priority to US26385A priority Critical patent/US2996692A/en
Application granted granted Critical
Publication of US2996692A publication Critical patent/US2996692A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/24Transmission-line, e.g. waveguide, measuring sections, e.g. slotted section
    • G01R1/26Transmission-line, e.g. waveguide, measuring sections, e.g. slotted section with linear movement of probe

Definitions

  • Our invention relates to ultrahigh-frequency electrical apparatus, and more particularly to improvements in standing wave detectors using traveling probes.
  • a narrow slot has been provided in the Wall of the section of wave guide or in the outer conductor of the section of coaxial line (both of which will hereinafter be termed transmission line).
  • This narrow slot permits a pickup device, such as a probe or loop,
  • slotted-section assemblies are used in such applications as the determination of dielectric-constants and loss factors, we have found that radiation from the slot itself causes the slotted section to exhibit nonlinear characteristics which increase the complexity and errors of precision measurements,
  • Our invention is directed to a standing wave detector (hereinafter termed slotted-section assembly) of improved construction over that of conventional detectors.
  • Another object of the present invention is to provide a standing wave detector having a movable pickup device of the slotted-section type which exhibits substantially linear loss characteristics.
  • Still another object of the present invention is to provide a standing wave detector having a movable pickup device of the slotted-section type which is capable of increased reproducibility and accuracy in measuring standing Wave ratios of voltage or current and points of maximum and minimum voltage within a length of transmission line.
  • a movable cover with a standing Wave detector haw'ng a movable pickup device of the slotted-section type.
  • This cover is arranged to enclose the slot completely and is movable, thus permitting the probe to be moved to any desired position within the slot.
  • FIGURE 1 shows an isometric view of one preferred type of slotted-section assembly, constructed according to our invention, in which an endless belt is employed as a cover for the slot.
  • FIGURE 2 shows a sectional view through the slotted section of FIGURE 1 on line 2-2.
  • FIGURE 3 shows a top view of a slotted-section assembly and movable cover according to a modification of our invention.
  • FIGURE4 shows a sectional View through the modifi- Zaiign of our invention shown in FIGURE 3 on the line
  • a slotted-section assembly comprising a wave guide 1 having a longitudinal slot 2 on its upper peripheral surface adapted to receive a movable probe 3 and insulator 4-.
  • Probe 3 is slidable lengthwlse in slot 2 and may be advanced or retracted vertically in the slot by manipulation of a-means for probe control 5.
  • Probe 3 insulator 4, and control means 5 are carried by carriage member 6, which is disposed to be moved longi tudinally along slot 2 by means such as a rack and pinion assembly 7, operable by manipulation of knob 8.
  • a movable cover 9 having an aperture generally illustrated as of such size as to allow the insertion of probe 3 and insulator 4 through it, is disposed to keep slot 2 tightly covered at all times.
  • movable cover 9 is illustrated as an endless belt.
  • This cover is made of conducting material, but we prefer that it be coated with a thin layer of nonconducting material in order to minimize noise.
  • the cover is disposed in a recessed slot 11 of height andwidth sufiicient to accommodate the endless belt.
  • Cover plate 12 which is detachable for ease in inserting and removing the slot cover, is disposed longitudinally through recessed slot 11 and covers substantially all of the endless belt in contact with the upper surface of wave guide 1.
  • the lips 13 of detachable portion 12 are held in intimate contact with the recessed surface of wave guide 1 by screws "14 and define the guideway for the edge of cover 9.
  • Movable cover 9 is also guided by rollers 15. These rollers ensure ease of movement of cover 9 and allow free travel of probe 3.
  • the movable cover 9 instead of being in the form of an endless belt as shown, may be in the form of a strip of covering material which is rolled on springloaded rollers at each end of the slot in a manner somewhat analogous to the rolling means of a window shade.
  • Such a modification could employ the driving means shown and would have the advantage of a more compact cover assembly.
  • FIGURES 3 and 4 there is shown a modification of the present invention comprising a wave guide section 1 having a longitudinal slot on its upper peripheral surface adapted to receive "movable probe 3 and insulator 4.
  • Probe 3- is slidable lengthwise in slot 2 and also may be advanced or retracted vertically by manipulation of a means for probe control 5.
  • Probe 3, insulator 4, and control means 5 are carried by carriage member (not shown) which is disposed to be moved longitudinally along slot 2 by means such as a rack and pinion assembly (also not shown).
  • a flat, disc-like movable cover 16 having an. aperture (not shown) of sutficient size to allow insertion of probe 3 and insulator 4, is disposed to keep slot 2 tightly covered at all times.
  • the cover 16 is mounted eccentrically with respect to the axis of probe 3 and is of sufiicient diameter to ensure that slot 2 is completely covered regardless of the longitudinal position of probe 3 in slot 2.
  • Cover plate 17, juxtaposed the top surface 18 of cover 16, ensures intimate contact with the upper peripheral surface 20 of Wave guide 1.
  • Cover plate 17 may be modified as a convex-shaped, disc-like member so as to effectively spring bias slot cover'16 against the top surface 20 of wave guide 1.
  • slot cover 16 Longitudinal movement of probe 3, insulator 4, and control means 5 in slot2 causes slot cover 16 to be rotated eccentrically and to completely cover the slot at all longitudinal positions of probe 3.
  • the phantom view in FIGURE 3 shows only the the cover plate 16a when probe 3 is atthe opposite end 'of the slot.
  • an ultrahigh-frequency apparatus for detecting standing waves in an electromagnetic energy transmission system, including a section of enclosed wave guide having a first aperture in the outer wall thereof, a detector device electrically coupled to and supported for longitudinal movement with reference to saidguide section for deriving a voltage indicative of the amplitude of the standing wave at any selected point along the length of said guide section, a movable conducting cover means disposed to shield said guide wall first aperture and having a second aperture of size sulficient for insertion of an insulated probe of said detector device into said guide, said means being of sufficient length on each side of said second aperture to cover said first aperture completely, said means being movable together with said detector device, the improvement comprising an endless belt as said movable conducting cover means, said belt disposed in a recessed slot of height and width sufficient to accommodate said belt, said belt disposed longitudinally through said slot to cover and be in contact with substantially all of the upper surface of said wave guide section, the position of said belt, including thev portion thereof juxtaposed the upper peripheral surface of said guide, being defined by a
  • an ultrahigh-frequency apparatus for detecting standing waves in anelectromagnetic energy transmission system including a section of enclosed Wave guide having a first aperture in the outer wall thereof, a detector device electrically coupled to and supported for longitudinal movement with reference to said guide section for deriving a voltage indicative of the amplitude of the standing wave at any selected point along the length of said guide section, a movable conducting cover means disposed to shield said guide wall first aperture and having a second aperture of size sufiicient for insertion of an insulated probe of said detector device into said. guide,
  • said means being eccentrically rotatable about the. vertical axis of said insulated probe and being ofv sufficient diameter to cover said first aperture completely at all longitudinal positions of said detector device in said first aperture, said means being movable together lwithsaid detector device, the improvement comprising a relatively thin, convex-shaped, disc-like member as ,said movable conductor cover means, juxtaposed the top peripheral surface of said guide section and spring-biased against the upper peripheral surface of said guide section by apressure-exerting means disposed against the upper surface of said disc-like means, whereby the convex shape of said disc-like member provides the necessary spring-biasing forces.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

Aug. 15, 1961 J. H. CHRISTENSEN ETAL 2,996,692
ULTRAHIGH-FREQUENCY APPARATUS 2 Sheets-Sheet 1 Filed May 2, 1960 INVENTORS.
J. H. CHRISTENSEN EI'AL 2,996,692
ULTRAHIGH-FREQUENCY APPARATUS Aug. 15, 1961 2 Sheets-Sheet 2 Filed May 2, 1960 $6 I INVENTORS United States Patent 2,996,692 ULTRAHIGH-FREQUENCY AIPARATUS James H. Christensen, Athens, and Anthony J. Sm th, Florence, Ala., assignors to Tennessee Valley Authority, a corporation of the United States Filed May 2, 1960, Ser. No. 26,385 2 Claims. (Cl. 333-98) (Granted under Title 3'5, U.S. Code (1952), see. 266) The invention herein described may be manufactured and used byor for the Government for governmental purposes without the payment to us of any royalty therefor.
Our invention relates to ultrahigh-frequency electrical apparatus, and more particularly to improvements in standing wave detectors using traveling probes.
Heretofore, in the construction of conventional standing Wave detectors, a narrow slot has been provided in the Wall of the section of wave guide or in the outer conductor of the section of coaxial line (both of which will hereinafter be termed transmission line). This narrow slot permits a pickup device, such as a probe or loop,
to be projected into the section of transmission line so as that the efiects of a longitudinal slot in the conductor wall of a transmission line is to change the characteristic impedance of the line but slightly, and to introduce but a negligible loss by radiation. This effect is ordinarily assumed to be immeasurably small on the basis that when the wall thickness is compared with that of the slot width the slot acts as a wave guide far beyond cutoff for the penetrating field. Thus, in the instance where the penetrating field is thought of as a TM-wave in the parallelplate transmission line formed by the slot sides, the assumption has been that the attenuation of this wave in a direction normal to the axis of the wave guide is so rapid that the coupling to the exterior region is of no practical importance.
Prior art arrangements of the above-mentioned type have proved to be operative; however, we have found that to ensure the highest practical degree of reproducibility and accuracy in determining standing wave ratios of voltage or current within a length of transmission line, the slotted section assembly or slotted line itself cannot be treated as a uniform-loss transmission line. Although it has been assumed in the prior art that the radiation through a narrow slot, properly proportioned and properly positioned, is so negligible as to be imrnaterial in practical use, we have found that this assumption in many instances is not tenable. The radiation through the slot, however well designed, is measurable, and the elimination of such radiation will increase the reproducibility and accuracy of slotted-section measurements.
Thus, in the instance wherein slotted-section assemblies .are used in such applications as the determination of dielectric-constants and loss factors, we have found that radiation from the slot itself causes the slotted section to exhibit nonlinear characteristics which increase the complexity and errors of precision measurements,
Another source of error and a contributing factor to erratic operation of conventional standing wave detectors .has been found to result from reflections of the electric .field off nearby metallic objects and the subsequent re'-' 2,996,692 Patented Aug. 15, 1961 radiation of the ultrahigh frequency electromagnetic field outside the transmission line back into the wave guide via the slot. Such re-radiation may easily change the electric field strength within the transmission line, either adding to or subtracting from it, depending upon the phase of the reflected field. This re-radiation is extremely troublesome, since the amount of metallic reflection surface outside of the wave guide and its distance from the slot vary according to the type of auxiliary equipment necessary during any particular series of measurements. Thus, successive field strength readings under otherwise similar conditions may vary considerably because of variations in the amount of re-radiation through the slot.
Our invention is directed to a standing wave detector (hereinafter termed slotted-section assembly) of improved construction over that of conventional detectors.
We have overcome the difficulties inherent in apparatus of this type in the prior art to a substantial extent in the present invention by providing a standing wave detector having a moving pickup device of the slottedsection type in which substantially all of the slot is covered or closed in with a material which prevents radiation of energy through the slot. Furthermore, several new, advantageous features over conventional standing wave detectors are realized by the present invention.
Among these advantageous features are increased average probe excitation and, in the instance of a wave guide terminated with a shorting plate, a direct proportionality between the magnitude of the inverse standing wave ratio and the length of the wave guide.
It is therefore an object of the present invention to provide a standing wave detector having a movable pickup device of the slotted-section type in which radiation from the slot is substantially eliminated.
Another object of the present invention is to provide a standing wave detector having a movable pickup device of the slotted-section type which exhibits substantially linear loss characteristics.
Still another object of the present invention is to provide a standing wave detector having a movable pickup device of the slotted-section type which is capable of increased reproducibility and accuracy in measuring standing Wave ratios of voltage or current and points of maximum and minimum voltage within a length of transmission line.
In carrying out the objects of our invention in one form thereof, we employ a movable cover with a standing Wave detector haw'ng a movable pickup device of the slotted-section type. This cover is arranged to enclose the slot completely and is movable, thus permitting the probe to be moved to any desired position within the slot.
Our invention, together with further objects and advantages thereof, will be better understood from the consideration of the following description taken in connection with the accompanying drawings in-which:
FIGURE 1 shows an isometric view of one preferred type of slotted-section assembly, constructed according to our invention, in which an endless belt is employed as a cover for the slot.
FIGURE 2 shows a sectional view through the slotted section of FIGURE 1 on line 2-2.
FIGURE 3 shows a top view of a slotted-section assembly and movable cover according to a modification of our invention.
FIGURE4 shows a sectional View through the modifi- Zaiign of our invention shown in FIGURE 3 on the line Referring now more particularly to FIGURES 1 and 2, there is shown a slotted-section assembly comprising a wave guide 1 having a longitudinal slot 2 on its upper peripheral surface adapted to receive a movable probe 3 and insulator 4-. Probe 3 is slidable lengthwlse in slot 2 and may be advanced or retracted vertically in the slot by manipulation of a-means for probe control 5.
Probe 3, insulator 4, and control means 5 are carried by carriage member 6, which is disposed to be moved longi tudinally along slot 2 by means such as a rack and pinion assembly 7, operable by manipulation of knob 8.
A movable cover 9, having an aperture generally illustrated as of such size as to allow the insertion of probe 3 and insulator 4 through it, is disposed to keep slot 2 tightly covered at all times.
In the preferred embodiment shown in FIGURE 1, movable cover 9 is illustrated as an endless belt. This cover is made of conducting material, but we prefer that it be coated with a thin layer of nonconducting material in order to minimize noise. The cover is disposed in a recessed slot 11 of height andwidth sufiicient to accommodate the endless belt. Cover plate 12, which is detachable for ease in inserting and removing the slot cover, is disposed longitudinally through recessed slot 11 and covers substantially all of the endless belt in contact with the upper surface of wave guide 1. The lips 13 of detachable portion 12 are held in intimate contact with the recessed surface of wave guide 1 by screws "14 and define the guideway for the edge of cover 9. Movable cover 9 is also guided by rollers 15. These rollers ensure ease of movement of cover 9 and allow free travel of probe 3.
Movement of carriage member 6 carrying probe insulator means 4 exerts pressure on cover 9 and thus moves the cover as the probe assumes any desired longitudinal position in the slot. Thus, it can be seen that slot 2 is kept covered by cover 9 at all times, regardless of the position of probe in the slot.
Many modifications of this device may be made. For instance, the movable cover 9, instead of being in the form of an endless belt as shown, may be in the form of a strip of covering material which is rolled on springloaded rollers at each end of the slot in a manner somewhat analogous to the rolling means of a window shade. Such a modification could employ the driving means shown and would have the advantage of a more compact cover assembly.
Referring now more particularly to FIGURES 3 and 4, there is shown a modification of the present invention comprising a wave guide section 1 having a longitudinal slot on its upper peripheral surface adapted to receive "movable probe 3 and insulator 4. Probe 3- is slidable lengthwise in slot 2 and also may be advanced or retracted vertically by manipulation of a means for probe control 5. Probe 3, insulator 4, and control means 5 are carried by carriage member (not shown) which is disposed to be moved longitudinally along slot 2 by means such as a rack and pinion assembly (also not shown).
A flat, disc-like movable cover 16, having an. aperture (not shown) of sutficient size to allow insertion of probe 3 and insulator 4, is disposed to keep slot 2 tightly covered at all times. As shown, the cover 16 is mounted eccentrically with respect to the axis of probe 3 and is of sufiicient diameter to ensure that slot 2 is completely covered regardless of the longitudinal position of probe 3 in slot 2. Cover plate 17, juxtaposed the top surface 18 of cover 16, ensures intimate contact with the upper peripheral surface 20 of Wave guide 1. Cover plate 17 may be modified as a convex-shaped, disc-like member so as to effectively spring bias slot cover'16 against the top surface 20 of wave guide 1.
Longitudinal movement of probe 3, insulator 4, and control means 5 in slot2 causes slot cover 16 to be rotated eccentrically and to completely cover the slot at all longitudinal positions of probe 3. The phantom view in FIGURE 3 shows only the the cover plate 16a when probe 3 is atthe opposite end 'of the slot.
While we have shown and described particular embodiments of our invention, modifications and variations thereof will occur to those skilled in the art. We wish it to be understood, therefore, that the appended claims are intended to cover such modifications and variations which are within the true scope and spirit of our invention.
What we claim as new and desire to secure by,Letters Patent of the United States is:
1. In an ultrahigh-frequency apparatus for detecting standing waves in an electromagnetic energy transmission system, including a section of enclosed wave guide having a first aperture in the outer wall thereof, a detector device electrically coupled to and supported for longitudinal movement with reference to saidguide section for deriving a voltage indicative of the amplitude of the standing wave at any selected point along the length of said guide section, a movable conducting cover means disposed to shield said guide wall first aperture and having a second aperture of size sulficient for insertion of an insulated probe of said detector device into said guide, said means being of sufficient length on each side of said second aperture to cover said first aperture completely, said means being movable together with said detector device, the improvement comprising an endless belt as said movable conducting cover means, said belt disposed in a recessed slot of height and width sufficient to accommodate said belt, said belt disposed longitudinally through said slot to cover and be in contact with substantially all of the upper surface of said wave guide section, the position of said belt, including thev portion thereof juxtaposed the upper peripheral surface of said guide, being defined by a series of spring-biased rollers and said series of rollers so disposed that the longitudinal displacement of said belt is greater than the longitudinal displacement of said first aperture and less than the longitudinal displacement of said wave guide section.
2. In an ultrahigh-frequency apparatus for detecting standing waves in anelectromagnetic energy transmission system, including a section of enclosed Wave guide having a first aperture in the outer wall thereof, a detector device electrically coupled to and supported for longitudinal movement with reference to said guide section for deriving a voltage indicative of the amplitude of the standing wave at any selected point along the length of said guide section, a movable conducting cover means disposed to shield said guide wall first aperture and having a second aperture of size sufiicient for insertion of an insulated probe of said detector device into said. guide,
. said means being eccentrically rotatable about the. vertical axis of said insulated probe and being ofv sufficient diameter to cover said first aperture completely at all longitudinal positions of said detector device in said first aperture, said means being movable together lwithsaid detector device, the improvement comprising a relatively thin, convex-shaped, disc-like member as ,said movable conductor cover means, juxtaposed the top peripheral surface of said guide section and spring-biased against the upper peripheral surface of said guide section by apressure-exerting means disposed against the upper surface of said disc-like means, whereby the convex shape of said disc-like member provides the necessary spring-biasing forces.
References Cited in the file of this patent UNITED STATES PATENTS 2,571,055 Nordsieck Oct. 9,1951 2,772,402 Tomiyasu Nov. 27, 1956 2,811,201 Reid Oct. 29, 1957 FOREIGN PATENTS 567,287 Great Britain Feb. 7, 1945 831,569 Germany Feb. 14, 1952 897,739 Germany Nov. 23, 1953 940,051 Germany Mar. 8, 1956
US26385A 1960-05-02 1960-05-02 Ultrahigh-frequency apparatus Expired - Lifetime US2996692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US26385A US2996692A (en) 1960-05-02 1960-05-02 Ultrahigh-frequency apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26385A US2996692A (en) 1960-05-02 1960-05-02 Ultrahigh-frequency apparatus

Publications (1)

Publication Number Publication Date
US2996692A true US2996692A (en) 1961-08-15

Family

ID=21831541

Family Applications (1)

Application Number Title Priority Date Filing Date
US26385A Expired - Lifetime US2996692A (en) 1960-05-02 1960-05-02 Ultrahigh-frequency apparatus

Country Status (1)

Country Link
US (1) US2996692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110002A (en) * 1961-02-09 1963-11-05 Ca Nat Research Council Variable insertion sliding post-slotted line tuner having means preventing energy loss past sides of post
US3177426A (en) * 1961-01-25 1965-04-06 Nichols Products Company Inc Slotted-line waveguide measuring means
US3422350A (en) * 1963-05-09 1969-01-14 Western Union Telegraph Co Waveguide section sliding wall carrying detector probe
US3470469A (en) * 1963-08-07 1969-09-30 Sanders Associates Inc Slotted strip transmission line using probe to measure characteristics of the line
US3539951A (en) * 1967-03-16 1970-11-10 Alford Andrew High frequency device compensation
US5796322A (en) * 1995-12-12 1998-08-18 Eev Limited Apparatus to seal against leakage of high frequency radiation through a slot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB567287A (en) * 1942-02-13 1945-02-07 Gen Electric Co Ltd Improvements in concentric cables and wave guides
US2571055A (en) * 1945-11-27 1951-10-09 Arnold T Nordsieck Traveling detector for waves propagated through a wave guide
DE831569C (en) * 1948-10-02 1952-02-14 Siemens & Halske A G Device for measuring electrical or magnetic fields inside hollow tube measuring lines
DE897739C (en) * 1945-01-04 1953-11-23 Siemens Ag Voltage sensing device for coaxial and hollow pipes
DE940051C (en) * 1953-10-06 1956-03-08 Opti Werk G M B H & Co Housing and / or shield walls for high-frequency devices, which are connected by conductive zippers
US2772402A (en) * 1950-11-22 1956-11-27 Sperry Rand Corp Serrated choke system for electromagnetic waveguide
US2811201A (en) * 1951-07-26 1957-10-29 Basil Lermont Movable slot closures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB567287A (en) * 1942-02-13 1945-02-07 Gen Electric Co Ltd Improvements in concentric cables and wave guides
DE897739C (en) * 1945-01-04 1953-11-23 Siemens Ag Voltage sensing device for coaxial and hollow pipes
US2571055A (en) * 1945-11-27 1951-10-09 Arnold T Nordsieck Traveling detector for waves propagated through a wave guide
DE831569C (en) * 1948-10-02 1952-02-14 Siemens & Halske A G Device for measuring electrical or magnetic fields inside hollow tube measuring lines
US2772402A (en) * 1950-11-22 1956-11-27 Sperry Rand Corp Serrated choke system for electromagnetic waveguide
US2811201A (en) * 1951-07-26 1957-10-29 Basil Lermont Movable slot closures
DE940051C (en) * 1953-10-06 1956-03-08 Opti Werk G M B H & Co Housing and / or shield walls for high-frequency devices, which are connected by conductive zippers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177426A (en) * 1961-01-25 1965-04-06 Nichols Products Company Inc Slotted-line waveguide measuring means
US3110002A (en) * 1961-02-09 1963-11-05 Ca Nat Research Council Variable insertion sliding post-slotted line tuner having means preventing energy loss past sides of post
US3422350A (en) * 1963-05-09 1969-01-14 Western Union Telegraph Co Waveguide section sliding wall carrying detector probe
US3470469A (en) * 1963-08-07 1969-09-30 Sanders Associates Inc Slotted strip transmission line using probe to measure characteristics of the line
US3539951A (en) * 1967-03-16 1970-11-10 Alford Andrew High frequency device compensation
US5796322A (en) * 1995-12-12 1998-08-18 Eev Limited Apparatus to seal against leakage of high frequency radiation through a slot
GB2308235B (en) * 1995-12-12 1999-11-24 Eev Ltd High frequency apparatus

Similar Documents

Publication Publication Date Title
US3963999A (en) Ultra-high-frequency leaky coaxial cable
US3005168A (en) Microwave phase shifter
DE3107675C2 (en) Method and device for the electronic measurement of the thickness of very thin electrically conductive layers on a non-conductive substrate
US2996692A (en) Ultrahigh-frequency apparatus
US11609245B2 (en) Test device
GB1326243A (en) Radiation detector
US2454042A (en) Standing-wave measuring apparatus
GB1415485A (en) Leaky coaxial cable
US2496837A (en) Ultra high erequency apparatus
US2534437A (en) Ultra high frequency transmission line system
Row Microwave Diffraction Measurements in a Parallel‐Plate Region
US2591329A (en) Microwave measuring instrument
US3720951A (en) Microwave absorbing wall element
US2936417A (en) Directional power monitor
US2907961A (en) Adjustable attenuators for microwave radio energy
US3539951A (en) High frequency device compensation
US2842748A (en) Coaxial cable attenuator
US2711517A (en) Corrugated wave guide
US2571055A (en) Traveling detector for waves propagated through a wave guide
US2551398A (en) Apparatus for measuring ultra high frequency field distributions
US3422350A (en) Waveguide section sliding wall carrying detector probe
US2710383A (en) Standing wave indicator
US3384842A (en) Right angle coaxial to strip line transition
US2919419A (en) Tunable cavity resonator
US4184073A (en) Fast response electron spectrometer